1
|
Feleni U, Morare R, Masunga GS, Magwaza N, Saasa V, Madito MJ, Managa M. Recent developments in waterborne pathogen detection technologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:233. [PMID: 39903332 PMCID: PMC11794368 DOI: 10.1007/s10661-025-13644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Waterborne pathogens find their way into water bodies through contamination of fecal discharge, stormwater run-offs, agriculture and industrial activities, and poor water infrastructure. These organisms are responsible for causing diarrheal, gastroenteritis, cholera, and typhoid diseases which raise an alarming sense on public human health due to the high mortality rate, especially in children. Several studies have indicated that these waterborne diseases can be managed by monitoring pathogens in water using traditional culture-based and molecular techniques. However, these methods have shown several setbacks such as the longer duration for detection and the inability to detect pathogens at low concentrations. Effective management of these diseases requires rapid, sensitive, highly selective, fast, and efficient economic methods to monitor pathogens in water. Since the creation of biosensors, these tools have been applied and shown the ability to detect pathogens at low concentrations. The highlights of biosensor systems are that they are fast, portable, easy to use, highly sensitive, and specific. The capabilities of biosensors have given these tools exposure to be widely applied in detecting pharmaceutical pollutants, pesticides, toxins, residues of detergents, and cosmetics from household activities in soil and water. With such difficulties faced for detecting waterborne pathogens, this review evaluates the effectiveness of technologies for waterborne pathogens detection and their drawbacks. It further highlights biosensors as the current reliable method available for detecting pathogens in water and its future capabilities in sustaining safe potable water.
Collapse
Affiliation(s)
- Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa.
| | - Rebotiloe Morare
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Ginny S Masunga
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Nontokozo Magwaza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Valentine Saasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Moshawe J Madito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Yang B, Tang H, Liu Z, Cai X, Qi ZM. Analysis of tissue-substrate adhesion by hyperspectral surface plasmon resonance microscopy. Anal Bioanal Chem 2024; 416:5815-5825. [PMID: 39212699 DOI: 10.1007/s00216-024-05509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The preparation of histology slides is a critical step in histopathology, and poor-quality histology slides with weak adhesion of tissue sections to the substrate often affect diagnostic accuracy and sometimes lead to diagnostic failure due to tissue section detachment. This issue has been of concern and some methods have been proposed to enhance tissue-substrate adhesion. Unfortunately, quantitative analysis of the adhesion between tissue sections and glass slides is still challenging. In this work, the adhesion of mouse brain tissue sections on gold-coated glass slides was analyzed using a laboratory-fabricated hyperspectral surface plasmon resonance microscopy (HSPRM) system that enabled single-pixel spectral SPR sensing and provided two-dimensional (2D) distribution of resonance wavelengths (RWs). The existence of the nanoscale water gap between the tissue section and the substrate was verified by fitting the RW measured in each pixel using the five-layer Fresnel reflection model. In addition, a 2D image of the tissue-substrate adhesion distance (AD) was obtained from the measured 2D distribution of RWs. The results showed that tissue-substrate AD was 20-35 nm in deionized water and 4-24 nm in saline solution. The HSPRM system used in this work has a wide wavelength range of 400-1000 nm and can perform highly sensitive and label-free detection over a large dynamic detection range with high spectral and spatial resolutions, showing significant potential applications in stain-free tissue imaging, quantitative analysis of tissue-substrate adhesion, accurate identification of tumor cells, and rapid histopathological diagnosis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyi Tang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziwei Liu
- Beijing Smartchip Microelectronics Technology Co., Ltd, Beijing, 102200, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Mei Qi
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024; 12:1855. [PMID: 39338529 PMCID: PMC11434302 DOI: 10.3390/microorganisms12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The detection of Legionella in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting Legionella in environmental samples, we used 'Legionella' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of Legionella biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of Legionella infections and outbreaks, ultimately protecting public health and safety.
Collapse
Affiliation(s)
- Giuseppe Andrea Screpis
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Andrea Aleo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Natalia Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Giuseppe Emanuele Capuano
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Roberta Farina
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Corso
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Sebania Libertino
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
4
|
Sharma K, Sharma M. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. ENVIRONMENTAL RESEARCH 2023; 236:116826. [PMID: 37543133 DOI: 10.1016/j.envres.2023.116826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The environmental contamination due to bacterial proliferation vs their identification is the major deciding factor in the spread of diseases leading to pandemics. The advent of drug-resistant pathogenic contaminants in our environment has further added to the load of complications associated with their diagnosis and treatment. Obstructing the spread of such infections, prioritizes the expansion of sensor-based diagnostics, effectuating, a sturdy detection of disease-causing microbes, contaminating our surroundings in shortest possible time, with minimal expenditure. Among many sensors known, optical biosensors promote the recognition of pathogens befouling the environment through a comparatively intuitive, brisk, portable, multitudinous, and thrifty approach. This article reviews the recent progresses in optical biosensor-based systems for effective environmental monitoring. The technical and methodological perspectives of fundamental optical-sensing platforms are reviewed, combined with the pros and cons of every procedure. Eventually, the obstacles lying in the path of development of an effective optical biosensor device for bio-monitoring and its future perspectives are highlighted in the present work.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| |
Collapse
|
5
|
Herrera-Domínguez M, Morales-Luna G, Mahlknecht J, Cheng Q, Aguilar-Hernández I, Ornelas-Soto N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. BIOSENSORS 2023; 13:bios13030370. [PMID: 36979582 PMCID: PMC10046542 DOI: 10.3390/bios13030370] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/14/2023]
Abstract
The correct detection and quantification of pollutants in water is key to regulating their presence in the environment. Biosensors offer several advantages, such as minimal sample preparation, short measurement times, high specificity and sensibility and low detection limits. The purpose of this review is to explore the different types of optical biosensors, focusing on their biological elements and their principle of operation, as well as recent applications in the detection of pollutants in water. According to our literature review, 33% of the publications used fluorescence-based biosensors, followed by surface plasmon resonance (SPR) with 28%. So far, SPR biosensors have achieved the best results in terms of detection limits. Although less common (22%), interferometers and resonators (4%) are also highly promising due to the low detection limits that can be reached using these techniques. In terms of biological recognition elements, 43% of the published works focused on antibodies due to their high affinity and stability, although they could be replaced with molecularly imprinted polymers. This review offers a unique compilation of the most recent work in the specific area of optical biosensing for water monitoring, focusing on both the biological element and the transducer used, as well as the type of target contaminant. Recent technological advances are discussed.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Mexico City 01219, Mexico
| | - Jürgen Mahlknecht
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Iris Aguilar-Hernández
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| | - Nancy Ornelas-Soto
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| |
Collapse
|
6
|
Liu L, Duan JJ, Wei XY, Hu H, Wang YB, Jia PP, Pei DS. Generation and application of a novel high-throughput detection based on RPA-CRISPR technique to sensitively monitor pathogenic microorganisms in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156048. [PMID: 35597342 DOI: 10.1016/j.scitotenv.2022.156048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus (S. aureus) is an important opportunistic human and animal pathogen that can cause a wide diversity of infections. Due to its environmental health risks, it is crucial to establish a time-saving, high-throughput, and highly sensitive technique for water quality surveillance. In this study, we developed a novel method to detect S. aureus in the water environment based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a. This method utilizes isothermal amplification of nucleic acids and the trans-cleavage activity of the CRISPR/Cas12a system to generate fluorescence signals with a single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporter and a naked-eye detected lateral flow assay (LFA). Our RPA-CRISPR/Cas12a detection system can reduce the detection time to 35 min and enhance the high-throughput detection threshold to ≥5 copies of pathogen DNA, which is more sensitive than that of reported. Moreover, in the lower reaches of the Jialing River in Chongqing, China, 10 water samples from the mainstream and 7 ones from tributaries were successfully monitored S. aureus for less than 35 min using RPA-CRISPR/Cas12a detection system. Taken together, a novel high-throughput RPA-CRISPR detection was established and firstly applied for sensitively monitoring S. aureus in the natural water environment.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Jing Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Xing-Yi Wei
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Jiaotong University, Chongqing 400074, China
| | - Huan Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Jiaotong University, Chongqing 400074, China
| | - Yuan-Bo Wang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Jiaotong University, Chongqing 400074, China
| | - Pan-Pan Jia
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:1513. [PMID: 35214408 PMCID: PMC8879434 DOI: 10.3390/s22041513] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.
Collapse
Affiliation(s)
| | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Tourism and Environmental Protection, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.G.); (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
8
|
Mobed A, Baradaran B, Guardia MDL, Agazadeh M, Hasanzadeh M, Rezaee MA, Mosafer J, Mokhtarzadeh A, Hamblin MR. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. Trends Analyt Chem 2019; 113:157-171. [DOI: 10.1016/j.trac.2019.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Prada J, Cordes C, Harms C, Lang W. Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a Biosensor †. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1178. [PMID: 30866583 PMCID: PMC6427612 DOI: 10.3390/s19051178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
Abstract
This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.
Collapse
Affiliation(s)
- Jorge Prada
- Institut für Mikrosensoren, -Aktoren und -Systeme, Universität Bremen, 28359 Bremen, Germany.
| | - Christina Cordes
- Bremerhavener Institut für Angewandte Molekularbiologie, Hochschule Bremerhaven, 27568 Bremerhaven, Germany.
| | - Carsten Harms
- Bremerhavener Institut für Angewandte Molekularbiologie, Hochschule Bremerhaven, 27568 Bremerhaven, Germany.
| | - Walter Lang
- Institut für Mikrosensoren, -Aktoren und -Systeme, Universität Bremen, 28359 Bremen, Germany.
| |
Collapse
|
10
|
Mobed A, Hasanzadeh M, Agazadeh M, Mokhtarzadeh A, Rezaee MA, Sadeghi J. Bioassays: The best alternative for conventional methods in detection of Legionella pneumophila. Int J Biol Macromol 2019; 121:1295-1307. [PMID: 30219511 DOI: 10.1016/j.ijbiomac.2018.09.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
Abstract
Fastidious bacteria are group of bacteria that not only grow slowly but also have complex nutritional needs. In this review, recent progress made on development of biosensing strategies towards quantification of Legionella pneumophila as fastidious bacteria in microbiology was investigated. In coincidence with medical bacteriology, it is the most widely used bio-monitoring, biosensors based on DNA and antibody. Also, all of legionella pneumophila genosensors and immunosensors that developed in recent years were collected analyzed. This review is meant to provide an overview of the various types of bioassays have been developed for determination of Legionella Legionella, along with significant advances over the last several years in related technologies. In addition, this review described: i) Most frequently applied principles in bioassay/biosensing of Legionellaii) The aspects of fabrication in the perspective of bioassay/biosensing applications iii) The potential of various electrochemical and optical bioassay/biosensing for the determination of Legionella and the circumvention of the most serious problem in immunosensing/immunoassay was discussed. iv) Some of bioassay/biosensing has been discussed with and without labels. v) We also summarize the latest developments in the applications of bioassay/biosensing methods for detection of Legionella. vi) The development trends of optical and electrochemical based bioassay/biosensing are also introduced.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Agazadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javid Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
11
|
|
12
|
Ma TF, Chen YP, Guo JS, Wang W, Fang F. Cellular analysis and detection using surface plasmon resonance imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Chen J, Park B. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Anal Bioanal Chem 2017; 410:5455-5464. [DOI: 10.1007/s00216-017-0810-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/27/2022]
|
14
|
Justino CIL, Duarte AC, Rocha-Santos TAP. Recent Progress in Biosensors for Environmental Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2918. [PMID: 29244756 PMCID: PMC5750672 DOI: 10.3390/s17122918] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
Abstract
The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Celine I. L. Justino
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
- ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, Lordosa, 3515-776 Viseu, Portugal
| | - Armando C. Duarte
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
| | - Teresa A. P. Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
| |
Collapse
|
15
|
Krämer CEM, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS One 2015; 10:e0141768. [PMID: 26513257 PMCID: PMC4625966 DOI: 10.1371/journal.pone.0141768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Helfrich
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|