1
|
Martínez Fajardo C, López-Jiménez AJ, López-López S, Morote L, Moreno-Giménez E, Diretto G, Díaz-Guerra MJM, Rubio-Moraga Á, Ahrazem O, Gómez-Gómez L. Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity. BIOLOGY 2025; 14:215. [PMID: 40001983 PMCID: PMC11851917 DOI: 10.3390/biology14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Plant exosomes exhibit high stability and easy absorption, and have emerged as promising bioactive tools due to their potential health benefits and biomedical applications. Saffron tepals contain abundant metabolites with potential therapeutic properties and were used for exosome extraction by ultracentrifugation and gradient purification. The exosomes showed an average particle size of 151.5 ± 79.6 nm and exhibited a spherical morphology. Five well-conserved miRNAs-miR157, miR166, miR168, miR396, and miR398-were identified in the exosomes, which are involved in the coordination of growth and physiological plant responses with endogenous and environmental abiotic and biotic signals, and their potential targets in mammals are upregulated in specific cancer types and associated with inflammation. Proteome analysis revealed an enrichment of proteasome proteins, ribosomal proteins, and proteins involved in the cytoskeleton, transport across the membrane (ABC transporters), and vesicle trafficking (RAB GTPases, TM9SF and Coatomer subunits). Metabolite analyses showed mainly anthocyanins. The exosomes have selective stimulatory activity on macrophages, increasing the expression of surface molecules (CD80 and CD86), and cytokines (IL-1β, IL-6, and TNF-α), but not the levels of IL-10. Overall, these results indicated that saffron flowers are an effective and abundant source of exosomes as new nanomedicines for human health.
Collapse
Affiliation(s)
- Cristian Martínez Fajardo
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Alberto J. López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Susana López-López
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, C/Laurel, s/n, 02008 Albacete, Spain;
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Elena Moreno-Giménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy;
| | - María José M. Díaz-Guerra
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
2
|
Wadood SA, Nie J, Song Y, Li C, Rogers KM, Khan WA, Khan A, Xiao J, Liu H, Yuan Y. Authentication of edible herbal materials and food products using mass spectrometry based metabolites and inorganic constituents. Food Chem 2025; 463:141424. [PMID: 39348765 DOI: 10.1016/j.foodchem.2024.141424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Medicinal food homologous (MFH) substances not only provide nutrition but also serve as a traditional means to overcome many health issues. Authentication of these products verifies their efficacity and assures consumers of a genuine product. In this review paper, we focus the determination of MFH authenticity including geographical identification and adulteration detection using mass spectrometry (liquid and gas chromatography) based metabolites and inorganic constituents (muti-elements and stable isotopes). The application of these techniques to determine product identification characteristics combined with chemometrics are discussed, along with the limitations of these techniques. Multi-elements, stable isotopes, and metabolite analysis are shown to provide an effective combination of techniques to resolve the origin of various MFH products. Most organic compounds from MFH products are identified using chromatographic separation techniques (HPLC, GC) combined with different detection methods. Chemometric analysis of organic and inorganic fingerprints offers a robust method to detect and classify mislabeled and suspected fraudulent samples of different MFH products.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China; Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Yan Song
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Karyne M Rogers
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China; National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Wahab Ali Khan
- Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Abbas Khan
- Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Jianbo Xiao
- Departement of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain..
| | - Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
3
|
Criado-Navarro I, Barba-Palomeque F, Pérez-Juan P, Ledesma-Escobar CA, Priego-Capote F. Drying of Saffron Petals as a Critical Step for the Stabilization of This Floral Residue Prior to Extraction of Bioactive Compounds. Foods 2024; 13:3724. [PMID: 39682795 DOI: 10.3390/foods13233724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Saffron petals represent floral biomass generally wasted due to rapid deterioration. Previous characterization studies have revealed the presence of bioactive compounds in petals, such as flavonols and anthocyanins. Petal stabilization is a challenge for the efficient isolation of these compounds. This research evaluated three different drying techniques before the solid-liquid extraction of bioactive compounds: oven-drying (40 and 60 °C), lyophilization, and vacuum evaporation (25 and 50 °C). The characterization of the extracts allowed the annotation of 22 metabolites with a quantitative predominance of anthocyanins and derivatives of kaempferol and quercetin. Oven-drying at 60 °C was the most suitable approach for extracting minor compounds, such as crocins and safranal, at concentrations below 1 mg/g dry weight. Vacuum evaporation (50 °C) and lyophilization were the most recommended strategies for efficiently isolating flavonoids. Therefore, drying saffron petals is crucial to ensure the efficient extraction of bioactive compounds.
Collapse
Affiliation(s)
- Inmaculada Criado-Navarro
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco Barba-Palomeque
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Pedro Pérez-Juan
- Regulatory Council Foundation of the Protected Designation of Origin Azafrán de La Mancha, 45720 Toledo, Spain
| | - Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
4
|
Criado-Navarro I, Ledesma-Escobar CA, Pérez-Juan P, Priego-Capote F. Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules 2024; 29:3080. [PMID: 38999032 PMCID: PMC11243231 DOI: 10.3390/molecules29133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.
Collapse
Affiliation(s)
- Inmaculada Criado-Navarro
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Carlos Augusto Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Pedro Pérez-Juan
- Azafrán de La Mancha Protected Designation of Origin Regulatory Council, 45720 Camuñas, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
5
|
Abdelgawad FAM, El-Hawary SS, El-Kader EMA, Alshehri SA, Rabeh MA, El-Mosallamy AEMK, Salama A, El Gedaily RA. Phytochemical Elucidation and Effect of Maesa indica (Roxb.) Sweet on Alleviation of Potassium Dichromate-Induced Pulmonary Damage in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:338. [PMID: 38337870 PMCID: PMC10857331 DOI: 10.3390/plants13030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Maesa indica (Roxb.) Sweet is one of the well-known traditionally-used Indian plants. This plant is rich in secondary metabolites like phenolic acids, flavonoids, alkaloids, glycosides, saponins, and carbohydrates. It contains numerous therapeutically active compounds like palmitic acid, chrysophanol, glyceryl palmitate, stigmasterol, β-sitosterol, dodecane, maesaquinone, quercetin 3-rhaminoside, rutin, chlorogenic acid, catechin, quercetin, nitrendipine, 2,3-dihydroxypropyl octadeca-9,12-dienoate, kiritiquinon, and β-thujone. The Maesa indica plant has been reported to have many biological properties including antidiabetic, anticancer, anti-angiogenic, anti-leishmanial, antioxidant, radical scavenging, antibacterial, antiviral, and anti-coronavirus effects. One purpose of the current study was to investigate the leaves' metabolome via Triple-Time-of-Flight-Liquid-Chromatography-Mass Spectrometry (T-TOF LC/MS/MS) to identify the chemical constituents of the Maesa indica ethanolic extract (ME). Another purpose of this study was to explore the protective effect of ME against potassium dichromate (PD)-induced pulmonary damage in rats. Rats were assigned randomly into four experimental groups. Two different doses of the plant extract, (25 and 50 mg/kg), were administered orally for seven consecutive days before PD instillation injection. Results of our study revealed that ME enhanced cellular redox status as it decreased lipid peroxidation marker, MDA and elevated reduced glutathione (GSH). In addition, ME upregulated the cytoprotective signaling pathway PI3K/AKT. Moreover, ME administration ameliorated histopathological anomalies induced by PD. Several identified metabolites, such as chlorogenic acid, quercetin, apigenin, kaempferol, luteolin, and rutin, had previously indicated lung-protective effects, possibly through an antioxidant effect and inhibition of oxidative stress and inflammatory mediators. In conclusion, our results indicated that ME possesses lung-protective effects, which may be the result of its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Essam M. Abd El-Kader
- Department of Timber Trees Research, Horticultural Research Institute (ARC), Giza 12619, Egypt;
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | - Mohamed Abdelaaty Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | | | - Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo 12622, Egypt; (A.E.M.K.E.-M.); (A.S.)
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
6
|
Eghbali S, Farhadi F, Askari VR. An overview of analytical methods employed for quality assessment of Crocus sativus (saffron). Food Chem X 2023; 20:100992. [PMID: 38144850 PMCID: PMC10740065 DOI: 10.1016/j.fochx.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
This paper reviews qualitative and quantitative analytical methodologies used for the appraisal of saffron quality, as the most expensive spice. Due to the chemical diversity of biologically active compounds of the Crocus genus, analytical methods with different features are required for their complete analysis. However, screening of the main components, such as carotenoids and flavonoids, appears to be sufficient for quality control, a more precise examination needs evaluation of minor compounds, including anthocyanins and fatty acids. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), ultraviolet-visible spectroscopy (UV), nuclear magnetic resonance spectroscopy (NMR), and thin-layer chromatography (TLC), are elementary and applicable methods in quality control analysis, whereas HPLC provides metabolite fingerprint and monitoring multi-compound instances at preparative and analytical levels. Combination approaches like metabolomics using different methods could classify saffron types, identify its adulterations, contaminants and provide a comprehensive metabolite map for quality control of selected compounds.
Collapse
Affiliation(s)
- Samira Eghbali
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Khamnuan S, Phrutivorapongkul A, Pitchakarn P, Buacheen P, Karinchai J, Chittasupho C, Na Takuathung M, Theansungnoen T, Thongkhao K, Intharuksa A. The Identification and Cytotoxic Evaluation of Nutmeg ( Myristica fragrans Houtt.) and Its Substituents. Foods 2023; 12:4211. [PMID: 38231602 DOI: 10.3390/foods12234211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The aril and seed of nutmeg, Myristica fragrans Houtt. (Myristicaceae), hold significant value in various industries globally. Our preliminary research found two morphological variations: a globose shape and an oval shape. Due to these different characteristics, the safety of consumers is of primary concern. Thus, authentication and comparative pharmacological and toxicity analyses are necessary. In this study, pharmacognostic and advanced phytochemical analyses, DNA barcoding, cytotoxicity, and the anti-nitric oxide production of commercial Thai nutmeg were examined. Via morphologic examinations and TLC fingerprinting, all the sampled aril and seed were categorized into globose and oval-shaped groups. The results of HPLC, GC-MS, and LC-MS/MS experiments revealed distinct differences between these groups. The DNA barcoding of the trnH-psbA region using the BLAST method and neighbor-joining tree analyses confirmed the globose nutmeg as M. fragrans and the oval-shaped variant as M. argentea. A comparison was then carried out between the potential toxicity and anti-inflammatory capabilities of M. fragrans and M. argentea. Cytotoxicity tests on HaCaT, 3T3-L1, Caco-2, HEK293, and RAW264.7 were performed using both methanolic extracts and volatile oil from the arils and seeds of both species. This study concludes that blending or substituting these two species maintains their therapeutic integrity without posing safety concerns.
Collapse
Affiliation(s)
- Suthiwat Khamnuan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tinnakorn Theansungnoen
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kannika Thongkhao
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Mena-García A, Sanz ML, Díez-Municio M, Ruiz-Matute AI. A Combined Gas and Liquid Chromatographic Approach for Quality Evaluation of Saffron-Based Food Supplements. Foods 2023; 12:4071. [PMID: 38002129 PMCID: PMC10670060 DOI: 10.3390/foods12224071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Considering the interest in the bioactive properties of saffron (Crocus sativus L.), as well as its limited production and high price, saffron-based food supplements (SFS) are highly susceptible to adulteration. However, their complex composition and the wide variety of potential fraudulent practices make the comprehensive assessment of SFS quality a challenging task that has been scarcely addressed. To that aim, a new multianalytical strategy based on gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-MS) was developed and validated in order to detect different frauds affecting SFS. Dried saffron stigmas and a commercial standardized saffron extract (affron®) were selected as reference samples (RS) to obtain an authenticity profile, which was further used to evaluate the quality of 17 SFS. Up to 17 crocins and crocetins, 5 kaempferol glycosides, picrocrocin (determined for the first time by GC-MS), safranal, furanone and isophorone-related compounds were determined in RS. Safranal and crocins were identified in all SFS except for one sample. However, discrepancies with the content declared were detected in 65% of the cases. Moreover, this multianalytical methodology also allowed identifying undeclared additives and the non-declared addition of vegetable sources other than saffron.
Collapse
Affiliation(s)
- Adal Mena-García
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
- Pharmactive Biotech Products, S.L.U. Faraday 7, 28049 Madrid, Spain;
| | - María L. Sanz
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
| | | | - Ana I. Ruiz-Matute
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
| |
Collapse
|
9
|
Mattoli L, Pelucchini C, Fiordelli V, Burico M, Gianni M, Zambaldi I. Natural complex substances: From molecules to the molecular complexes. Analytical and technological advances for their definition and differentiation from the corresponding synthetic substances. PHYTOCHEMISTRY 2023; 215:113790. [PMID: 37487919 DOI: 10.1016/j.phytochem.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Natural complex substances (NCSs) are a heterogeneous family of substances that are notably used as ingredients in several products classified as food supplements, medical devices, cosmetics and traditional medicines, according to the correspondent regulatory framework. The compositions of NCSs vary widely and hundreds to thousands of compounds can be present at the same time. A key concept is that NCSs are much more than the simple sum of the compounds that constitute them, in fact some emerging phenomena are the result of the supramolecular interaction of the constituents of the system. Therefore, close attention should be paid to produce and characterize these systems. Today many natural compounds are produced by chemical synthesis and are intentionally added to NCSs, or to formulated natural products, to enhance their properties, lowering their production costs. Market analysis shows a tendency of people to use products made with NCSs and, currently, products made with ingredients of natural origin only are not conveniently distinguishable from those containing compounds of synthetic origin. Furthermore, the uncertainty of the current European regulatory framework does not allow consumers to correctly differentiate and identify products containing only ingredients of natural origin. The high demand for specific and effective NCSs and their high-cost offer on the market, create the conditions to economically motivated sophistications, characterized by the addition of a cheap material to a more expensive one, just to increase profit. This type of practice can concern both the addition of less valuable natural materials and the addition of pure artificial compounds with the same structure as those naturally present. In this scenario, it becomes essential for producers of natural products to have advanced analytical techniques to evaluate the effective naturalness of NCSs. In fact, synthetically obtained compounds are not identical to their naturally occurring counterparts, due to the isotopic composition or chirality, as well as the presence of different trace metabolites (since pure substances in nature do not exist). For this reason, in this review, the main analytical tests that can be performed to differentiate natural compounds from their synthetic counterparts will be highlighted and the main analytical technologies will be described. At the same time, the main fingerprint techniques useful for characterizing the complexity of the NCSs, also allowing their identification and quali-quantitative evaluation, will be described. Furthermore, NCSs can be produced through different manufacturing processes, not all of which are on the same level of quality. In this review the most suitable technologies for green processes that operate according to physical extraction principles will be presented, as according to the authors they are the ones that come closest to creating more life-cycle compatible NCSs and that are well suited to the European green deal, a strategy with the aim of transforming the EU into a sustainable and resource-efficient society by 2050.
Collapse
Affiliation(s)
- Luisa Mattoli
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy.
| | | | | | - Michela Burico
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Ilaria Zambaldi
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| |
Collapse
|
10
|
Panara A, Gikas E, Thomaidis NS. Complete chemical characterization of Crocus sativus via LC-HRMS: Does trimming affect the chemical content of saffron? Food Chem 2023; 424:136452. [PMID: 37257282 DOI: 10.1016/j.foodchem.2023.136452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Saffron, a spice derived from Crocus sativus, which in Iran is subjected to different trimming, is known for its beneficial health effects and high market value. Authentication studies related to geographical origin and adulterants presence mainly exist in literature, however fraud due to trimming has not been reported. In the current research, chemical characterization of six saffron trims, namely Sargol, Negin, Pushal, Bunch, Style, and Powder, was accomplished through suspect and non-target screening employing LC-QToF-MS in both electrospray ionization modes. The samples were extracted using methanol:water (50:50,v:v) and 62 compounds were identified, including amino acids, vitamins, flavonoids, phenolics, carotenoids, cyclohexenones. A clear discrimination among the red trims (Pushal, Sargol and Negin), as well as between Style and Bunch using Multivariate Chemometrics techniques was achieved. Proline and isophorone were highlighted as authenticity markers. Finally, the effect of three harvesting year on the most contributing compounds for trimming discrimination has been evaluated.
Collapse
Affiliation(s)
- Anthi Panara
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
11
|
Yulianti Y, Adawiyah DR, Herawati D, Indrasti D, Andarwulan N. Detection of Markers in Green Beans and Roasted Beans of Kalosi-Enrekang Arabica Coffee with Different Postharvest Processing Using LC-MS/MS. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:6696808. [PMID: 37007842 PMCID: PMC10063361 DOI: 10.1155/2023/6696808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Our study is aimed at evaluating the effect of postharvest processing (natural, honey, and fully washed) on the compounds profile in green beans and roasted beans of Kalosi-Enrekang Arabica coffee and determining the marker compounds for each process. These beans were extracted using boiling water, and the extract was analyzed using LC-MS/MS. The results of this work confirmed the significant impact of postharvest processing on compounds in the coffee beans, and each process has a marker compound. Green beans by natural processing have 3 marker compounds, honey processing has 6 marker compounds, and fully washed processing has 2 marker compounds. Meanwhile, roasted beans by natural processing have 4 marker compounds, honey processing has 5 marker compounds, and fully washed processing has 7 marker compounds. In addition, our research identified caffeoyl tyrosine in green beans from natural and honey processing, which was previously only identified in Robusta coffee. These marker compounds can differentiate postharvest processing (natural, honey, and fully washed). These results can also help understand the effect of postharvest processing on the chemical composition of green and roasted beans.
Collapse
Affiliation(s)
- Yulianti Yulianti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- Department of Agricultural Technology, Faculty of Agriculture, Gorontalo University, Gorontalo 96211, Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Dian Herawati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Dias Indrasti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
- South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| |
Collapse
|
12
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
13
|
Fabiano A, De Leo M, Cerri L, Piras AM, Braca A, Zambito Y. Saffron extract self-assembled nanoparticles to prolong the precorneal residence of crocin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Mialon N, Roig B, Capodanno E, Cadiere A. Untargeted metabolomic approaches in food authenticity: a review that showcases biomarkers. Food Chem 2022; 398:133856. [DOI: 10.1016/j.foodchem.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
15
|
Si W, Xiong L, Zhou H, Wu H, Liu Z, Liu G, Liu Y, Shen A, Liang X. Comprehensive characterization of ingredients in Crocus sativus L. from different origins based on the combination of targeted and nontargeted strategies. Food Chem 2022; 397:133777. [PMID: 35914457 DOI: 10.1016/j.foodchem.2022.133777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
As a valuable medicinal and edible plant, Crocus sativus L. has had wide applications since ancient times. Herein, a comprehensive approach for characterization of constituents in saffron was established based on the combination of targeted and non-targeted strategies. A targeted UPLC-ESI/MSn strategy was applied for in-depth identification of crocins, and a non-targeted UPLC-ESI/MS2 approach characterized other components. This integration strategy was used to analyze ingredients in 21 batches of saffrons from 6 origins. Forty-seven crocins belonging to 8 types were identified including 32 new crocins. Among them, 6 new compounds with specific structures were reported for the first time, i.e. trans-6(G, 2G), trans-4(GT, g), trans-3(GT), cis-3(GT), methyl ester-trans-2(G) and methyl ester-cis-2(G). Besides, 91 non-crocin components were identified including 43 new compounds. Based on systematic investigation of crocins and non-crocins, we found that crocins were the critical components to distinguish saffrons from different origins, especially between domestic and foreign samples.
Collapse
Affiliation(s)
- Wei Si
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Xiong
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Huimin Wu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Liu
- Thermofisher Scientific Corporation, Shanghai 201206, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
16
|
Husaini AM, Haq SAU, Jiménez AJL. Understanding saffron biology using omics- and bioinformatics tools: stepping towards a better Crocus phenome. Mol Biol Rep 2022; 49:5325-5340. [PMID: 35106686 PMCID: PMC8807023 DOI: 10.1007/s11033-021-07053-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Saffron is a unique plant in many aspects, and its cellular processes are regulated at multiple levels. The genetic makeup in the form of eight chromosome triplets (2n = 3x = 24) with a haploid genetic content (genome size) of 3.45 Gbp is decoded into different types of RNA by transcription. The RNA then translates into peptides and functional proteins, sometimes involving post-translational modifications too. The interactions of the genome, transcriptome, proteome and other regulatory molecules ultimately result in the complex set of primary and secondary metabolites of saffron metabolome. These complex interactions manifest in the form of a set of traits 'phenome' peculiar to saffron. The phenome responds to the environmental changes occurring in and around saffron and modify its response in respect of growth, development, disease response, stigma quality, apocarotenoid biosynthesis, and other processes. Understanding these complex relations between different yet interconnected biological activities is quite challenging in saffron where classical genetics has a very limited role owing to its sterility, and the absence of a whole-genome sequence. Omics-based technologies are immensely helpful in overcoming these limitations and developing a better understanding of saffron biology. In addition to creating a comprehensive picture of the molecular mechanisms involved in apocarotenoid synthesis, stigma biogenesis, corm activity, and flower development, omics-technologies will ultimately lead to the engineering of saffron plants with improved phenome.
Collapse
Affiliation(s)
- Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, Jammu and Kashmir, 190025, India.
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, Jammu and Kashmir, 190025, India
| | - Alberto José López Jiménez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
17
|
Avula B, Katragunta K, Wang YH, Upton R, Khan IA. Analysis of Crocetins and Safranal Variations in Saffron (Crocus sativus) Stigma Samples and Dietary Supplements Using HPLC/UHPLC-PDA-MS: Chemical Profiling and Chemometric Analysis Using LC-QToF. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02268-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Intraperitoneal Lavage with Crocus sativus Prevents Postoperative-Induced Peritoneal Adhesion in a Rat Model: Evidence from Animal and Cellular Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5945101. [PMID: 34956439 PMCID: PMC8702342 DOI: 10.1155/2021/5945101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Postoperative peritoneal adhesions are considered the major complication following abdominal surgeries. The primary clinical complications of peritoneal adhesion are intestinal obstruction, infertility, pelvic pain, and postoperative mortality. In this study, regarding the anti-inflammatory and antioxidant activities of Crocus sativus, we aimed to evaluate the effects of Crocus sativus on the prevention of postsurgical-induced peritoneal adhesion. Male Wistar-Albino rats were used to investigate the preventive effects of C. sativus extract (0.5%, 0.25% and 0.125% w/v) against postsurgical-induced peritoneal adhesion compared to pirfenidone (PFD, 7.5% w/v). We also investigated the protective effects of PFD (100 μg/ml) and C. sativus extract (100, 200, and 400 μg/ml) in TGF-β1-induced fibrotic macrophage polarization. The levels of cell proliferation and oxidative, antioxidative, inflammatory and anti-inflammatory, fibrosis, and angiogenesis biomarkers were evaluated both in vivo and in vitro models. C. sativus extract ameliorates postoperational-induced peritoneal adhesion development by attenuating oxidative stress [malondialdehyde (MDA)]; inflammatory mediators [interleukin- (IL-) 6, tumour necrosis factor- (TNF-) α, and prostaglandin E2 (PGE2)]; fibrosis [transforming growth factor- (TGF-) β1, IL-4, and plasminogen activator inhibitor (PAI)]; and angiogenesis [vascular endothelial growth factor (VEGF)] markers, while propagating antioxidant [glutathione (GSH)], anti-inflammatory (IL-10), and fibrinolytic [tissue plasminogen activator (tPA)] markers and tPA/PAI ratio. In a cellular model, we revealed that the extract, without any toxicity, regulated the levels of cell proliferation and inflammatory (TNF-α), angiogenesis (VEGF), anti-inflammatory (IL-10), M1 [inducible nitric oxide synthase (iNOS)] and M2 [arginase-1 (Arg 1)] biomarkers, and iNOS/Arg-1 ratio towards antifibrotic M1 phenotype of macrophage, in a concentration-dependent manner. Taken together, the current study indicated that C. sativus reduces peritoneal adhesion formation by modulating the macrophage polarization from M2 towards M1 cells.
Collapse
|
19
|
Girme A, Saste G, Pawar S, Ghule C, Mirgal A, Patel S, Tiwari A, Ghoshal S, Bharate SB, Bharate SS, Reddy DS, Vishwakarma RA, Hingorani L. Quantitative Determination and Characterization of a Kashmir Saffron ( Crocus sativus L.)-Based Botanical Supplement Using Single-Laboratory Validation Study by HPLC-PDA with LC-MS/MS and HPTLC Investigations. ACS OMEGA 2021; 6:23460-23474. [PMID: 34549144 PMCID: PMC8444316 DOI: 10.1021/acsomega.1c03470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 05/14/2023]
Abstract
Food ingredients hold a higher nutritional value as a botanical supplement playing a vital role in modifying and maintaining the physiological conditions that improve human health benefits. The Kashmir saffron (Crocus sativus L; KCS) obtained from dried stigmas is known for its aroma precursors and apocarotenoid derivatives, imparting a wide range of medicinal values and therapeutic benefits. In the present study, a simultaneous determination of apocarotenoids and flavonoids in stigma-based botanical supplements was carried out using analytical investigations. The high-performance thin-layer chromatography-based qualitative analysis of the raw material (stigmas, stamens, and tepals) and stigma extract has been carried out to identify apocarotenoids and flavonoids. The rapid HPLC-PDA method for the simultaneous quantification of KCS apocarotenoids was robust, precise (<5.0%), linear (R 2 > 0.99), and accurate (80-110%) as per the single-laboratory validation data. Furthermore, the combined-expanded uncertainty (95%; K = 2) was calculated and found as 0.0035-0.007% (<5.0%) as per the EURACHEM guide for this HPLC analysis. Additionally, an untargeted identification of 36 compounds in the botanical supplement was based on the elution order, UV-vis spectra, mass fragmentation pattern, and standards by ESI-MS/MS analysis with comprehensive chromatographic fingerprinting. Thus, these analytical approaches enable a composite profile of the stigma-based extract as a potential supplement for human health benefits.
Collapse
Affiliation(s)
- Aboli Girme
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Ganesh Saste
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Sandeep Pawar
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Chetana Ghule
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Amit Mirgal
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Saurabh Patel
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Anshuly Tiwari
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Sautik Ghoshal
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Sandip B. Bharate
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sonali S. Bharate
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - D. Srinivasa Reddy
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Lal Hingorani
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| |
Collapse
|
20
|
Zhong P, Wei X, Xu Y, Zhang L, Koidis A, Liu Y, Lei Y, Wu S, Lei H. Integration of Untargeted and Pseudotargeted Metabolomics for Authentication of Three Shrimp Species Using UHPLC-Q-Orbitrap. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8861-8873. [PMID: 34319107 DOI: 10.1021/acs.jafc.1c02630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, an untargeted and pseudotargeted metabolomics combination approach was used for authentication of three shrimp species (Litopenaeus vanmamei, Penaeus japonicus, and Penaeus monodon). The monophasic extraction-based untargeted metabolomics approach enabled comprehensive-coverage and high-throughput analysis of shrimp tissue and revealed 26 potential markers. The pseudotargeted metabolomics approach confirmed 21 markers (including 9 key markers), which realized at least putative identification. The 21 confirmed markers, as well as 9 key markers, were used to develop PLS-DA models, correctly classifying 60/60 testing samples. Furthermore, DD-SIMCA and PLS-DA models were integrated based on the 9 key markers, with 59/60 and 20/20 samples of the species that were involved and uninvolved in model training correctly classified. The results demonstrated the potential of this untargeted and pseudotargeted metabolomics combination approach for shrimp species authentication.
Collapse
Affiliation(s)
- Peng Zhong
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi Xu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lulu Zhang
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, United Kingdom
| | - Yunle Liu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi Lei
- Guangdong Institute of Food Inspection, Guangzhou 510435, China
| | - Shaozong Wu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chem 2021; 367:130739. [PMID: 34371278 DOI: 10.1016/j.foodchem.2021.130739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Saffron is a spice revered for its unique flavor and health attributes often subjected to fraudulence. In this study, molecular networking as a visualization tool for UPLC/MS dataset of saffron and its common substitutes i.e. safflower and calendula (n = 21) was employed for determining genuineness of saffron and detecting its common substitutes i.e. safflower and calendula. Saffron was abundant in flavonol-O-glycosides and crocetin esters versus richness of flavanones/chalcones glycosides in safflower and cinnamates/terpenes in calendula. OPLS-DA identified differences in UPLC/MS profiles of different saffron accessions where oxo-hydroxy-undecenoic acid-O-hexoside was posed as saffron authentication marker and aided in discrimination between Spanish saffron of high quality from its inferior grade i.e. Iranian saffron along with crocetin di-O-gentiobiosyl ester and kaempferol-O-sophoroside. Kaempferol-O-neohesperidoside and N,N,N,-p-coumaroyl spermidine were characteristic safflower metabolites, whereas, calendulaglycoside C and di-O-caffeoyl quinic acid were unique to calendula. UV/VIS fingerprint spectral regions of picrocrocin (230-260 nm) and crocin derivatives (400-470 nm) were posed as being discriminatory of saffron authenticity and suggestive it can replace UPLC/MS in saffrom quality determination.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany; Department of Biochemistry, St. Petersburg State University, St Petersburg, Russia
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, the American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
22
|
LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. SEPARATIONS 2021. [DOI: 10.3390/separations8050062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Custard apple is an edible fruit grown in tropical and subtropical regions. Due to its abundant nutrient content and perceived health benefits, it is a popular food for consumption and is utilized as a medicinal aid. Although some published research had provided the phenolic compound of custard apple, the comprehensive phenolic profiling of Australian grown custard apple is limited. Hence, this research aimed to evaluate the phenolic content and antioxidant potential by various phenolic content and antioxidant assays, followed by characterization and quantification of the phenolic profile using LC-ESI-QTOF-MS/MS and HPLC-PDA. African Pride peel had the highest value in TPC (61.69 ± 1.48 mg GAE/g), TFC (0.42 ± 0.01 mg QE/g) and TTC (43.25 ± 6.70 mg CE/g), followed by Pink’s Mammoth peel (19.37 ± 1.48 mg GAE/g for TPC, 0.27 ± 0.03 mg QE/g for TFC and 10.25 ± 1.13 mg CE/g for TTC). African Pride peel also exhibited the highest antioxidant potential for TAC (43.41 ± 1.66 mg AAE/g), FRAP (3.60 ± 0.14 mg AAE/g) and ABTS (127.67 ± 4.60 mg AAE/g), whereas Pink’s Mammoth peel had the highest DPPH (16.09 ± 0.34 mg AAE/g), RPA (5.32 ± 0.14 mg AAE/g), •OH-RSA (1.23 ± 0.25 mg AAE/g) and FICA (3.17 ± 0.18 mg EDTA/g). LC-ESI-QTOF-MS/MS experiment successfully characterized 85 phenolic compounds in total, encompassing phenolic acids (20), flavonoids (42), stilbenes (4), lignans (6) and other polyphenols (13) in all three parts (pulp, peel and seeds) of custard apple. The phenolic compounds in different portions of custard apples were quantified by HPLC-PDA, and it was shown that African Pride peel had higher concentrations of the most abundant phenolics. This is the first study to provide the comprehensive phenolic profile of Australian grown custard apples, and the results highlight that each part of custard apple can be a rich source of phenolics for the utilization of custard apple fruit and waste in the food, animal feeding and nutraceutical industries.
Collapse
|
23
|
Ali A, Wu H, Ponnampalam EN, Cottrell JJ, Dunshea FR, Suleria HAR. Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS 2 and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:721. [PMID: 34064351 PMCID: PMC8147794 DOI: 10.3390/antiox10050721] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Spices have long been used to improve food flavor, due to their appealing fragrance and sensory attributes. Nowadays, spices-based bioactives, particularly phenolic compounds, have gained attention due to their wide range of significant effects in biological systems. The present study was conducted to characterize the 12 widely used spices (allspice, black cardamom, black cumin, black pepper, cardamom, cinnamon, clove, cumin, fennel, nutmeg, star-anise, and turmeric) for their phenolics with the liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS2), polyphenols estimation, and their antioxidant potential. Total phenolics, total flavonoids, and total tannin content and their antioxidant activities were estimated in all spices. Clove and allspice had the highest value of total polyphenol content (215.14 and 40.49 mg gallic acid equivalent (GAE) per g of sample), while clove and turmeric had the highest total flavonoids (5.59 mg quercetin equivalent (QE) per g of sample) and total tannin contents (23.58 mg catechin equivalent (CE) per g of sample), respectively. On the other hand, black cumin and black pepper had the highest phosphomolybdate activity (15.61 and 15.43 mg ascorbic acid equivalent (AAE) per g of sample), while clove was almost identified with highest free radical scavenging capacity. A positive correlation was observed among phenolic compounds and antioxidant activities. In this quest, a total of 79 phenolic compounds were tentatively characterized by using LC-ESI-QTOF-MS2 including 26 phenolic acids, 33 flavonoids, 16 other polyphenols, and 4 lignans. The high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) quantification of phenolic compounds exhibited higher phenolic acids. These results provided us some valuable information that spices have powerful antioxidant potential that can be further used in human food and animal feed as a supplement for different health promoting applications.
Collapse
Affiliation(s)
- Akhtar Ali
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Hanjing Wu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, VIC 3083, Australia;
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
- Faculty of Biological Sciences, University of Leads, Leads LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| |
Collapse
|
24
|
Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential. Processes (Basel) 2021. [DOI: 10.3390/pr9050781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kiwifruit hold significant nutritional value and are a good source of antioxidants due to their diverse range of bioactive compounds. Kiwifruit waste is generated throughout the food supply chain, particularly during transportation and storage. Kiwifruit rejected from the retail market due to unfavorable appearance still possess potential economic value as kiwifruit are abundant in phenolic compounds. The present work studied the phenolic profile and antioxidant potential of rejected kiwifruit, including SunGold (Actinidia chinensis), Hayward (Actinidia deliciosa), and round organic Hayward (Actinidia deliciosa). Regarding phenolics estimation, SunGold possessed the highest TPC (0.72 ± 0.01 mg GAE/g), while Hayward exhibited the highest TFC (0.05 ± 0.09 mg QE/g). In antioxidant assays, SunGold showed the highest antioxidant activities in DPPH (0.31 ± 0.35 mg AAE/g), FRAP (0.48 ± 0.04 mg AAE/g), ABTS (0.69 ± 0.07 mg AAE/g), •OH-RSA (0.07 ± 0.03 mg AAE/g) assays, and FICA (0.19 ± 0.07 mg EDTA/g), whereas Hayward showed the highest RPA (0.09 ± 0.02 mg AAE/g) and TAC (0.57 ± 0.04 mg AAE/g). Separation and characterization of phenolics were conducted using LC-ESI-QTOF-MS/MS. A total of 97 phenolics were tentatively characterized from rejected SunGold (71 phenolics), Hayward (55 phenolics), and round organic Hayward (9 phenolics). Hydroxycinnamic acids and flavonols were the most common phenolics characterized in the three samples. The quantitative analysis was conducted by HPLC-PDA and found that chlorogenic acid (23.98 ± 0.95 mg/g), catechin (23.24 ± 1.16 mg/g), and quercetin (24.59 ± 1.23 mg/g) were the most abundant phenolics present in the rejected kiwifruit samples. The notable presence of phenolic compounds and their corresponding antioxidant capacities indicate the potential value of rescuing rejected kiwifruit for further utilization and commercial exploitation.
Collapse
|
25
|
Abstract
Apples (Malus domestica) are one of the most widely grown and consumed fruits in the world that contain abundant phenolic compounds that possess remarkable antioxidant potential. The current study characterised phenolic compounds from five different varieties of Australian grown apples (Royal Gala, Pink Lady, Red Delicious, Fuji and Smitten) using LC-ESI-QTOF-MS/MS and quantified through HPLC-PDA. The phenolic content and antioxidant potential were determined using various assays. Red Delicious had the highest total phenolic (121.78 ± 3.45 mg/g fw) and total flavonoid content (101.23 ± 3.75 mg/g fw) among the five apple samples. In LC-ESI-QTOF-MS/MS analysis, a total of 97 different phenolic compounds were characterised in five apple samples, including Royal Gala (37), Pink Lady (54), Red Delicious (17), Fuji (67) and Smitten (46). In the HPLC quantification, phenolic acid (chlorogenic acid, 15.69 ± 0.09 mg/g fw) and flavonoid (quercetin, 18.96 ± 0.08 mg/g fw) were most abundant in Royal Gala. The obtained results highlight the importance of Australian apple varieties as a rich source of functional compounds with potential bioactivity.
Collapse
|
26
|
Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants (Basel) 2021; 10:antiox10020151. [PMID: 33498549 PMCID: PMC7909527 DOI: 10.3390/antiox10020151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pear (Pyrus communis L.) is widely spread throughout the temperate regions of the world, such as China, America and Australia. This fruit is popular among consumers due to its excellent taste and perceived health benefits. Various bioactive compounds, which contribute to these health benefits, have been detected in the pear fruits, including a range of phenolic compounds. Five Australian grown pear varieties, which include Packham’s Triumph, Josephine de Malines, Beurre Bosc, Winter Nelis and Rico were selected for this study to examine the phenolic compounds in pears. Beurre Bosc exhibited the highest total polyphenol content (TPC) (3.14 ± 0.02 mg GAE/g), total tannin content (TTC) (1.43 ± 0.04 mg CE/g) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) (5.72 ± 0.11 mg AAE/g), while the Josephine de Malines variety was high in total flavonoid content (TFC) (1.53 ± 0.09 mg QE/g), ferric reducing antioxidant power (FRAP) (4.37 ± 0.04 mg AAE/g), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (4.44 ± 0.01 mg AAE/g) and total antioxidant capacity (TAC) (5.29 ± 0.09 mg AAE/g). The liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) data indicate that a total of 73 phenolic compounds were detected in Beurre Bosc (37 compounds), Josephine de Malines (34), Rico (22), Packham’s Triumph (15) and Winter Nelis (9), respectively. From HPLC-PDA quantification, the Beurre Bosc pear variety showed significantly higher in phenolic acids (chlorogenic acid; 17.58 ± 0.88 mg/g) and while flavonoids were significantly higher in Josephine de Malines (catechin; 17.45 ± 1.39 mg/g), as compared to other pear varieties. The analyses suggest that the Australian grown pears might contain an ideal source of phenolic compounds which benefit human health. The information provided by the present work can serve as practical supporting data for the use of pears in the nutraceutical, pharmaceutical and food industries.
Collapse
Affiliation(s)
- Zening Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
- Correspondence: ; Tel.: +61-470-439-670
| |
Collapse
|
27
|
Cao S, Du H, Tang B, Xi C, Chen Z. Non-target metabolomics based on high-resolution mass spectrometry combined with chemometric analysis for discriminating geographical origins of Rhizoma Coptidis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
de Castro ML, Quiles-Zafra R. Appropriate use of analytical terminology – examples drawn from research on saffron. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Bononi M, Tateo F, Scaglia B, Quaglia G. δ13C data of the total water-soluble fraction and triacylglycerols as related indexes for differentiating the geographical origin of saffron (Crocus sativus L.). Food Chem 2020; 315:126292. [DOI: 10.1016/j.foodchem.2020.126292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
|
30
|
Mottaghipisheh J, Mahmoodi Sourestani M, Kiss T, Horváth A, Tóth B, Ayanmanesh M, Khamushi A, Csupor D. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. J Pharm Biomed Anal 2020; 184:113183. [PMID: 32105944 DOI: 10.1016/j.jpba.2020.113183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Saffron crocus (Crocus sativus L.) has been widely grown in Iran. Its stigma is considered as the most valuable spice for which several pharmacological activities have been reported in preclinical and clinical studies, the antidepressant effect being the most thoroughly studied and confirmed. This plant part contains several characteristic secondary metabolites, including the carotenoids crocetin and crocin, and the monoterpenoid glucoside picrocrocin, and safranal. Since only the stigma is utilized industrially, huge amount of saffron crocus by-product remains unused. Recently, the number of papers dealing with the chemical and pharmacological analysis of saffron is increasing; however, there are no systematic studies on the chemical variability of the major by-products. In the present study, we harvested saffron crocus flowers from 40 different locations of Iran. The tepals and stamens were separated and subjected to qualitative and quantitative analysis by HPLC-DAD. The presence and amount of seven marker compounds, including crocin, crocetin, picrocrocin, safranal, kaempferol-3-O-sophoroside, kaempferol-3-O-glucoside, and quercetin-3-O-sophoroside were determined. The analytical method was validated for filter compatibility, stability, suitability, accuracy, precision, intermediate precision, and repeatability. Tepal and stamen samples contained three flavonol glycosides. The main constituent of the tepals was kaempferol-3-O-sophoroside (62.19-99.48 mg/g). In the stamen, the amount of flavonoids was lower than in the tepal. The amount of kaempferol-3-O-glucoside, as the most abundant compound, ranged between 1.72-7.44 mg/g. Crocin, crocetin, picrocrocin, and safranal were not detected in any of the analysed samples. Our results point out that saffron crocus by-products, particularly tepals might be considered as rich sources of flavonol glucosides. The data presented here can be useful in setting quality standards for plant parts of C. sativus that are currently considered as by-products of saffron production.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Tivadar Kiss
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Attila Horváth
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Barbara Tóth
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Mehdi Ayanmanesh
- Department of Horticultural Science, Islamic Azad University, Estahban Branch No. 69, Niroo Av., Satarkhan Str., 14536-33143, Tehran, Iran
| | - Amin Khamushi
- Department of Horticultural Science, Faculty of Agriculture, University of Mashhad, Mashhad, Iran
| | - Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary.
| |
Collapse
|
31
|
Mancano G, Mora-Ortiz M, Claus SP. Corrigendum to “Recent developments in nutrimetabolomics: from food characterisation to disease prevention” [Curr Opin Food Sci 22 (2018) 145–152]. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Untargeted HILIC-MS-Based Metabolomics Approach to Evaluate Coffee Roasting Process: Contributing to an Integrated Metabolomics Multiplatform. Molecules 2020; 25:molecules25040887. [PMID: 32079306 PMCID: PMC7070313 DOI: 10.3390/molecules25040887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
An untargeted metabolomics strategy using hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was developed in this work enabling the study of the coffee roasting process. Green coffee beans and coffee beans submitted to three different roasting degrees (light, medium, and strong) were analyzed. Chromatographic separation was carried out using water containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase A) and acetonitrile containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase B). A total of 93 molecular features were considered from which 31 were chosen as the most statistically significant using variable in the projection values. 13 metabolites were tentatively identified as potential biomarkers of the coffee roasting process using this metabolomic platform. Results obtained in this work were complementary to those achieved using orthogonal techniques such as reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) since only one metabolite was found to be common between HILIC-MS and RPLC-MS platforms (caffeoylshikimic acid isomer) and other between HILIC-MS and CE-MS platforms (choline). On the basis of these results, an untargeted metabolomics multiplatform is proposed in this work based on the integration of the three orthogonal techniques as a powerful tool to expand the coverage of the roasted coffee metabolome.
Collapse
|
33
|
Kong W, An H, Zhang J, Sun L, Nan Y, Song A, Zhou L. Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.). J Pharm Pharmacol 2019; 71:1864-1870. [DOI: 10.1111/jphp.13152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/20/2019] [Indexed: 12/25/2022]
Abstract
Abstract
Objectives
This study aimed to develop an efficient and reliable method for estimating common adulterants in saffron by detecting their characteristic components to warrant its efficacy and regular use as a highly valuable medicinal herb.
Methods
A selective and sensitive high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) method was developed to estimate the common adulterants in saffron from corn stigma, chrysanthemum and safflower through the simultaneous determination of specific constituents including allantoin, chlorogenic acid (ChA) and hydroxysafflor yellow A (HSYA). Peak identification of each target compound was confirmed from product ions obtained using multiple reaction monitoring triggered enhanced product ions mass chromatogram. Method validation in terms of linearity, sensitivity, reproducibility, accuracy and stability was systematically performed according to official guidelines.
Key findings
Satisfactory separation of the three components was achieved on a C18 column (4.6 × 250 mm, 5 μm) with methanol–acetonitrile–ammonium acetate (3.0 mm) as the mobile phase at gradient elution. The identification of these specific constituents was accomplished using the multiple reaction monitoring mode in combination with enhanced product ion supplementary confirmation. The established method was validated in terms of linearity, sensitivity, reproducibility, accuracy and recovery, which were found satisfactory for sensitive detection of the three target compounds.
Conclusions
By detecting the specific constituents allantoin, ChA and HSYA in one run, the adulterants of corn stigma, chrysanthemum and safflower can be effectively identified and estimated in saffron. This is the first report on developing a simple, sensitive and operational method for the identification and estimation of common adulterants of saffron, that was forwarded for broaden application.
Collapse
Affiliation(s)
- Weijun Kong
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huijing An
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ji Zhang
- National Institute for the Control of Pharmaceutical and Biological Products, Beijing, China
| | - Lan Sun
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yao Nan
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aili Song
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Senizza B, Rocchetti G, Ghisoni S, Busconi M, De Los Mozos Pascual M, Fernandez JA, Lucini L, Trevisan M. Identification of phenolic markers for saffron authenticity and origin: An untargeted metabolomics approach. Food Res Int 2019; 126:108584. [PMID: 31732022 DOI: 10.1016/j.foodres.2019.108584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023]
Abstract
Saffron is a high-quality and expensive spice being widely subjected to adulteration. An UHPLC-ESI/QTOF-MS metabolomic-based approach was therefore used to investigate the discrimination potential between adulterated (added with different percentage of other parts of the flower) and authentic saffron, as well as to trace its geographical origin. Both unsupervised (hierarchical clustering) and supervised OPLS-DA multivariate statistics allowed discriminating authentic saffron from styles added of other floral components, as well as PDO (Protected Designation of Origin) vs non PDO saffron samples according to their chemical fingerprints. The proposed markers were then validated through ROC curves. Anthocyanins and glycosidic flavonols were the best markers of the styles' adulteration. However, other flavonoids (mainly free flavonols and flavones), together with protocatechuic aldehyde and isomeric forms of hydroxybenzoic acid, were also validated as markers for the discrimination of PDO vs non PDO saffron samples. This work outlines the potential of untargeted metabolomics based on UHPLC-ESI/QTOF mass spectrometry for saffron authenticity and traceability.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Silvia Ghisoni
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Matteo Busconi
- Department of sustainable crop production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marcelino De Los Mozos Pascual
- Centro de Investigación Agroforestal de Albaladejito, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Cuenca, Spain
| | - José Antonio Fernandez
- IDR-Biotechnology and Natural Resources, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Luigi Lucini
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Marco Trevisan
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
35
|
Guo JG, Guo XM, Wang XR, Tian JZ, Bi HS. Metabolic profile analysis of free amino acids in experimental autoimmune uveoretinitis rat plasma. Int J Ophthalmol 2019; 12:16-24. [PMID: 30662835 DOI: 10.18240/ijo.2019.01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
AIM To determine the differences of amino acid (AA) levels in experimental autoimmune uveoretinitis (EAU). METHODS AA analysis of the plasma samples in EAU rats induced by interphotoreceptor retinoid-binding protein emulsion were performed with high performance liquid chromatography (HPLC) and phenylisothiocyanate (PITC) pre-column derivation methods were performed. Using partial least squares discriminant analysis (PLS-DA), the potential biomarkers were identified in EAU rat plasma, and the metabolic pathways related to EAU were further analyzed. RESULTS The method results showed that linear (r≥0.9957), intra-day reproducible [relative standard deviation (RSD)=0.04%-1.33%], inter-day reproducible (RSD=0.06%-2.07%), repeatability (RSD=0.03%-0.89%), stability (RSD=0.05%-2.48%) and recovery (RSD=1.98%-4.39%), with detection limits of 0.853-11.4 ng/mL. The metabolic profile in EAU rats was different from that in the control groups five AAs concentrations were increased and nine AAs were reduced. Moreover, five metabolic pathways were related to the development of EAU. CONCLUSION The developed method is a simple, rapid and convenient for determination of AAs in EAU rat plasma, and these findings will provide a comprehensive insight on the metabolic profiling of the pathological changes in EAU.
Collapse
Affiliation(s)
- Jun-Guo Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| | - Xin-Miao Guo
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Xing-Rong Wang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Hong-Sheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| |
Collapse
|
36
|
The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Zhang J, Yu Q, Cheng H, Ge Y, Liu H, Ye X, Chen Y. Metabolomic Approach for the Authentication of Berry Fruit Juice by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Coupled to Chemometrics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8199-8208. [PMID: 29989408 DOI: 10.1021/acs.jafc.8b01682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Berry fruit juice, which is represented by blueberry and cranberry juice, has become increasingly popular due to its reported nutritional and health benefits. However, in markets, adulteration of berry fruit juice with cheaper substitutes is frequent. In the present study, a metabolomic approach for authentication of berry fruit juices by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was established. The global characterization of the berry fruit metabolome by information dependent acquisition directed LC-MS/MS coupled to a peak mining workflow by isotope pattern matching was reported. Targeted metabolomics analysis of known juice biomarkers, such as flavonoids, anthocyanins, etc. exhibited a good separation of berry fruit juices from adulterant juices. Moreover, untargeted metabolomics analysis was carried out and subjected to chemometrics analysis. Discrimination of blueberry juice, cranberry juice, and its adulterant apple juice and grape juice was obtained by principal component analysis-discriminant analysis. Eighteen characteristic markers discriminating berry fruit juice and its adulterants were selected by comparison of marker abundances in different juice samples. Identification of characteristic markers was accomplished by elemental formula prediction and online database searches based on accurate MS information. These results suggested that the combination of untargeted and targeted metabolomics approach has great potential for authentication of berry fruit juice.
Collapse
Affiliation(s)
- Jiukai Zhang
- Agro-Product Safety Research Center , Chinese Academy of Inspection and Quarantine , Beijing 100176 , People's Republic of China
| | - Qiuhao Yu
- Agro-Product Safety Research Center , Chinese Academy of Inspection and Quarantine , Beijing 100176 , People's Republic of China
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Haiyan Cheng
- AB Sciex (China) Co., Ltd. , Beijing 100102 , People's Republic of China
| | - Yiqiang Ge
- China Rural Technology Development Center , Beijing 100045 , People's Republic of China
| | - Han Liu
- Agro-Product Safety Research Center , Chinese Academy of Inspection and Quarantine , Beijing 100176 , People's Republic of China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Ying Chen
- Agro-Product Safety Research Center , Chinese Academy of Inspection and Quarantine , Beijing 100176 , People's Republic of China
| |
Collapse
|
38
|
D'Archivio AA, Di Donato F, Foschi M, Maggi MA, Ruggieri F. UHPLC Analysis of Saffron ( Crocus sativus L.): Optimization of Separation Using Chemometrics and Detection of Minor Crocetin Esters. Molecules 2018; 23:molecules23081851. [PMID: 30044436 PMCID: PMC6222919 DOI: 10.3390/molecules23081851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Ultra-high performance liquid chromatography (UHPLC) coupled with diode array detection (DAD) was applied to improve separation and detection of mono- and bis-glucosyl esters of crocetin (crocins), the main red-colored constituents of saffron (Crocus sativus L.), and other polar components. Response surface methodology (RSM) was used to optimise the chromatographic resolution on the Kinetex C18 (Phenomenex) column taking into account of the combined effect of the column temperature, the eluent flow rate and the slope of a linear eluent concentration gradient. A three-level full-factorial design of experiments was adopted to identify suitable combinations of the above factors. The influence of the separation conditions on the resolutions of 22 adjacent peaks was simultaneously modelled by a multi-layer artificial neural network (ANN) in which a bit string representation was used to identify the target analytes. The chromatogram collected under the optimal separation conditions revealed a higher number of crocetin esters than those already characterised by means of mass-spectrometry data and usually detected by HPLC. Ultra-high performance liquid chromatography analyses carried out on the novel Luna Omega Polar C18 (Phenomenex) column confirmed the large number of crocetin derivatives. Further work is in progress to acquire mass-spectrometry data and to clarify the chemical structure to the newly found saffron components.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Francesca Di Donato
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Martina Foschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | | | - Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
39
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
40
|
Bianchi F, Riboni N, Termopoli V, Mendez L, Medina I, Ilag L, Cappiello A, Careri M. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1308167. [PMID: 29850370 PMCID: PMC5937452 DOI: 10.1155/2018/1308167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Lucia Mendez
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Achille Cappiello
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
41
|
Teramura M, Tamiaki H. Semi-synthesis and HPLC analysis of (bacterio)chlorophyllides possessing a propionic acid residue at the C17-position. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various chlorophyll and bacteriochlorophyll derivatives possessing a magnesium or zinc atom at the central position and a free carboxylic acid group at the C17[Formula: see text]-position, also known as (bacterio)chlorophyllides, were synthesized through a combination of organic synthesis techniques and enzymatic steps. The semi-synthetic (bacterio)chlorophyllides were purified and analyzed using reversed-phase high-performance liquid chromatography with UV-vis spectroscopy and mass spectrometry. These free propionic acid-containing chlorophyllous pigments can be useful research materials for the study of (bacterio)chlorophyll metabolisms.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
42
|
Chaouqi S, Moratalla-López N, Lage M, Lorenzo C, Alonso GL, Guedira T. Effect of drying and storage process on Moroccan saffron quality. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Castro-Puyana M, Pérez-Míguez R, Montero L, Herrero M. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Creydt M, Fischer M. Plant Metabolomics: Maximizing Metabolome Coverage by Optimizing Mobile Phase Additives for Nontargeted Mass Spectrometry in Positive and Negative Electrospray Ionization Mode. Anal Chem 2017; 89:10474-10486. [PMID: 28850216 DOI: 10.1021/acs.analchem.7b02592] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nontargeted screening methods with ultrahigh-performance liquid chromatography-electrospray ionization/quadrupole-time-of-flight mass spectrometry have been extensively applied to plant metabolomics to very diverse scientific issues in plant metabolomics. In this study, different mobile phase additives were tested in order to improve the electrospray ionization process and to detect as many metabolites as possible with high peak intensities in positive and negative ionization mode. Influences of modifiers were examined for nonpolar and polar compounds, as optimal conditions are not always the same. By combining different additives, metabolite coverage could be significantly increased. The best results for polar metabolites in positive ionization mode were achieved by using 0.1% acetic acid and 0.1% formic acid in negative ionization mode. For measurements of nonpolar metabolites in positive ionization mode, the application of 10 mmol/L ammonium formate led to the best findings, while the use of 0.02% acetic acid was more appropriate in negative ionization mode.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
45
|
Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chem 2017; 228:403-410. [DOI: 10.1016/j.foodchem.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
47
|
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. Detection of saffron adulteration with gardenia extracts through the determination of geniposide by liquid chromatography–mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
D'Archivio AA, Maggi MA. Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV-visible spectra of aqueous extracts. Food Chem 2016; 219:408-413. [PMID: 27765245 DOI: 10.1016/j.foodchem.2016.09.169] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 01/20/2023]
Abstract
We attempted geographical classification of saffron using UV-visible spectroscopy, conventionally adopted for quality grading according to the ISO Normative 3632. We investigated 81 saffron samples produced in L'Aquila, Città della Pieve, Cascia, and Sardinia (Italy) and commercial products purchased in various supermarkets. Exploratory principal component analysis applied to the UV-vis spectra of saffron aqueous extracts revealed a clear differentiation of the samples belonging to different quality categories, but a poor separation according to the geographical origin of the spices. On the other hand, linear discriminant analysis based on 8 selected absorbance values, concentrated near 279, 305 and 328nm, allowed a good distinction of the spices coming from different sites. Under severe validation conditions (30% and 50% of saffron samples in the evaluation set), correct predictions were 85 and 83%, respectively.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy.
| | | |
Collapse
|
49
|
Sarais G, D'Urso G, Lai C, Pirisi FM, Pizza C, Montoro P. Targeted and untargeted mass spectrometric approaches in discrimination between Myrtus communis cultivars from Sardinia region. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:704-715. [PMID: 27416492 DOI: 10.1002/jms.3811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
In the present study, the discrimination of phytochemical content of Myrtus communis berries from different geographical origin and cultivars was explored by Liquid Chromatography-Electrospray Ionization-Fourier Transform-Mass Spectrometry (LC-ESI-FT-MS) metabolic profiling and quantitative analysis. Experiments were carried on myrtle plants grown in an experimental area of Sardinia region, obtained by the germination of seeds taken from berries collected in each part of the region. A preliminary untargeted approach on fruit's extracts was realized by collecting LC-ESI-FT-(Orbitrap)-MS data obtained by operating in negative ion mode and performing principal component analysis with the result of differentiation of samples. In a second step, targeted analysis with a reduced number of variables was realized. A data matrix was obtained by the data fusion of positive and negative ionization LC-ESI-MS results, by using as variables the peak areas of each known compounds. By the observation of principal component analysis, results found that anthocyanins, and mainly derivatives of cyanidin, are the principal marker compounds responsive for the discrimination of samples based on the geographical origin of the seeds. Based on this finding, finally, an LC-diode array detector method was developed, validated and applied for the quantitative analysis of berries' extracts based on 11 commercial standard compounds corresponding to the identified markers. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- G Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy.
| | - G D'Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - C Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy
| | - F M Pirisi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy
| | - C Pizza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - P Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| |
Collapse
|
50
|
D'Archivio AA, Giannitto A, Maggi MA, Ruggieri F. Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem 2016; 212:110-6. [PMID: 27374513 DOI: 10.1016/j.foodchem.2016.05.149] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
One hundred and forty-four Italian saffron samples produced in the years from 2009 to 2015 in five distinct areas located in four different regions, Abruzzo (L'Aquila), Tuscany (Florence), Umbria (Cascia and Città della Pieve) and Sardinia, have been analysed by high-performance liquid chromatography with diode array detection. Intensities of the chromatographic peaks attributed to crocins, safranal, picrocrocin and its derivatives and flavonoids were considered as variables in linear discriminant analysis to attempt geographical classification. The results revealed that spices produced at different sites of the Italian territory can be discriminated with good accuracy. The differentiation of saffron cultivated in Sardinia from those produced in Central Italy was mainly attributed to different contents of the most abundant crocins. Good differentiation of spices produced in close sites of Central Italy was also observed, 88% of validation samples being correctly classified; some minor crocins are responsible for such discrimination.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy.
| | - Andrea Giannitto
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy
| | | | - Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy
| |
Collapse
|