1
|
Schmidt S, Hoffmann H, Garbe LA, Harrer A, Steiner M, Himly M, Schneider RJ. Re-assessment of monoclonal antibodies against diclofenac for their application in the analysis of environmental waters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3349-3363. [PMID: 38742423 PMCID: PMC11138808 DOI: 10.1039/d3ay01333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
The non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF) is an important environmental contaminant occurring in surface waters all over the world, because, after excretion, it is not adequately removed from wastewater in sewage treatment plants. To be able to monitor this pollutant, highly efficient analytical methods are needed, including immunoassays. In a medical research project, monoclonal antibodies against diclofenac and its metabolites had been produced. Based on this monoclonal anti-DCF antibody, a new indirect competitive enzyme-linked immunosorbent assay (ELISA) was developed and applied for environmental samples. The introduction of a spacer between diclofenac and the carrier protein in the coating conjugate led to higher sensitivity. With a test midpoint of 3 μg L-1 and a measurement range of 1-30 μg L-1, the system is not sensitive enough for direct analysis of surface water. However, this assay is quite robust against matrix influences and can be used for wastewater. Without adjustment of the calibration, organic solvents up to 5%, natural organic matter (NOM) up to 10 mg L-1, humic acids up to 2.5 mg L-1, and salt concentrations up to 6 g L-1 NaCl and 75 mg L-1 CaCl2 are tolerated. The antibody is also stable in a pH range from 3 to 12. Cross-reactivity (CR) of 1% or less was determined for the metabolites 4'-hydroxydiclofenac (4'-OH-DCF), 5-hydroxydiclofenac (5-OH-DCF), DCF lactam, and other NSAIDs. Relevant cross-reactivity occurred only with an amide derivative of DCF, 6-aminohexanoic acid (DCF-Ahx), aceclofenac (ACF) and DCF methyl ester (DCF-Me) with 150%, 61% and 44%, respectively. These substances, however, have not been found in samples. Only DCF-acyl glucuronide with a cross-reactivity of 57% is of some relevance. For the first time, photodegradation products were tested for cross-reactivity. With the ELISA based on this antibody, water samples were analysed. In sewage treatment plant effluents, concentrations in the range of 1.9-5.2 μg L-1 were determined directly, with recoveries compared to HPLC-MS/MS averaging 136%. Concentrations in lakes ranged from 3 to 4.4 ng L-1 and were, after pre-concentration, determined with an average recovery of 100%.
Collapse
Affiliation(s)
- Stephan Schmidt
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
- Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Holger Hoffmann
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Leif-Alexander Garbe
- Hochschule Neubrandenburg, Fachbereich Agrarwirtschaft und Lebensmittelwissenschaften, D-17033 Neubrandenburg, Germany
| | - Andrea Harrer
- Department of Biosciences and Medical Biology, Division of Allergy and Immunology, Paris Lodron University of Salzburg, A-5020 Salzburg, Austria
| | - Markus Steiner
- Department of Biosciences and Medical Biology, Division of Allergy and Immunology, Paris Lodron University of Salzburg, A-5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Medical Biology, Division of Allergy and Immunology, Paris Lodron University of Salzburg, A-5020 Salzburg, Austria
| | - Rudolf J Schneider
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
- Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
2
|
Development of a broad-specific immunochromatographic assay for the screening of diclofenac and its analogs in health tea and health beverages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Sundaresan P, Lee TY. Facile synthesis of exfoliated graphite-supported cobalt ferrite (Co1.2Fe1.8O4) nanocomposite for the electrochemical detection of diclofenac. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kassahun GS, Griveau S, Bedioui F, Slim C. Input of Electroanalytical Methods for the Determination of Diclofenac: A Review of Recent Trends and Developments. ChemElectroChem 2021. [DOI: 10.1002/celc.202100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Getnet Sewnet Kassahun
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sophie Griveau
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Cyrine Slim
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
5
|
Chernova E, Zhakovskaya Z, Berezina N. Occurrence of pharmaceuticals in the Eastern Gulf of Finland (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68871-68884. [PMID: 34279782 DOI: 10.1007/s11356-021-15250-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The presence of substances of emerging concern-pharmaceuticals-in marine environments has been studied to a lesser extent compared to fresh and wastewaters. This is the first study of pharmaceutical distribution in the Russian part of the Baltic Sea. Among 18 pharmaceuticals previously detected in influent waters of Saint-Petersburg WWTPs, 7 compounds (caffeine [81% of samples], carbamazepine [81%], ketoprofen [60%], diclofenac [23 %], ciprofloxacin, trimethoprim, and clarithromycin) were recorded in seawater samples in a range of measured concentrations from 0.1 to 4452 ng L-1. Antibiotics were presented in trace concentrations. In sediment samples, 6 pharmaceuticals (0.1-66.2 ng g-1) were detected. The most common was carbamazepine (80%). The remaining compounds were located in decreasing frequency as follows: ketoprofen, trimethoprim, drotaverine, tetracycline, and ciprofloxacin. Some specific features of the Gulf of Finland affecting the distribution of pharmaceutical concentrations were highlighted-among the most important, the megapolis of St. Petersburg with its population over 5 million and freshwater input by the Neva River (high urbanization of the territory with a potent dilution factor). We discussed the suitable set of anthropogenic markers for the Russian part of the Gulf of Finland.
Collapse
Affiliation(s)
- Ekaterina Chernova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st, St. Petersburg, 197110, Russia.
| | - Zoya Zhakovskaya
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st, St. Petersburg, 197110, Russia
| | - Nadezhda Berezina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya embankment, 1, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Ecke A, Westphalen T, Hornung J, Voetz M, Schneider RJ. A rapid magnetic bead-based immunoassay for sensitive determination of diclofenac. Anal Bioanal Chem 2021; 414:1563-1573. [PMID: 34799751 PMCID: PMC8761716 DOI: 10.1007/s00216-021-03778-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022]
Abstract
Increasing contamination of environmental waters with pharmaceuticals represents an emerging threat for the drinking water quality and safety. In this regard, fast and reliable analytical methods are required to allow quick countermeasures in case of contamination. Here, we report the development of a magnetic bead-based immunoassay (MBBA) for the fast and cost-effective determination of the analgesic diclofenac (DCF) in water samples, based on diclofenac-coupled magnetic beads and a robust monoclonal anti-DCF antibody. A novel synthetic strategy for preparation of the beads resulted in an assay that enabled for the determination of diclofenac with a significantly lower limit of detection (400 ng/L) than the respective enzyme-linked immunosorbent assay (ELISA). With shorter incubation times and only one manual washing step required, the assay demands for remarkably shorter time to result (< 45 min) and less equipment than ELISA. Evaluation of assay precision and accuracy with a series of spiked water samples yielded results with low to moderate intra- and inter-assay variations and in good agreement with LC–MS/MS reference analysis. The assay principle can be transferred to other, e.g., microfluidic, formats, as well as applied to other analytes and may replace ELISA as the standard immunochemical method.
Collapse
Affiliation(s)
- Alexander Ecke
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12489, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Tanja Westphalen
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12489, Berlin, Germany
| | | | | | - Rudolf J Schneider
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12489, Berlin, Germany. .,Technische Universität Berlin, Faculty III Process Sciences, 10623, Berlin, Germany.
| |
Collapse
|
7
|
Mazouzi Y, Miche A, Loiseau A, Beito B, Méthivier C, Knopp D, Salmain M, Boujday S. Design and Analytical Performances of a Diclofenac Biosensor for Water Resources Monitoring. ACS Sens 2021; 6:3485-3493. [PMID: 34436869 DOI: 10.1021/acssensors.1c01607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because the broadly consumed pain killer diclofenac (DCF) is a recognized pollutant, monitoring of its concentration is routinely performed in surface waters. As a valuable alternative to chromatographic and immunochemical assays, we developed a piezoelectric immunosensor to quantify DCF, first in buffer (PBS) and then in river water samples. A sensing layer comprising DCF was built up on the surface of silica-coated quartz sensors using a robust coupling chemistry. Binding of a highly affine monoclonal anti-DCF antibody was monitored in real time by quartz crystal microbalance with dissipation (QCM-D) measurements from which were determined a dissociation constant KD of 0.24 nM and an acoustic antibody surface coverage of 1120 ng/cm2 at saturation. On the other hand, an optical antibody surface coverage of 260 ng/cm2 was determined by combined nanoplasmonic sensing measurement, giving a hydration percentage of 75% for the antibody monolayer. DCF assay was further set up following a competitive format for which binding of antibody to the sensing layer is inhibited by DCF in solution. The piezoelectric sensor response expressed as frequency shift ΔF was inversely related to the concentration of DCF with a dynamic range of 15-46 nM and a limit of detection (LoD) of 9.5 nM (2.8 μg/L) in PBS. This piezoelectric immunosensor was eventually applied to the assay of DCF in surface water samples taken at three different locations in the Seine and Marne rivers. The calculated concentration of DCF in these samples was in good agreement with official data published by the French center of water analysis eaufrance.
Collapse
Affiliation(s)
- Yacine Mazouzi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Antoine Miche
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Alexis Loiseau
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Bruno Beito
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Dietmar Knopp
- Technical University Munich, Chair of Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Marchioninistrasse 17, 81377 München, Germany
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
8
|
Boumya W, Taoufik N, Achak M, Bessbousse H, Elhalil A, Barka N. Electrochemical sensors and biosensors for the determination of diclofenac in pharmaceutical, biological and water samples. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2020.100026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
9
|
Raysyan A, Moerer R, Coesfeld B, Eremin SA, Schneider RJ. Fluorescence polarization immunoassay for the determination of diclofenac in wastewater. Anal Bioanal Chem 2021; 413:999-1007. [PMID: 33241445 PMCID: PMC7813709 DOI: 10.1007/s00216-020-03058-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Pharmacologically active compounds are often detected in wastewater and surface waters. The nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the European watch list of substances that requires its environmental monitoring in the member states. DCF may harmfully influence the ecosystem already at concentrations ≤ 1 μg L-1. The fast and easy quantification of DCF is becoming a subject of global importance. Fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read method which does not require the immobilization of reagents. FPIA can be performed in one phase within 20-30 min, making it possible to analyse wastewater without any complicated pre-treatment. In this study, new tracer molecules with different structures, linking fluorophores to derivatives of the analyte, were synthesized, three homologous tracers based on DCF, two including a C6 spacer, and one heterologous tracer derived from 5-hydroxy-DCF. The tracer molecules were thoroughly assessed for performance. Regarding sensitivity of the FPIA, the lowest limit of detection reached was 2.0 μg L-1 with a working range up to 870 μg L-1. The method was validated for real wastewater samples against LC-MS/MS as reference method with good agreement of both methods. Graphical abstract.
Collapse
Affiliation(s)
- Anna Raysyan
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12200, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Robin Moerer
- Department of Chemistry, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Bianca Coesfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12200, Berlin, Germany
| | - Sergei A Eremin
- Chemical Faculty, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991
| | - Rudolf J Schneider
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12200, Berlin, Germany.
- Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
10
|
Carvalho MC, Tomazini A, Prado RA, Viviani VR. Selective inhibition of Zophobas morio (Coleoptera: Tenebrionidae) luciferase-like enzyme luminescence by diclofenac and potential suitability for light-off biosensing. LUMINESCENCE 2020; 36:367-376. [PMID: 32959965 DOI: 10.1002/bio.3952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
The accumulation of toxic carboxylic compounds may cause severe effects on the environment and living organisms. A luciferase-like enzyme, previously cloned from the Malpighian tubules of the non-luminescent Zophobas morio mealworm, displays thioesterification activity with a wide range of carboxylic substrates, and produces weak red luminescence in the presence of ATP and firefly d-luciferin, a xenobiotic for this organism. To better investigate the function of this enzyme in carboxylic xenobiotic detoxification, we analyzed the inhibitory effect of different xenobiotic carboxylic acids on the luminescence activity of this enzyme, including environmental pollutants and pharmaceutical compounds. Noteworthy, the anti-inflammatory drug diclofenac severely inhibited this luciferase-like enzyme luminescence activity, both in in vitro (IC50 20 μM) and in vivo in bacterial cells assays, when compared with other beetle luciferases. Similar results were obtained with its brighter I327S mutant. Kinetic analysis of diclofenac's effect on luminescence activity indicated mixed-type inhibition for both ATP and d-luciferin. Modelling studies showed five potential binding sites for diclofenac, including the coenzyme A binding site, which showed one of the highest binding constant. Taken together, these results raise the possibility of using this luciferase-like enzyme for the development of novel whole-cell luminescent biosensors for diclofenac and similar drugs.
Collapse
Affiliation(s)
- Mariele C Carvalho
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Atílio Tomazini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Rogilene A Prado
- Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Vadim R Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil.,Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| |
Collapse
|
11
|
Żur J, Piński A, Wojcieszyńska D, Smułek W, Guzik U. Diclofenac Degradation-Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. Int J Mol Sci 2020; 21:ijms21186786. [PMID: 32947916 PMCID: PMC7555183 DOI: 10.3390/ijms21186786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac (DCF) constitutes one of the most significant ecopollutants detected in various environmental matrices. Biological clean-up technologies that rely on xenobiotics-degrading microorganisms are considered as a valuable alternative for chemical oxidation methods. Up to now, the knowledge about DCF multi-level influence on bacterial cells is fragmentary. In this study, we evaluate the degradation potential and impact of DCF on Pseudomonas moorei KB4 strain. In mono-substrate culture KB4 metabolized 0.5 mg L−1 of DCF, but supplementation with glucose (Glc) and sodium acetate (SA) increased degraded doses up to 1 mg L−1 within 12 days. For all established conditions, 4′-OH-DCF and DCF-lactam were identified. Gene expression analysis revealed the up-regulation of selected genes encoding biotransformation enzymes in the presence of DCF, in both mono-substrate and co-metabolic conditions. The multifactorial analysis of KB4 cell exposure to DCF showed a decrease in the zeta-potential with a simultaneous increase in the cell wall hydrophobicity. Magnified membrane permeability was coupled with the significant increase in the branched (19:0 anteiso) and cyclopropane (17:0 cyclo) fatty acid accompanied with reduced amounts of unsaturated ones. DCF injures the cells which is expressed by raised activities of acid and alkaline phosphatases as well as formation of lipids peroxidation products (LPX). The elevated activity of superoxide dismutase (SOD) and catalase (CAT) testified that DCF induced oxidative stress.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| |
Collapse
|
12
|
Zhang Z, Yu X, Zhao J, Shi X, Sun A, Jiao H, Xiao T, Li D, Chen J. A fluorescence microplate assay based on molecularly imprinted silica coated quantum dot optosensing materials for the separation and detection of okadaic acid in shellfish. CHEMOSPHERE 2020; 246:125622. [PMID: 31918075 DOI: 10.1016/j.chemosphere.2019.125622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers (MIPs) are attracting substantial interest as artificial plastic antibodies because of their biometric capability for targeting small molecules. In this study, molecularly imprinted silica material-coated quantum dots (MIS-QDs) with selective recognition capability to okadaic acid (OA) were developed and characterized. The synthesized MIS-QDs with specific imprinting cavities exhibited excellent recognition capability similar to those of biological antibodies and high fluorescence (FL) quenching selectivity for OA. Furthermore, the MIS-QDs with unsaturated bonds were immobilized onto the surface of 96-well microplates by cold plasma-induced grafting. A novel direct competitive microplate assay strategy was then proposed. The FL quenching properties of the developed microplate assay showed an excellent linear relationship with OA in the range of 10.0-100.0 μg/kg with a correlation coefficient of 0.9961. The limit of detection for OA was 0.25 μg/kg in the shellfish samples. The mean quantitative recoveries were 92.5%-101.0% and 92.9%-101.3%, with relative standard deviations of <7.7% and 7.6% for pure solvents and purified shellfish samples, respectively. The established microplate assay strategy can be used as a rapid and high-throughput method for analyzing OA marine toxins in biological samples.
Collapse
Affiliation(s)
- Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xinru Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jian Zhao
- Ningbo Academy of Agricultural Sciences, 19 Houde Road, Ningbo, 315040, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Tingting Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Dexiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| |
Collapse
|
13
|
Jaria G, Calisto V, Otero M, Esteves VI. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview. Anal Bioanal Chem 2020; 412:3983-4008. [PMID: 32088755 DOI: 10.1007/s00216-020-02509-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Guilaine Jaria
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marta Otero
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
14
|
Kassahun GS, Griveau S, Juillard S, Champavert J, Ringuedé A, Bresson B, Tran Y, Bedioui F, Slim C. Hydrogel Matrix-Grafted Impedimetric Aptasensors for the Detection of Diclofenac. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:827-836. [PMID: 31910020 DOI: 10.1021/acs.langmuir.9b02031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Driven by the growing concern about the release of untreated emerging pollutants and the need for determining small amounts of these pollutants present in the environment, novel biosensors dedicated to molecular recognition are developed. We have designed biosensors using a novel class of grafted polymers, surface-attached hydrogel thin films, on conductive transducers as a biocompatible matrix for biomolecule immobilization. We showed that they can be dedicated to the molecular recognition of diclofenac (DCL). The immobilization of the aptamer onto surface-attached hydrogel thin films by covalent attachment provides a biodegradable shelter, providing the aptamer with excellent environments to preserve its active and functional structure while allowing the detection of DCL. The grafting of the aptamer is obtained using the formation of amide bonds via the activation of carboxylic acid groups of the poly(acrylic acid) hydrogel thin film. For improved sensitivity and higher stability of the sensor, a high density of the immobilized aptamer is enabled. The aptamer-modified electrode was then incubated with DCL solutions at different concentrations. The performances of the aptasensor were investigated by electrochemical impedance spectroscopy. The change in charge-transfer resistance was found to be linear with DCL concentration in the 30 pM to 1 μM range. The detection limit was calculated to be 0.02 nM. The improvement of the limit of detection can be mainly attributed to the three-dimensional environment of the hydrogel matrix which improves the grafting density of the aptamer and the affinity of the aptamer to DCL.
Collapse
Affiliation(s)
- G S Kassahun
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - S Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - S Juillard
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - J Champavert
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - A Ringuedé
- Institut de Recherche de Chimie de Paris (IRCP), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - B Bresson
- Soft Matter Engineering and Science, PSL Research University, UMR 7615 CNRS, ESPCI , 10 Rue Vauquelin , F-75231 Paris Cedex 05, France
| | - Y Tran
- Soft Matter Engineering and Science, PSL Research University, UMR 7615 CNRS, ESPCI , 10 Rue Vauquelin , F-75231 Paris Cedex 05, France
| | - F Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - C Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| |
Collapse
|
15
|
Yang X, Wang Y, Yang J, Sun Z, Chu C, Yue Z, Li L, Hu X. Development of an immunochromatographic lateral flow strip test for the rapid detection of diclofenac in medicinal wine. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1712331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Xingdong Yang
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Jifei Yang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Zhongke Sun
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, People’s Republic of China
| | - Cuiwei Chu
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, People’s Republic of China
| | - Zonghao Yue
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, People’s Republic of China
| | - Lili Li
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, People’s Republic of China
| | - Xiaofei Hu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| |
Collapse
|
16
|
Carl P, Sarma D, Gregório BJR, Hoffmann K, Lehmann A, Rurack K, Schneider RJ. Wash-Free Multiplexed Mix-and-Read Suspension Array Fluorescence Immunoassay for Anthropogenic Markers in Wastewater. Anal Chem 2019; 91:12988-12996. [DOI: 10.1021/acs.analchem.9b03040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peter Carl
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Dominik Sarma
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Bruno J. R. Gregório
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Kristin Hoffmann
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
| | - Andreas Lehmann
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
| | - Knut Rurack
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
| | - Rudolf J. Schneider
- Department of Analytical Chemistry; Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
- Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
17
|
Kaewwonglom N, Oliver M, Cocovi-Solberg DJ, Zirngibl K, Knopp D, Jakmunee J, Miró M. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology. Anal Chem 2019; 91:13260-13267. [DOI: 10.1021/acs.analchem.9b03855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Natcha Kaewwonglom
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - David J. Cocovi-Solberg
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Katharina Zirngibl
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Jaroon Jakmunee
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
18
|
Ivshina IB, Tyumina EA, Kuzmina MV, Vikhareva EV. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346. Sci Rep 2019; 9:9159. [PMID: 31235798 PMCID: PMC6591480 DOI: 10.1038/s41598-019-45732-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/11/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated the ability of rhodococci to biodegrade diclofenac (DCF), one of the polycyclic non-steroidal anti-inflammatory drugs (NSAIDs) most frequently detected in the environment. Rhodococcus ruber strain IEGM 346 capable of complete DCF biodegradation (50 µg/L) over 6 days was selected. It is distinguished by the ability to degrade DCF at high (50 mg/L) concentrations unlike other known biodegraders. The DCF decomposition process was accelerated by adding glucose and due to short-term cell adaptation to 5 µg/L DCF. The most typical responses to DCF exposure observed were the changed ζ-potential of bacterial cells; increased cell hydrophobicity and total cell lipid content; multi-cellular conglomerates formed; and the changed surface-to-volume ratio. The obtained findings are considered as mechanisms of rhodococcal adaptation and hence their increased resistance to toxic effects of this pharmaceutical pollutant. The proposed pathways of bacterial DCF metabolisation were described. The data confirming the C-N bond cleavage and aromatic ring opening in the DCF structure were obtained.
Collapse
Affiliation(s)
- Irina B Ivshina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 13 Golev Street, 614081, Perm, Russia.
- Perm State National Research University, 15 Bukirev Street, 614990, Perm, Russia.
| | - Elena A Tyumina
- Perm State National Research University, 15 Bukirev Street, 614990, Perm, Russia
| | - Maria V Kuzmina
- Perm State Pharmaceutical Academy, 2 Polevaya Street, 614990, Perm, Russia
| | - Elena V Vikhareva
- Perm State Pharmaceutical Academy, 2 Polevaya Street, 614990, Perm, Russia
| |
Collapse
|
19
|
Fluorescent kinetics combined with fourth-order calibration for the determination of diclofenac sodium in environmental water. Anal Bioanal Chem 2019; 411:2019-2029. [DOI: 10.1007/s00216-019-01624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/04/2023]
|
20
|
Wieczerzak M, Namieśnik J, Kudłak B. Genotoxicity of selected pharmaceuticals, their binary mixtures, and varying environmental conditions - study with human adenocarcinoma cancer HT29 cell line. Drug Chem Toxicol 2019; 44:113-123. [PMID: 30607992 DOI: 10.1080/01480545.2018.1529783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pharmaceutical residues are present in the environment in mixtures and their adverse effects may also result from interactions that occur between compounds. Studies presented in this work focus on genotoxicity of pharmaceuticals from different therapeutic groups in mixtures and in individual solutions impacted with different environmental conditions assessed using comet assay (alkaline approach). Binary mixtures of pharmaceuticals (in different concentration ratios) and in individual solutions impacted with pH change (range from 5.5 to 8.5) or addition of inorganic ions, were incubated with HT29 cells and after 24 h time period cells were tested for the presence of DNA damage. To estimate whether mixtures act more (synergistic) or less (antagonistic) efficiently Concentrations Addition (CA) and Independent Action (IA) approaches were applied followed by a calculation of the Model Deviation Ratio (MDR) to determine deviation from the predicted values. Addition of inorganic ions mainly reduced their genotoxicity. Diclofenac s. was the most susceptible to potassium, fluoride, and bromide ions. Change of the pH of pharmaceutical solutions had significant impact on genotoxicity of diclofenac s. and fluoxetine h. Among mixtures, more commonly observed interactions were synergistic ones, exactly twenty-five cases (ten pairs containing chloramphenicol or oxytetracycline h.) and ten cases of antagonism (four for pairs containing chloramphenicol or fluoxetine h.). The results obtained indicate that interactions between tested compounds occur frequently and can lead to DNA damage. This topic especially concerning in vitro tests using cells is still rare, however, it should not be neglected.
Collapse
Affiliation(s)
- Monika Wieczerzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
21
|
do Prado TM, Cincotto FH, Fatibello-Filho O, Cruz de Moraes F. Bismuth Vanadate/Reduced Graphene Oxide Nanocomposite Electrode for Photoelectrochemical Determination of Diclofenac in Urine. ELECTROANAL 2018. [DOI: 10.1002/elan.201800524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Fernando Henrique Cincotto
- Department of Chemistry; Federal University of São Carlos; São Carlos - SP - Brazil, Zip code 13565-905
- Institute of Chemistry; Federal University of Rio de Janeiro; Rio de Janeiro - RJ - Brazil, Zip code 21941-901
| | - Orlando Fatibello-Filho
- Department of Chemistry; Federal University of São Carlos; São Carlos - SP - Brazil, Zip code 13565-905
| | - Fernando Cruz de Moraes
- Department of Chemistry; Federal University of São Carlos; São Carlos - SP - Brazil, Zip code 13565-905
| |
Collapse
|
22
|
Nguyen T, Vu T, Anquetin G, Tran H, Reisberg S, Noël V, Mattana G, Nguyen Q, Dai Lam T, Pham M, Piro B. Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection. Biosens Bioelectron 2017; 97:246-252. [DOI: 10.1016/j.bios.2017.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
|
23
|
|
24
|
Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Anal Bioanal Chem 2017; 409:5875-5890. [DOI: 10.1007/s00216-017-0482-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
25
|
Koutsoumpeli E, Tiede C, Murray J, Tang A, Bon RS, Tomlinson DC, Johnson S. Antibody Mimetics for the Detection of Small Organic Compounds Using a Quartz Crystal Microbalance. Anal Chem 2017; 89:3051-3058. [PMID: 28192970 DOI: 10.1021/acs.analchem.6b04790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conventional immunoassays rely on antibodies that provide high affinity, specificity, and selectivity against a target analyte. However, the use of antibodies for the detection of small-sized, nonimmunogenic targets, such as pharmaceuticals and environmental contaminants, presents a number of challenges. Recent advances in protein engineering have led to the emergence of antibody mimetics that offer the high affinity and specificity associated with antibodies, but with reduced batch-to-batch variability, high stability, and in vitro selection to ensure rapid discovery of binders against a wide range of targets. In this work we explore the potential of Affimers, a recent example of antibody mimetics, as suitable bioreceptors for the detection of small organic target compounds, here methylene blue. Target immobilization for Affimer characterization was achieved using long-chained alkanethiol linkers coupled with oligoethylene glycol (LCAT-OEG). Using quartz crystal microbalance with dissipation monitoring (QCM-D), we determine the affinity constant, KD, of the methylene blue Affimer to be comparable to that of antibodies. Further, we demonstrate the high selectivity of Affimers for its target in complex matrixes, here a limnetic sample. Finally, we demonstrate an Affimer-based competition assay, illustrating the potential of Affimers as bioreceptors in immunoassays for the detection of small-sized, nonimmunogenic compounds.
Collapse
Affiliation(s)
- Eleni Koutsoumpeli
- Department of Electronics, University of York , Heslington, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | - Steven Johnson
- Department of Electronics, University of York , Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Quantifying the UK Online Interest in Substances of the EU Watchlist for Water Monitoring: Diclofenac, Estradiol, and the Macrolide Antibiotics. WATER 2016. [DOI: 10.3390/w8110542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Hlaváček A, Farka Z, Hübner M, Horňáková V, Němeček D, Niessner R, Skládal P, Knopp D, Gorris HH. Competitive Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Diclofenac. Anal Chem 2016; 88:6011-7. [PMID: 27167775 DOI: 10.1021/acs.analchem.6b01083] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) emit light of shorter wavelength under near-infrared excitation and thus avoid optical background interference. We have exploited this unique photophysical feature to establish a sensitive competitive immunoassay for the detection of the pharmaceutical micropollutant diclofenac (DCF) in water. The so-called upconversion-linked immunosorbent assay (ULISA) was critically dependent on the design of the upconversion luminescent detection label. Silica-coated UCNPs (50 nm in diameter) exposing carboxyl groups on the surface were conjugated to a secondary anti-IgG antibody. We investigated the structure and monodispersity of the nanoconjugates in detail. Using a highly affine anti-DCF primary antibody, the optimized ULISA reached a detection limit of 0.05 ng DCF per mL. This performance came close to a conventional enzyme-linked immunosorbent assay (ELISA) without the need for an enzyme-mediated signal amplification step. The ULISA was further employed for analyzing drinking and surface water samples. The results were consistent with a conventional ELISA as well as liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , 93040 Regensburg, Germany.,CEITEC-Central European Institute of Technology, Masaryk University , Brno 625 00, Czech Republic.,Institute of Analytical Chemistry AS CR, v. v. i. , Brno 602 00, Czech Republic
| | - Zdeněk Farka
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , 93040 Regensburg, Germany.,CEITEC-Central European Institute of Technology, Masaryk University , Brno 625 00, Czech Republic
| | - Maria Hübner
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich , 81377 Munich, Germany
| | - Veronika Horňáková
- CEITEC-Central European Institute of Technology, Masaryk University , Brno 625 00, Czech Republic
| | - Daniel Němeček
- CEITEC-Central European Institute of Technology, Masaryk University , Brno 625 00, Czech Republic
| | - Reinhard Niessner
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich , 81377 Munich, Germany
| | - Petr Skládal
- CEITEC-Central European Institute of Technology, Masaryk University , Brno 625 00, Czech Republic
| | - Dietmar Knopp
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich , 81377 Munich, Germany
| | - Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , 93040 Regensburg, Germany
| |
Collapse
|