1
|
ACE2 and SARS-CoV-2-Main Protease Capillary Columns for Affinity Chromatography: Testimony of the Binding of Dexamethasone and its Carbon Nanotube Nanovector. Chromatographia 2022; 85:773-781. [PMID: 35855682 PMCID: PMC9275543 DOI: 10.1007/s10337-022-04181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
In this paper, each of the two following proteins, the angiotensin-converting enzyme 2 (ACE2) and the Main protease (Main pro) of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) were grafted for the first time on homemade neutravidin poly(GMA-co-EDMA) capillary columns for the research of their ligands. The effect of the column diameter on the quantity of immobilized biotinylated protein was studied. For a capillary length of 40 mm, when its internal diameter varied from 75 to 25 μm, the grafted quantity of ACE2 decreased by 85% (from 1.50 to 0.24 μg). Among all the studied ligands, a particular vigilance has been given for dexamethasone, a widely used molecule today for adult patients hospitalized with SARS-CoV-2. Competition experiments were performed with SARS-CoV-2 Receptor Binding Domain used as reference molecule with the ACE2 affinity column to assess the orthosteric binding site of dexamethasone (Dex) on ACE2. This ligand was then immobilized on Multiwall Carbon Nanotubes (Dex/MWCNT). By comparison of the normalized breakthrough curves measured for Dex and Dex/MWCNT on both the ACE2 and Main pro affinity columns, it was showed for the first time that nanovectorisation of Dex with MWCNT enhanced and stabilized its binding to both ACE2 and Main pro. This last result reinforced the use of Dex and the interest of MWCNT for boosting immune health against COVID 19.
Collapse
|
2
|
Guillaume YC, André C. Immobilization of the SARS-CoV-2-receptor binding domain onto methacrylate-based monoliths for nano LC at 30 nL min -1 and application for research of its ligands. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:156-164. [PMID: 34927183 DOI: 10.1039/d1ay01913a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the design of novel potent molecules against therapeutic protein targets produced in a low quantity or that are very expensive, the development of miniaturized analytical techniques is of crucial importance. One challenging target is the receptor binding domain (RBD) of the SARS-CoV-2-spike protein (S), which mediates the binding of the virus to host cells. In the present study, the RBD protein was thus immobilized on polymethacrylate monoliths prepared in a miniaturized capillary column (25 μm internal diameter; 70 mm length) by in situ polymerization, which could offer low backpressure in Nano LC at 30 nL min-1. The immobilized quantity of the expensive RBD protein on the organic monolith was very low, in the submicrogram range, i.e., 0.060 μg. The immobilization method reduced non-selective interactions between the ligand and the organic monolith matrix and maintained the functionality of RBD due to the high activity rate (96%). The performance of this miniaturized affinity capillary column was demonstrated for the rapid evaluation of a recognition assay induced by 1,2,3,4,6-pentagalloyl glucose (PGG), a known ligand of RBD, and by five other molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to reveal the existence of only one type of binding site for three ligands of RBD, namely carbenoxolone, simeprevir and irinotecan. All these results showed the potential of our analytical miniaturized affinity system for the determination of interactions between potential ligands and immobilized RBD of SARS-CoV-2 to aid in the battle against COVID-19.
Collapse
Affiliation(s)
- Yves Claude Guillaume
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
| | - Claire André
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
- CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| |
Collapse
|
3
|
Korzhikova‐Vlakh EG, Tennikova TB. Some factors affecting pore size in the synthesis of rigid polymer monoliths: Theory and its applicability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Khodabandeh A, Arrua RD, Thickett SC, Hilder EF. Utilizing RAFT Polymerization for the Preparation of Well-Defined Bicontinuous Porous Polymeric Supports: Application to Liquid Chromatography Separation of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32075-32083. [PMID: 34190530 DOI: 10.1021/acsami.1c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer-based monolithic high-performance liquid chromatography (HPLC) columns are normally obtained by conventional free-radical polymerization. Despite being straightforward, this approach has serious limitations with respect to controlling the structural homogeneity of the monolith. Herein, we explore a reversible addition-fragmentation chain transfer (RAFT) polymerization method for the fabrication of porous polymers with well-defined porous morphology and surface chemistry in a confined 200 μm internal diameter (ID) capillary format. This is achieved via the controlled polymerization-induced phase separation (controlled PIPS) synthesis of poly(styrene-co-divinylbenzene) in the presence of a RAFT agent dissolved in an organic solvent. The effects of the radical initiator/RAFT molar ratio as well as the nature and amount of the organic solvent were studied to target cross-linked porous polymers that were chemically bonded to the inner wall of a modified silica-fused capillary. The morphological and surface properties of the obtained polymers were thoroughly characterized by in situ nuclear magnetic resonance (NMR) experiments, nitrogen adsorption-desorption experiments, elemental analyses, field-emission scanning electron microscopy (FESEM), scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealing the physicochemical properties of these styrene-based materials. When compared with conventional synthetic methods, the controlled-PIPS approach affects the kinetics of polymerization by delaying the onset of phase separation, enabling the construction of materials with a smaller pore size. The results demonstrated the potential of the controlled-PIPS approach for the design of porous monolithic columns suitable for liquid separation of biomolecules such as peptides and proteins.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - R Dario Arrua
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS 7005, Australia
| | - Emily F Hilder
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Saranchina NV, Slizhov YG, Vodova YM, Murzakasymova NS, Ilyina AM, Gavrilenko NA, Gavrilenko MA. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta 2021; 226:122103. [PMID: 33676659 DOI: 10.1016/j.talanta.2021.122103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
We developed a new transparent polymer optode based on polymethacrylate with Zr(IV) and alizarin red complex immobilized into it for digital colorimetric and solid-phase spectrophotometric determination of fluoride anions. The matrix changes its colour from purple to yellow after it contacts fluoride anion. We developed a processing algorithm for coloured images which helps calculate mean value for the RGB colour-coordinate system in a selected optode image and translates it into a fluoride concentration value. The analytical signal of the suggested method has a linearity range of 0.1-30 mg⋅L-1 with the detection limit 0.03 mg⋅L-1. Compared to other methods, the modified polymethacrylate matrix is actually a ready-to-use colorimetric system offering rapid results for drinking water quality control.
Collapse
Affiliation(s)
| | | | | | | | - A M Ilyina
- Tomsk Polytechnic University, Tomsk, Russia
| | | | | |
Collapse
|
6
|
Qi FF, Ma TY, Fan YM, Chu LL, Liu Y, Yu Y. Nanoparticle-based polyacrylonitrile monolithic column for highly efficient micro solid-phase extraction of carotenoids and vitamins in human serum. J Chromatogr A 2020; 1635:461755. [PMID: 33278673 DOI: 10.1016/j.chroma.2020.461755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
In this work, a biocompatible monolithic column based micro-solid-phase extraction (µ-SPE) method was developed for biological fluid analysis. A novel nanoparticle-based polyacrylonitrile monolithic column (C30 NP-PMC) was fabricated by incorporating triacontyl (C30) modified silica nanoparticles (NPs) into the polyacrylonitrile monolithic matrix through thermally induced phase separation. With efficient mass transfer and sorption capacity, C30 NP-PMC exhibited outstanding performance for the extraction of carotenoids and fat-soluble vitamins (FSVs) from human serum samples, superior to commercial C18 cartridges as well as liquid-liquid extraction (LLE) method. Under optimal conditions, the proposed µ-SPE method coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) achieved satisfactory limits of detection (LODs) (1.5-75.0 ng/mL) and good recoveries (85.0-106.5 %) with relative standard deviations (RSDs) of less than 12.1% by consuming lower sorbent (35.0 mg) and organic solvent (0.8 mL). Successful application of the developed method demonstrated the great potential of such monolithic sorbents for efficient isolation and preconcentration of trace analytes from blood samples.
Collapse
Affiliation(s)
- Fei-Fei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, P.R. China
| | - Tian-You Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, P.R. China
| | - Ya-Meng Fan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, P.R. China
| | - Lan-Ling Chu
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China
| | - Yan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, P.R. China; Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan, 610041, P.R. China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, P.R. China.
| |
Collapse
|
7
|
Piri F, Mollahosseini A, Khadir A, Milani Hosseini M. Synthesis of a novel magnetic zeolite–hydroxyapatite adsorbent via microwave-assisted method for protein adsorption via magnetic solid-phase extraction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01883-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Pereira JAM, Gonçalves J, Porto-Figueira P, Figueira JA, Alves V, Perestrelo R, Medina S, Câmara JS. Current trends on microextraction by packed sorbent – fundamentals, application fields, innovative improvements and future applications. Analyst 2019; 144:5048-5074. [DOI: 10.1039/c8an02464b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MEPS, the acronym of microextraction by packed sorbent, is a simple, fast and user- and environmentally-friendly miniaturization of the popular solid-phase extraction technique (SPE).
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - João Gonçalves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | | | - José A. Figueira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Vera Alves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Sonia Medina
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
- Faculdade de Ciências Exatas e da Engenharia
| |
Collapse
|
9
|
A porous polyaniline nanotube sorbent for solid-phase extraction of the fluorescent reaction product of reactive oxygen species in cells, and its determination by HPLC. Mikrochim Acta 2018; 185:468. [PMID: 30232631 DOI: 10.1007/s00604-018-3000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
A method is described for extracting and detecting the fluorescent reaction product (2',7'-dichlorofluorescein, DCF) that is formed by reaction of reactive oxygen species (ROS) with dichlorodihydrofluorescein diacetate (DCFH-DA). DCF is extracted by using porous polyaniline nanotubes (PPN) which have a large specific surface and pore volume which favor the adsorption capacity. Additional attractive features include an appropriate pore size distribution, hydrophobic surface, and electron-attracting groups which contribute to DCF adsorption. A variety of methods was applied to characterize the morphology of PPN. Under optimal conditions and by performing DCF in 0.08-1.0 μM concentrations, the correlation coefficient of the calibration plot is 0.999. The limits of detection for standard DCF solutions is 20 nM. Compared with commercial sorbents for solid-phase extraction (SPE) such as commercially available carbon or Welchrom® C18, the use of the new sorbent results in better retraction recovery (92%) and longer reuse times (30 times). Doxorubicin and X-ray radiation were used to externally stimulate the ROS production in HepG2 and Hela cells. ROS was stabled by DCFH-DA and quantified by DCF. Following SPE, DCF was detected by HPLC and the concentration ROS was calculated. Graphical abstract ᅟ.
Collapse
|
10
|
Macroporous monolithic columns modified with cholesterol-containing glycopolymer for cholesterol solid-phase extraction. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Khodabandeh A, Arrua RD, Coad BR, Rodemann T, Ohigashi T, Kosugi N, Thickett SC, Hilder EF. Morphology control in polymerised high internal phase emulsion templated via macro-RAFT agent composition: visualizing surface chemistry. Polym Chem 2018. [DOI: 10.1039/c7py01770g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of polymerized high internal phase emulsion (polyHIPE) materials have been prepared by using a water in oil emulsion stabilized by a macro-RAFT agent, 2-(butylthiocarbonothioylthio)-2-poly(styrene)-b-poly(acrylic acid), acting as a polymeric surfactant.
Collapse
Affiliation(s)
- A. Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS)
- University of Tasmania
- Tasmania
- Australia
- Future Industries Institute
| | - R. D. Arrua
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
| | - B. R. Coad
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
- School of Agriculture
| | - T. Rodemann
- Central Science Laboratory
- University of Tasmania
- Hobart 7001
- Australia
| | - T. Ohigashi
- UVSOR Synchrotron
- Institute for Molecular Science
- Okazaki
- 444-8585 Japan
| | - N. Kosugi
- UVSOR Synchrotron
- Institute for Molecular Science
- Okazaki
- 444-8585 Japan
| | - S. C. Thickett
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| | - E. F. Hilder
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
| |
Collapse
|
12
|
Volokitina MV, Nikitina AV, Tennikova TB, Korzhikova-Vlakh EG. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process. Electrophoresis 2017; 38:2931-2939. [DOI: 10.1002/elps.201700210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Mariia V. Volokitina
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Anna V. Nikitina
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Evgenia G. Korzhikova-Vlakh
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|