1
|
Bastardo-Fernández I, Chekri R, Noireaux J, Givelet L, Lambeng N, Delvallée A, Loeschner K, Fisicaro P, Jitaru P. Characterisation of titanium dioxide (nano)particles in foodstuffs and E171 additives by single particle inductively coupled plasma-tandem mass spectrometry using a highly efficient sample introduction system. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:867-884. [PMID: 38833436 DOI: 10.1080/19440049.2024.2359532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
This study addressed primarily the characterisation and quantification of titanium dioxide (TiO2) (nano)particles (NPs) in a large variety of commercial foodstuffs. The samples were purchased from local markets in Spain before the ban of TiO2 food additive (E171) in the EU. The analyses were carried out by single particle inductively coupled plasma-tandem mass spectrometry (spICP-MS/MS) in mass shift mode (oxidation of 48Ti to 48Ti16O (m/z = 64)) and using a highly efficient sample introduction system (APEX™ Ω). This novel analytical approach allowed accurate characterisation of a large panel of TiO2 NPs sizes ranging from ∼12 to ∼800 nm without isobaric interferences from 48Ca isotope, which is highly abundant in most of the analysed foodstuffs. TiO2 NPs were extracted from foodstuffs using sodium dodecyl sulphate (0.1%, w/v) and diluted with ultra-pure water to reach ∼ 1000 particles signals per acquisition. All the analysed samples contained TiO2 NPs with concentrations ranging from 1010 to 1014 particles kg-1, but with significant low recoveries compared to the total Ti determination. A selection of samples was also analysed using a similar spICP-MS/MS approach with a conventional sample introduction system. The comparison of results highlighted the improvement of the limit of detection in size (12 nm) by the APEX™ Ω system, providing nanoparticulate fractions ranging from ∼4% (cheddar sauce) up to ∼87% (chewing gum), which is among the highest nanoparticulate fractions reported in literature using a spICP-MS approach. In addition, two commercially available E171 additives were analysed using the previous approaches and other techniques in different European laboratories with the aim of methods inter-comparison. This study provides occurrence data related to TiO2 NPs in common commercial foodstuffs but it also demonstrates the potential of the novel analytical approach based on APEX™-ICP-MS/MS to characterise nano-size TiO2 particles in complex matrices such as foodstuffs.
Collapse
Affiliation(s)
- Isabel Bastardo-Fernández
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
- Environment and Climate Change Department, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Rachida Chekri
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Johanna Noireaux
- Environment and Climate Change Department, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Lucas Givelet
- Research Group for Analytical Food Chemistry, Technical University of Denmark (DTU), National Food Institute, Kgs. Lyngby, Denmark
| | - Nora Lambeng
- Department of Materials Science, National Metrology and Testing Laboratory (LNE), Trappes, France
| | - Alexandra Delvallée
- Department of Materials Science, National Metrology and Testing Laboratory (LNE), Trappes, France
| | - Katrin Loeschner
- Research Group for Analytical Food Chemistry, Technical University of Denmark (DTU), National Food Institute, Kgs. Lyngby, Denmark
| | - Paola Fisicaro
- Division of Chemistry and Biology, National Metrology and Testing Laboratory (LNE), Paris, France
| | - Petru Jitaru
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
2
|
Loeschner K, Johnson ME, Montoro Bustos AR. Application of Single Particle ICP-MS for the Determination of Inorganic Nanoparticles in Food Additives and Food: A Short Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2547. [PMID: 37764576 PMCID: PMC10536347 DOI: 10.3390/nano13182547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Due to enhanced properties at the nanoscale, nanomaterials (NMs) have been incorporated into foods, food additives, and food packaging materials. Knowledge gaps related to (but not limited to) fate, transport, bioaccumulation, and toxicity of nanomaterials have led to an expedient need to expand research efforts in the food research field. While classical techniques can provide information on dilute suspensions, these techniques sample a low throughput of nanoparticles (NPs) in the suspension and are limited in the range of the measurement metrics so orthogonal techniques must be used in tandem to fill in measurement gaps. New and innovative characterization techniques have been developed and optimized for employment in food nano-characterization. Single particle inductively coupled plasma mass spectrometry, a high-throughput nanoparticle characterization technique capable of providing vital measurands of NP-containing samples such as size distribution, number concentration, and NP evolution has been employed as a characterization technique in food research since its inception. Here, we offer a short, critical review highlighting existing studies that employ spICP-MS in food research with a particular focus on method validation and trends in sample preparation and spICP-MS methodology. Importantly, we identify and address areas in research as well as offer insights into yet to be addressed knowledge gaps in methodology.
Collapse
Affiliation(s)
- Katrin Loeschner
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Monique E. Johnson
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (M.E.J.); (A.R.M.B.)
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (M.E.J.); (A.R.M.B.)
| |
Collapse
|
3
|
Zhang C, Zhang Q, Zhao Y, Dong D, Huang L. Determination of Titanium (IV) Oxide Nanoparticles Released from Textiles by Single Particle – Inductively Coupled Plasma – Mass Spectrometry (SP-ICP-MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2195186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Chaoying Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yingchun Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dianquan Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Sabbioni E, Manenti S, Magarini R, Petrarca C, Poma AMG, Zaccariello G, Back M, Benedetti A, Di Gioacchino M, Mignini E, Pirotta G, Riscassi R, Salvini A, Groppi F. Fast and non-destructive neutron activation analysis for simultaneous determination of TiO2 and SiO2 in sunscreens with attention to regulatory and research issues. Anal Chim Acta 2022; 1200:339601. [DOI: 10.1016/j.aca.2022.339601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/01/2022]
|
5
|
Kulthong K, Hooiveld GJEJ, Duivenvoorde LPM, Miro Estruch I, Bouwmeester H, van der Zande M. Comparative study of the transcriptomes of Caco-2 cells cultured under dynamic vs. static conditions following exposure to titanium dioxide and zinc oxide nanomaterials. Nanotoxicology 2022; 15:1233-1252. [PMID: 35077654 DOI: 10.1080/17435390.2021.2012609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to the widespread application of food-relevant inorganic nanomaterials, the gastrointestinal tract is potentially exposed to these materials. Gut-on-chip in vitro systems are proposed for the investigation of compound toxicity as they better recapitulate the in vivo human intestinal environment than static models, due to the added shear stresses associated with the flow of the medium. We aimed to compare cellular responses of intestinal epithelial Caco-2 cells at the gene expression level upon TiO2 (E171) and ZnO (NM110) nanomaterial exposure when cultured under dynamic and conventionally applied static conditions. Whole-genome transcriptome analyses upon exposure of the cells to TiO2 and ZnO nanomaterials revealed differentially expressed genes and related biological processes that were culture condition specific. The total number of differentially expressed genes (p < 0.01) and affected pathways (p < 0.05 and FDR < 0.25) after nanomaterial exposure was higher under dynamic culture conditions than under static conditions for both nanomaterials. The observed increase in nanomaterial-induced responses in the gut-on-chip model indicates that shear stress might be a major factor in cell susceptibility. This is the first report on the application of a gut-on-chip system in which gene expression responses upon TiO2 and ZnO nanomaterial exposure are evaluated and compared to a static system. It extends current knowledge on nanomaterial toxicity assessment and the influence of a dynamic environment on cellular responses. Application of the gut-on-chip system resulted in higher sensitivity of the cells and might thus be an attractive system for use in the toxicological hazard characterization of nanomaterials.
Collapse
Affiliation(s)
- Kornphimol Kulthong
- Division of Toxicology, Wageningen University, Wageningen, Netherlands.,Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands.,National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands
| | | | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Peters R, Elbers I, Undas A, Sijtsma E, Briffa S, Carnell-Morris P, Siupa A, Yoon TH, Burr L, Schmid D, Tentschert J, Hachenberger Y, Jungnickel H, Luch A, Meier F, Kocic J, Kim J, Park BC, Hardy B, Johnston C, Jurkschat K, Radnik J, Hodoroaba VD, Lynch I, Valsami-Jones E. Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules 2021; 26:molecules26175315. [PMID: 34500752 PMCID: PMC8433974 DOI: 10.3390/molecules26175315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.
Collapse
Affiliation(s)
- Ruud Peters
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
- Correspondence:
| | - Ingrid Elbers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Anna Undas
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Eelco Sijtsma
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Sophie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| | - Pauline Carnell-Morris
- Malvern Panalytical, Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ, UK; (P.C.-M.); (A.S.)
| | - Agnieszka Siupa
- Malvern Panalytical, Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ, UK; (P.C.-M.); (A.S.)
| | - Tae-Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea;
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Loïc Burr
- CSEM, Centre Suisse d’Electronique et de Microtechnique SA, Bahnhofstrasse 1, 7302 Lanfquart, Switzerland; (L.B.); (D.S.)
| | - David Schmid
- CSEM, Centre Suisse d’Electronique et de Microtechnique SA, Bahnhofstrasse 1, 7302 Lanfquart, Switzerland; (L.B.); (D.S.)
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Yves Hachenberger
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Florian Meier
- Postnova Analytics GmbH, Rankine-Str. 1, 86899 Landsberg, Germany;
| | - Jovana Kocic
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland;
| | - Jaeseok Kim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (B.C.P.)
| | - Byong Chon Park
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (B.C.P.)
| | - Barry Hardy
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland;
| | - Colin Johnston
- Department of Materials, University of Oxford, Begbroke Science Park, Begbroke Hill, Oxford OX5 1PF, UK; (C.J.); (K.J.)
| | - Kerstin Jurkschat
- Department of Materials, University of Oxford, Begbroke Science Park, Begbroke Hill, Oxford OX5 1PF, UK; (C.J.); (K.J.)
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (J.R.); (V.-D.H.)
| | - Vasile-Dan Hodoroaba
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (J.R.); (V.-D.H.)
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| |
Collapse
|
7
|
Li B, Chua SL, Yu D, Chan SH, Li A. Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry. J Chromatogr A 2021; 1643:462059. [PMID: 33780882 DOI: 10.1016/j.chroma.2021.462059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The application of titanium dioxide as E171 food additive has become an issue of debate due to numerous reports that titanium dioxide nanoparticles (TiO2 NPs) inside the products may pose risks to human health. However, there is still a lack of an official standardized methodology for the detection and size characterization of TiO2 particles in foods containing E171. In this study, a method was presented for size characterization of TiO2 particles with various independent verifications in coffee creamer and instant drink powders, using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-MALS-ICP-MS). TiO2 particles from these products were well extracted, followed by their optimized AF4 separation using anionic surfactant Sodium Dodecyl Sulfate (SDS) (0.05%, pH 9) and mixed surfactant NovaChem (0.2%), respectively. Size determination of TiO2 NPs was conducted based on AF4 calibration with polystyrene nanospheres and verification with TiO2 NPs standard suspension of 100 nm under two different AF4 conditions. The TiO2 particle sizes detected ranged from 24.4 - 544.3 nm for coffee creamer and 27.7 - 574.3 nm for instant drink powders, with the TiO2 NPs detection recoveries of 75% and 92%, respectively. Hydrodynamic diameters from AF4 size calibration could be independently validated by the gyration diameters from online MALS measurement. The established approach was demonstrated to be reliable and pragmatic for size profiling of highly polydisperse TiO2 particles and thus useful for monitoring E171 in similar foodstuffs.
Collapse
Affiliation(s)
- Bin Li
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Sew Lay Chua
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore.
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| |
Collapse
|
8
|
Geiss O, Bianchi I, Senaldi C, Bucher G, Verleysen E, Waegeneers N, Brassinne F, Mast J, Loeschner K, Vidmar J, Aureli F, Cubadda F, Raggi A, Iacoponi F, Peters R, Undas A, Müller A, Meinhardt AK, Walz E, Gräf V, Barrero-Moreno J. Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: Interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy. Food Control 2021; 120:107550. [PMID: 33536722 PMCID: PMC7730118 DOI: 10.1016/j.foodcont.2020.107550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study. Standardised methods for sizing of E171 particles in food matrices are unavailable. Screening method based on spICP-MS is proposed. Analytical performance parameters and transferability tested in ILC.
Collapse
Affiliation(s)
- Otmar Geiss
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Bianchi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Chiara Senaldi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Guillaume Bucher
- Service Commun des Laboratoires (SCL), 3 Avenue Dr Albert Schweitzer, 33600, Pessac, France
| | - Eveline Verleysen
- Sciensano, Trace Elements and Nanomaterials, Uccle/Tervuren, Belgium
| | - Nadia Waegeneers
- Sciensano, Trace Elements and Nanomaterials, Uccle/Tervuren, Belgium
| | | | - Jan Mast
- Sciensano, Trace Elements and Nanomaterials, Uccle/Tervuren, Belgium
| | - Katrin Loeschner
- Division for Food Technology, National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs. Lyngby, Denmark
| | - Janja Vidmar
- Division for Food Technology, National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs. Lyngby, Denmark
| | - Federica Aureli
- Istituto Superiore di Sanità (ISS), National Institute of Health, Rome, Italy
| | - Francesco Cubadda
- Istituto Superiore di Sanità (ISS), National Institute of Health, Rome, Italy
| | - Andrea Raggi
- Istituto Superiore di Sanità (ISS), National Institute of Health, Rome, Italy
| | - Francesca Iacoponi
- Istituto Superiore di Sanità (ISS), National Institute of Health, Rome, Italy
| | - Ruud Peters
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Business Unit Contaminants & Toxins, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| | - Anna Undas
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Business Unit Contaminants & Toxins, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| | - Alexandra Müller
- Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Ann-Katrin Meinhardt
- Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Elke Walz
- Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Volker Gräf
- Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | | |
Collapse
|
9
|
Cervantes-Avilés P, Durán Vargas JB, Akizuki S, Kodera T, Ida J, Cuevas-Rodríguez G. Cumulative effects of titanium dioxide nanoparticles in UASB process during wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111428. [PMID: 33035936 DOI: 10.1016/j.jenvman.2020.111428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products and one of their major fate is the wastewater treatment plants. However, NPs eventually arrive to aquatic and terrestrial ecosystems via treated water and biosolids, respectively. Since low concentration of NPs is accumulating in the upflow anaerobic sludge blanket (UASB) reactors that treat wastewater and reclaim water quality, the accumulation of TiO2 NPs in these reactors may impact in their performance. In this work, the long-term effects of TiO2 NPs on the main benefits of treating wastewater by UASB reactors such as, biogas production, methane fraction in biogas and organic matter removal were evaluated. Evaluation consisted of monitoring such parameters in two identical UASB reactors, one UASB-Control (without NPs) and the experimental one (UASB-TiO2 NPs) that received wastewater with TiO2 NPs. The fate of NPs in the UASB reactor was also determined. Results indicated that biogas production increased by 8.8% due to the chronic exposure of UASB reactor to TiO2 NPs during the first 44 days of experiment. However, the methane content in the biogas had no significant differences between both UASB, ranging between 78% and 90% of methane during the experiment. The removal of organic matter in both UASB was similar and ranged 92-98% along the experimental time. This means that accumulation of TiO2 NPs did not altered the biogas production and organic matter removal. However, the content of total volatile solids (TVS) in UASB-TiO2 NPs dropped off from 137.8 g to 64.2 g in 84 days, while for control reactor that decreased from 141.6 g to 92.4 g in the same period. Hence, the increased biogas production in the UASB exposed to TiO2 was attributed to hydrolysis of the TVS in this reactor. The main fate of TiO2 NPs was the granular sludge, which accumulated up to 8.56 mg Ti/g, which represent around 99% of the Ti spiked to the reactor and the possible cause of the biomass hydrolyzation in the UASB. Disposal of UASB sludge containing NPs from may raise ecotoxicological concerns due to the use of biosolids in agricultural activities.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Reserva Territorial Atlixcáyotl, Puebla, Pue, CP 72453, Mexico; Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico
| | - J Beatriz Durán Vargas
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico
| | - Shinichi Akizuki
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico; Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Toshimitsu Kodera
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico.
| |
Collapse
|
10
|
Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta 2020; 220:121404. [DOI: 10.1016/j.talanta.2020.121404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
|
11
|
Campos DA, Schaumann GE, Philippe A. Natural TiO 2-Nanoparticles in Soils: A Review on Current and Potential Extraction Methods. Crit Rev Anal Chem 2020; 52:735-755. [PMID: 33054361 DOI: 10.1080/10408347.2020.1823812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The monitoring of anthropogenic TiO2-nanoparticles in soils is challenged by the knowledge gap on their characteristics of the large natural TiO2-nanoparticle pool. Currently, no efficient method is available for characterizing natural TiO2-nanoparticles in soils without an extraction procedure. Considering the reported diversity of extraction methods, the following article reviews and discusses their potential for TiO2 from soils, focusing on the selectivity and the applicability to complex samples. It is imperative to develop a preparative step reducing analytical interferences and producing a stable colloidal dispersion. It is suggested that an oxidative treatment, followed by alkaline conditioning and the application of dispersive agents, achieve such task. This enables the further separation and characterization through size or surface-based separation (i.e., hydrodynamic fractionation methods, filtration or sequential centrifugation). Meanwhile, cloud point extraction, gel electrophoresis, and electrophoretic deposition have been studied on various nanoparticles but not on TiO2-nanoparticles. Furthermore, industrially applied methods in, for example, kaolin processing (flotation and flocculation) are interesting but require further improvements on terms of selectivity and applicability to soil samples. Overall, none of the current extraction methods is sufficient toward TiO2; however, further optimization or combination of orthogonal techniques could help reaching a fair selectivity toward TiO2.
Collapse
Affiliation(s)
- Daniel Armando Campos
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Gabriele Ellen Schaumann
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Allan Philippe
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
12
|
Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics (Basel) 2020; 5:biomimetics5030036. [PMID: 32731584 PMCID: PMC7559021 DOI: 10.3390/biomimetics5030036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Mucins are glycoproteins present in all mucosal surfaces and in secretions such as saliva. Mucins are involved in the mucoadhesion of nanodevices carrying bioactive molecules to their target sites in vivo. Oil-in-water nanocapsules (NCs) have been synthesised for carrying N,N'-(di-m-methylphenyl)urea (DMTU), a quorum-sensing inhibitor, to the oral cavity. DMTU-loaded NCs constitute an alternative for the treatment of plaque (bacterial biofilm). In this work, the stability of the NCs after their interaction with mucin is analysed. Mucin type III from Sigma-Aldrich has been used as the mucin model. Mucin and NCs were characterised by the multi-detection asymmetrical flow field-flow fractionation technique (AF4). Dynamic light scattering (DLS) and ζ-potential analyses were carried out to characterise the interaction between mucin and NCs. According to the results, loading DMTU changes the conformation of the NC. It was also found that the synergistic interaction between mucin and NCs was favoured within a specific range of the mucin:NC ratio within the first 24 h. Studies on the release of DMTU in vitro and the microbial activity of such NCs are ongoing in our lab.
Collapse
|
13
|
A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids. J Chromatogr A 2019; 1599:203-214. [DOI: 10.1016/j.chroma.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
|
14
|
Minelli C, Bartczak D, Peters R, Rissler J, Undas A, Sikora A, Sjöström E, Goenaga-Infante H, Shard AG. Sticky Measurement Problem: Number Concentration of Agglomerated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4927-4935. [PMID: 30869903 DOI: 10.1021/acs.langmuir.8b04209] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Measuring the number concentration of colloidal nanoparticles (NPs) is critical for assessing reproducibility, enabling compliance with regulation, and performing risk assessments of NP-enabled products. For nanomedicines, their number concentration directly relates to their dose. However, the lack of relevant reference materials and established traceable measurement approaches make the validation of methods for NP number concentration difficult. Furthermore, commercial products often exhibit agglomeration, but guidelines for dealing with nonideal samples are scarce. We have compared the performance of five benchtop measurement methods for the measurement of colloidal number concentration in the presence of different levels of agglomeration. The methods are UV-visible spectroscopy, differential centrifugal sedimentation, dynamic light scattering, particle tracking analysis, and single-particle inductively coupled plasma mass spectrometry. We find that both ensemble and particle-by-particle methods are in close agreement for monodisperse NP samples and three methods are within 20% agreement for agglomerated samples. We discuss the sources of measurement uncertainties, including how particle agglomeration affects measurement results. This work is a first step toward validation and expansion of the toolbox of methods available for the measurement of real-world NP products.
Collapse
Affiliation(s)
- Caterina Minelli
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| | | | - Ruud Peters
- RIKILT-Wageningen University & Research , Wageningen 6700 AE , The Netherlands
| | - Jenny Rissler
- Bioscience and Materials , RISE Research Institutes of Sweden , Scheelevägen 27 , Lund 223-63 , Sweden
| | - Anna Undas
- RIKILT-Wageningen University & Research , Wageningen 6700 AE , The Netherlands
| | - Aneta Sikora
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| | - Eva Sjöström
- Bioscience and Materials , RISE Research Institutes of Sweden , Scheelevägen 27 , Lund 223-63 , Sweden
| | | | - Alexander G Shard
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| |
Collapse
|
15
|
Enzymatic hydrolysis as a sample pre-treatment for titanium dioxide nanoparticles assessment in surimi (crab sticks) by single particle ICP-MS. Talanta 2019; 195:23-32. [DOI: 10.1016/j.talanta.2018.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022]
|
16
|
Xu F. Review of analytical studies on TiO 2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. CHEMOSPHERE 2018; 212:662-677. [PMID: 30173113 DOI: 10.1016/j.chemosphere.2018.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industrial and consumer products. Comprehensive and accurate detection, characterization, and quantification of TiO2 NPs are important for understanding the specific property, behavior, fate, and potential risk of TiO2 NPs in natural and engineered environments. This review provides a summary of recent analytical studies of TiO2 NPs and their aggregation, coagulation, flocculation, sedimentation, stabilization under a wide range of conditions and processes. Much attention is paid on sample preparation prior to an analytical procedure, analysis of particle size, morphology, structure, state, chemical composition, surface properties, etc., via measurements of light scattering and zeta potential, microscopy, spectroscopy, and related techniques. Recently, some advanced techniques have also been explored to characterize TiO2 NPs and their behaviors in the environment. Many issues must be considered including distinction between engineered TiO2 NPs and their naturally occurring counterparts, lack of reference materials, interlaboratory comparison, when analyzing low concentrations of TiO2 NPs and their behaviors in complex matrices. No "ideal" technique has emerged as each technique has its own merits, biases, and limitations. Multi-method approach is highlighted to provide in-depth information. Improvements of analytical method for determination of TiO2 NPs have been recommended to be together with exposure modelers and ecotoxicologists for maximum individual and mutual benefit. Future work should focus on developing analytical technology with the advantages of being reliable, sensitive, selective, reproducible, and capable of in situ detection in complicated sample system.
Collapse
Affiliation(s)
- Fang Xu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, 27599-7431, USA.
| |
Collapse
|
17
|
Challenges in Determining the Size Distribution of Nanoparticles in Consumer Products by Asymmetric Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry: The Example of Al2O3, TiO2, and SiO2 Nanoparticles in Toothpaste. SEPARATIONS 2018. [DOI: 10.3390/separations5040056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
According to the current European regulation on cosmetics, any ingredient present as a nanomaterial should be indicated in the ingredient list. There is a need for analytical methods capable of determining the size of the relevant ingredients and thus assessing if these are nanomaterials or not. An analytical method based on asymmetric flow field-flow fractionation (AF4) and inductively coupled plasma-mass spectrometry (ICP-MS) was developed to determine the size of particles present in a commercial toothpaste. Multi-angle light scattering (MALS) was used for on-line size determination. The number-based particle size distributions (PSDs) of the particles were retrieved upon mathematical conversion of the mass-based PSDs recovered from the AF4-ICP-MS fractograms. AF4-ICP-MS allowed to separate and detect Al2O3 and TiO2 particles in the toothpaste and to retrieve a correct TiO2 number-based PSD. The potential presence of particles in the lower size range of the Al2O3 mass-based PSD had a strong impact on sizing and nanomaterial classification upon conversion. AF4 coupled with ICP-MS and MALS was found to be a powerful approach for characterization of different particles in a multiple-particle system such as toothpaste. Confirmation of particle size by a secondary method such as single particle ICP-MS or hydrodynamic chromatography was crucial.
Collapse
|
18
|
Bocca B, Caimi S, Senofonte O, Alimonti A, Petrucci F. ICP-MS based methods to characterize nanoparticles of TiO 2 and ZnO in sunscreens with focus on regulatory and safety issues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:922-930. [PMID: 29499547 DOI: 10.1016/j.scitotenv.2018.02.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
This study sought to develop analytical methods to characterize titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs), including the particle size distribution and concentration, in cream and spray sunscreens with different sun protection factor (SPF). The Single Particle Inductively Coupled Plasma-Mass Spectrometry (SP ICP-MS) was used as screening and fast method to determine particles size and number. The Asymmetric Flow-Field Flow Fractionation (AF4-FFF) as a pre-separation technique was on-line coupled to the Multi-Angle Light Scattering (MALS) and ICP-MS to determine particle size distributions and size dependent multi-elemental concentration. Both methods were optimized in sunscreens in terms of recovery, repeatability, limit of detection and linear dynamic range. Results showed that sunscreens contained TiO2 particles with an average size of ≤107 nm and also a minor number of ZnO particles sized ≤98 nm. The higher fraction of particles <100 nm was observed in sunscreens with SPF 50+ (ca. 80%); the lower percentage (12-35%) in sunscreens with lower SPF values. Also the higher TiO2 (up to 24% weight) and ZnO (ca. 0.25% weight) concentrations were found in formulations of SPF 50+. Creamy sunscreens could be considered safe containing TiO2 and ZnO NPs less than the maximum allowable concentration of 25% weight as set by the European legislation. On the contrary, spray products required additional considerations with regard to the potential inhalation of NPs. The developed methods can contribute to the actual demand for regulatory control and safety assessment of metallic NPs in consumers' products.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Caimi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Oreste Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Alimonti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesco Petrucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
19
|
Peters RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H. Detection of nanoparticles in Dutch surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:210-218. [PMID: 29179077 DOI: 10.1016/j.scitotenv.2017.11.238] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Nano-enabled consumer products are a likely source of nanoparticles in the environment and a number of studies have shown the release of nanoparticles from commercial products. Predicted environmental concentrations have been calculated but there is a need for real measurement data to validate these calculations. However, the detection of engineered nanoparticles in environmental matrices is challenging because of the low predicted environmental concentrations which may be in the ng/L range. In this study nanosized Ag, CeO2 and TiO2 have been measured in multiple surface water samples collected along the rivers Meuse and IJssel in the Netherlands using single-particle ICP-MS as measurement technique. Validation of the analytical method showed its capability to quantitatively determine nanoparticles at low concentrations. Concentration mass detection limits for Ag, CeO2 and TiO2 were 0.1ng/L, 0.05ng/L and 10ng/L respectively. Size detection limits for Ag, CeO2 and TiO2 were 14, 10 and 100nm. The results of the study confirm the presence of nano-sized Ag and CeO2 particles and micro-sized TiO2 particles in these surface waters. n-Ag was present in all samples in concentrations ranging from 0.3 to 2.5ng/L with an average concentration of 0.8ng/L and an average particle size of 15nm. n-CeO2 was found in all samples with concentrations ranging from 0.4 to 5.2ng/L with an average concentration of 2.7ng/L and an average particle size of 19nm. Finally, μ-TiO2 was found in all samples with a concentration ranging from 0.2 to 8.1μg/L with an average concentration of 3.1μg/L and an average particle size of 300nm. The particle sizes that were found are comparable with the particle sizes that are used in nanomaterial applications and consumer products. The nanoparticle concentrations confirm the predicted environmental concentrations values in water for all three nanoparticles.
Collapse
Affiliation(s)
- Ruud J B Peters
- RIKILT Wageningen University & Research, Wageningen, The Netherlands.
| | - Greet van Bemmel
- RIKILT Wageningen University & Research, Wageningen, The Netherlands
| | - Nino B L Milani
- RIKILT Wageningen University & Research, Wageningen, The Netherlands
| | | | - Anna K Undas
- RIKILT Wageningen University & Research, Wageningen, The Netherlands
| | | | - Hans Bouwmeester
- RIKILT Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Dankers ACA, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers-Mulderij M, Tromp P, Nelissen I, Zondervan-Van Den Beuken EK, Vandebriel RJ. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J Appl Toxicol 2017; 38:160-171. [DOI: 10.1002/jat.3518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Anita C. A. Dankers
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - C. Frieke Kuper
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Anja J. Boumeester
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Babs O. Fabriek
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Ingeborg M. Kooter
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Mariska Gröllers-Mulderij
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Peter Tromp
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit; Boeretang 200 2400 Mol Belgium
| | | | - Rob J. Vandebriel
- National Institute of Public Health and the Environment (RIVM), Centre for Health Protection; PO Box 1, 3720 BA Bilthoven the Netherlands
| |
Collapse
|
21
|
Bäuerlein PS, Emke E, Tromp P, Hofman JAMH, Carboni A, Schooneman F, de Voogt P, van Wezel AP. Is there evidence for man-made nanoparticles in the Dutch environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:273-283. [PMID: 27788442 DOI: 10.1016/j.scitotenv.2016.09.206] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 05/29/2023]
Abstract
Only very limited information is available on measured environmental concentrations of nanoparticles. In this study, several environmental compartments in The Netherlands were probed for the presence of nanoparticles. Different types of water were screened for the presence of inorganic (Ag, Au, TiO2) and organic nanoparticles (C60, C70, [6,6]-phenyl-C61-butyric acid octyl ester, [6,6]-phenyl-C61-butyric acid butyl ester, [6,6]-phenyl-C61-butyric acid methyl ester, [6,6]-bis-phenyl-C61-butyric acid methyl ester, [6,6]-phenyl-C71-butyric acid methyl ester, [6,6]-thienyl-C61-butyric acid methyl ester). Air samples were analysed for the presence of nanoparticulate Mo, Ag, Ce, W, Pd, Pt, Rh, Zn, Ti, Si, B as well as Fe and Cu. ICP-MS, Orbitrap-HRMS, SEM and EDX were used for this survey. Water samples included dune and bank filtrates, surface waters and ground waters as well as influents, effluents and sludge of sewage treatment plants (STPs), and surface waters collected near airports and harbours. Air samples included both urban and rural samples. C60 was detected in air, sewage treatment plants, influents, effluents and sludge, but in no other aqueous samples despite the low detection limit of 0.1ng/L. C70 and functionalised fullerenes were not detected at all. In STP sludge and influent the occurrence of Ag and Au nanoparticles was verified by SEM/EDX and ICP-MS. In air up to about 25m% of certain metals was found in the nanosize fraction. Overall, between 1 and 6% of the total mass from metals in the air samples was found in the size fraction <100nm.
Collapse
Affiliation(s)
- Patrick S Bäuerlein
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands.
| | - Erik Emke
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Peter Tromp
- TNO, Netherlands Organization for Applied Scientific Research, Princetonlaan 6, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
| | - Jan A M H Hofman
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Water Innovation and Research Centre, University of Bath, UK
| | - Andrea Carboni
- IBED Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | | | - Pim de Voogt
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; IBED Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Annemarie P van Wezel
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Copernicus Institute, Utrecht University, The Netherlands
| |
Collapse
|
22
|
Zhao B, Cao X, De La Torre-Roche R, Tan C, Yang T, White JC, Xiao H, Xing B, He L. A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Adv 2017. [DOI: 10.1039/c7ra02520c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder is reported.
Collapse
Affiliation(s)
- B. Zhao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - X. Cao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - R. De La Torre-Roche
- Department of Analytical Chemistry
- The Connecticut Agricultural Experiment Station
- New Haven
- USA
| | - C. Tan
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - T. Yang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - J. C. White
- Department of Analytical Chemistry
- The Connecticut Agricultural Experiment Station
- New Haven
- USA
| | - H. Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - B. Xing
- Stockbridge School of Agriculture
- University of Massachusetts
- Amherst
- USA
| | - L. He
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|