1
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
2
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2021; 12:biom12010024. [PMID: 35053172 PMCID: PMC8774254 DOI: 10.3390/biom12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.
Collapse
|
5
|
Reynoso-Camacho R, Rodríguez-Villanueva LD, Sotelo-González AM, Ramos-Gómez M, Pérez-Ramírez IF. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chem 2021; 350:129239. [PMID: 33592362 DOI: 10.1016/j.foodchem.2021.129239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to carry out an exhaustive chemical characterization of citrus (orange, mandarin, and grapefruit) decoctions as well as the residues obtained during the decoction process (by-products). The citrus decoctions were rich in hesperidin, naringin, and narirutin, but carotenoids and phytosterols were not detected. Interestingly, these flavanones were found in a higher concentration in the extractable polyphenol fraction of the citrus decoction by-products. Moreover, the greatest content of hesperidin and naringin was found bound to the food matrix by ether/ester bonds. Violaxanthin and β-cryptoxanthin were found as major carotenoids in the orange and mandarin decoction by-products, respectively, whereas the grapefruit decoction by-product showed a low content of carotenoids. All citrus by-products showed β-sitosterol as the major phytosterol, followed by β-campesterol. Therefore, the by-products obtained during the elaboration of citrus decoctions are rich sources of bioactive compounds that can be used for the development of functional foods or dietary supplements.
Collapse
Affiliation(s)
| | | | | | - Minerva Ramos-Gómez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
| |
Collapse
|
6
|
Identification and characterization of potential antioxidant components in Isodon amethystoides (Benth.) Hara tea leaves by UPLC-LTQ-Orbitrap-MS. Food Chem Toxicol 2021; 148:111961. [DOI: 10.1016/j.fct.2020.111961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
|
7
|
Han C, Zhou H, Wu W, Chen X, Li H, Li Y, Feng D. Development and Validation of a Method to Simultaneously Determine Multiple Sterols in Diversiform Food Substrates with UPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Adsorption/desorption of acid violet-7 onto magnetic MnO2 prior to its quantification by UV–visible spectroscopy: optimized by fractional factorial design. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04211-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Calegari LP, Fettermann DC. Uma análise conjunta para identificação dos atributos de um dispositivo para reconhecimento de características de produtos alimentícios customizados. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo A possibilidade de combinação de ingredientes alimentícios em cada refeição torna complexo o reconhecimento das características dos alimentos personalizados. A utilização de dispositivos com tecnologias da Internet of Things (IoT) consiste em uma alternativa para os clientes acessarem informações dos alimentos personalizados. Nesta pesquisa, foram identificados cinco principais atributos na composição desses dispositivos com objetivo de reconhecimento dos ingredientes em refeições customizadas: (A) portabilidade, (B) precisão, (C) personalização de dieta, (D) análise de qualidade do produto alimentício e (E) preço. Este estudo possui como objetivo identificar a combinação desses atributos que geram valor em um dispositivo de reconhecimento de características alimentares de alimentos customizados. Foi realizado um planejamento fatorial fracionado 25-1 para a apresentação dos atributos do dispositivo na forma de cenários, seguindo o método de análise conjunta baseada em escolha. Para a coleta de dados, foi realizada uma pesquisa com uma amostra de 303 respondentes. Ainda foram analisadas as variáveis moderadoras: gênero e presença de restrição alimentar. Os resultados obtidos apresentaram maior significância para os atributos: precisão de medida e análise de qualidade. Como contribuições, este estudo apresenta informações para o direcionamento de investimentos em pesquisa para elaboração de um dispositivo tecnológico com a finalidade de reconhecer características de um produto alimentício customizado em massa.
Collapse
|
10
|
Calegari LP, Barbosa J, Marodin GA, Fettermann DC. A conjoint analysis to consumer choice in Brazil: Defining device attributes for recognizing customized foods characteristics. Food Res Int 2018; 109:1-13. [PMID: 29803431 DOI: 10.1016/j.foodres.2018.03.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/20/2023]
Abstract
the availability of information about food products may be an essential factor in the consumer's value perception in their purchasing decision. As the food product becomes personalized, the customization of this information becomes complex due to the possible combinations of product components. The use of smart technology in devices is one way to provide customers with customized food information. In the following research five attributes were identified in the composition of these devices: (A) portability; (B) precision; (C) diet customization; (D) food quality analysis; and (E) price. This study aims to identify the appropriate combination of possible functionalities or attributes that must be present in a device in order to detect the food composition of customized foods and their relation to market characteristics. One experiment used fractional factorial project to present the attributes in the form of scenarios following the Choice-Based Conjoint Analysis (CBCA) method. The data collection was done using survey methodology, through online questionnaire, with some 303 Brazilian respondents. So, the Logistic Regression was applied to data analysis. The moderating variables-gender, age, gluten restriction, lactose restriction and other restrictions-were also added to verify potential interactions with the primary attributes. From the results obtained, it was possible to observe higher significance for the primary attributes of diet personalization and quality food analyzes function. Our study contributes to the literature by enhancing the understanding about what the attributes should be in a technological device that has the purpose of recognizing food characteristics and is capable of generating information about customized food products. Furthermore, this device can enabler the production of mass customized food with the nutritional labels for each possible combination.
Collapse
Affiliation(s)
- L P Calegari
- Department of Industrial Engineering and Systems, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - J Barbosa
- Department of Industrial Engineering and Systems, Federal University of Santa Catarina, Florianópolis, Brazil
| | - G A Marodin
- Departament of Management Science, University of South Carolina, Columbia, USA..
| | - D C Fettermann
- Department of Industrial Engineering and Systems, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
11
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
12
|
Plant-Based Beverages as Good Sources of Free and Glycosidic Plant Sterols. Nutrients 2017; 10:nu10010021. [PMID: 29286348 PMCID: PMC5793249 DOI: 10.3390/nu10010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
To address the ever-growing group of health-conscious consumers, more and more nutritional and health claims are being used on food products. Nevertheless, only very few food constituents, including plant sterols, have been appointed an approved health claim (European Commission and Food and Drugs Administration). Plant sterols are part of those limited lists of approved compounds for their cholesterol-lowering properties but have been praised for their anti-inflammatory and anti-carcinogenic properties as well. Despite this indisputable reputation, direct quantitative data is still lacking for naturally present (conjugated) plant sterols in beverages. This study aimed to fill this gap by applying a validated extraction and UPLC-MS/MS detection method to a diverse range of everyday plant-based beverages. β-sitosterol-β-d-glucoside (BSSG) showed to be by far the most abundant sterol in all beverages studied, with concentrations up to 60-90 mg per 100 mL in plant-based milk alternatives and fresh fruit juices. Ergosterol (provitamin D₂) could be found in beers (0.8-6.1 µg per 100 mL, from the yeast) and occasionally in juices (17-29 µg per 100 mL). Overall, the results demonstrated that the concentrations of water-soluble sterol conjugates have been underestimated significantly and that specific plant-based beverages can be good, low-fat sources of these plant sterols.
Collapse
|
13
|
Marsol-Vall A, Balcells M, Eras J, Canela-Garayoa R. Dispersive liquid–liquid microextraction and injection-port derivatization for the determination of free lipophilic compounds in fruit juices by gas chromatography-mass spectrometry. J Chromatogr A 2017; 1495:12-21. [DOI: 10.1016/j.chroma.2017.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|