1
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
2
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cai J, Song M, Li M, Merchant M, Benz F, McClain C, Klein J. Site-Specific Identification of Protein S-Acylation by IodoTMT0 Labeling and Immobilized Anti-TMT Antibody Resin Enrichment. J Proteome Res 2024; 23:673-683. [PMID: 38157263 DOI: 10.1021/acs.jproteome.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.
Collapse
Affiliation(s)
- Jian Cai
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Ming Song
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
| | - Ming Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Michael Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Frederick Benz
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
| | - Craig McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jon Klein
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
| |
Collapse
|
4
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Stair ER, Hicks LM. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation. Curr Opin Chem Biol 2023; 77:102389. [PMID: 37776664 DOI: 10.1016/j.cbpa.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The post-translational modification of cysteine to diverse oxidative states is understood as a critical cellular mechanism to combat oxidative stress. To study the role of cysteine oxidation, cysteine enrichments and subsequent analysis via mass spectrometry are necessary. As such, technologies and methods are rapidly developing for sensitive and efficient enrichments of cysteines to further explore its role in signaling pathways. In this review, we analyze recent developments in methods to miniaturize cysteine enrichments, analyze the underexplored disulfide bound redoxome, and quantify site-specific cysteine oxidation. We predict that further development of these methods will improve cysteine coverage across more diverse organisms than those previously studied and elicit novel roles cysteines play in stress response.
Collapse
Affiliation(s)
- Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
7
|
Jobson J, Tsegay PS, Beltran MT, Taher EA, Rein SR, Liu Y, Rein KS. Brevetoxin induces a shift in the redox state of the proteome and unfolded protein response in human lymphoblast cells that can be alleviated with the acrolein scavenger MESNA. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104137. [PMID: 37127110 DOI: 10.1016/j.etap.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/03/2023]
Abstract
Human lymphoblast cells were treated with the marine algal toxin, brevetoxin-2 (PbTx-2), and its effects on the proteome were assessed by redox proteomics using cysteine reactive tandem mass tags (TMT). Additionally, cells were simultaneously treated with PbTx-2 and the antioxidant and acrolein scavenger sodium 2-mercaptoethylsulfonate (MESNA) to determine if MESNA could prevent the proteomic effects of brevetoxin-2. A massive shift in the redox state of the proteome of brevetoxin-2 treated cells was observed. The main pathway affected was genetic information processing. Significantly oxidized proteins included Trx-1, peroxyredoxins (Prxs), ribosomal proteins, and the eukaryotic initiation factor 2 β subunit (eIF2β). Proteins that were overexpressed in brevetoxin-treated cells included four folding chaperones. These effects were diminished in the presence of MESNA indicating that MESNA may act through its antioxidant properties or as a brevetoxin scavenger. These studies provide novel insights into new prophylactics for brevetoxicosis in humans and wildlife.
Collapse
Affiliation(s)
- Jordan Jobson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pawlos S Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mayra Tabares Beltran
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Eman A Taher
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Samuel R Rein
- The School District of Philadelphia, Philadelphia, PA 19130, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Current address: The Water School, Department of Marine and Earth Science and Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965.
| |
Collapse
|
8
|
Stanhope SC, Brandwine-Shemmer T, Blum HR, Doud EH, Jannasch A, Mosley AL, Minke B, Weake VM. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age. Redox Biol 2023; 63:102723. [PMID: 37146512 DOI: 10.1016/j.redox.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.
Collapse
Affiliation(s)
- Sarah C Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tal Brandwine-Shemmer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Hannah R Blum
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Emma H Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Amber L Mosley
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baruch Minke
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Kisty EA, Falco JA, Weerapana E. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. Cell Chem Biol 2023; 30:321-336.e6. [PMID: 36889310 PMCID: PMC10069010 DOI: 10.1016/j.chembiol.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Reactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation. However, determining ROS targets localized within subcellular compartments and ROS hotspots remains challenging with existing workflows. Here, we present a chemoproteomic platform, PL-OxICAT, which combines proximity labeling (PL) with OxICAT to monitor localized cysteine oxidation events. We show that TurboID-based PL-OxICAT can monitor cysteine oxidation events within subcellular compartments such as the mitochondrial matrix and intermembrane space. Furthermore, we use ascorbate peroxidase (APEX)-based PL-OxICAT to monitor oxidation events within ROS hotspots by using endogenous ROS as the source of peroxide for APEX activation. Together, these platforms further hone our ability to monitor cysteine oxidation events within specific subcellular locations and ROS hotspots and provide a deeper understanding of the protein targets of endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Eleni A Kisty
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
10
|
Vajrychova M, Salovska B, Pimkova K, Fabrik I, Hodny Z. SILAC-IodoTMT for Assessment of the Cellular Proteome and Its Redox Status. Methods Mol Biol 2023; 2603:259-268. [PMID: 36370286 DOI: 10.1007/978-1-0716-2863-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) and iodoacetyl tandem mass tag (iodoTMT) are well-implemented mass spectrometry-based approaches for quantification of proteins and for site-mapping of cysteine modification. We describe here a combination of SILAC and iodoTMT to assess ongoing changes in the global proteome and cysteine modification levels using liquid chromatography separation coupled with high-resolution mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
11
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
12
|
Guillaubez JV, Pitrat D, Bretonnière Y, Lemoine J, Girod M. Relative quantification of sulfenic acids in plasma proteins using differential labelling and mass spectrometry coupled with 473 nm photo-dissociation analysis: A multiplexed approach applied to an Alzheimer's disease cohort. Talanta 2022; 250:123745. [PMID: 35870285 DOI: 10.1016/j.talanta.2022.123745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Cysteine (Cys) is subject to a variety of reversible post-translational modifications such as formation of sulfenic acid (Cys-SOH). If this modification is often involved in normal biological activities, it can also be the result of oxidative damage. Indeed, oxidative stress yields abnormal cysteine oxidations that affect protein function and structure and can lead to neurodegenerative diseases. In a context of population ageing, validation of novel biomarkers for detection of neurodegenerative diseases is important. However, Cys-SOH proteins investigation in large human cohorts is challenging due to their low abundance and lability under endogenous conditions. To improve the detection specificity towards the oxidized protein subpopulation, we developed a method that makes use of a mass spectrometer coupled with visible laser induced dissociation (LID) to add a stringent optical specificity to the mass selectivity. Since peptides do not naturally absorb in the visible range, this approach relies on the proper chemical derivatization of Cys-SOH with a chromophore functionalized with a cyclohexanedione. To compensate for the significant variability in total protein expression within the samples and any experimental bias, a normalizing strategy using free thiol (Cys-SH) cysteine peptides derivatized with a maleimide chromophore as internal references was used. Thanks to the differential tagging, oxidative ratios were then obtained for 69 Cys-containing peptides from 19 proteins tracked by parallel reaction monitoring (PRM) LID, in a cohort of 49 human plasma samples from Alzheimer disease (AD) patients. A statistical analysis indicated that, for the proteins monitored, the Cys oxidative ratio does not correlate with the diagnosis of AD. Nevertheless, the PRM-LID method allows the unbiased, sensitive and robust relative quantification of Cys oxidation within cohorts of samples.
Collapse
Affiliation(s)
- Jean-Valery Guillaubez
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France
| | - Delphine Pitrat
- Laboratoire de Chimie ENS Lyon, UMR, 5582, ENS Lyon CNRS et Université Lyon 1, France
| | - Yann Bretonnière
- Laboratoire de Chimie ENS Lyon, UMR, 5582, ENS Lyon CNRS et Université Lyon 1, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France
| | - Marion Girod
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France.
| |
Collapse
|
13
|
Chiappetta G, Gamberi T, Faienza F, Limaj X, Rizza S, Messori L, Filomeni G, Modesti A, Vinh J. Redox proteome analysis of auranofin exposed ovarian cancer cells (A2780). Redox Biol 2022; 52:102294. [PMID: 35358852 PMCID: PMC8966199 DOI: 10.1016/j.redox.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF. Redox proteomics allows to underline cell adaptation mechanisms in response to Auranofin treatment in ovarian cancer cells. BRCA1 is one of the major candidates of the ovarian cancer cell adaptation to Auranofin treatment. Auranofin alters the oxidative phosphorylation and mitochondrial protein import machinery. TRAP1 C501 modulates Auranofin toxicity. Auranofin induces severe stress of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France.
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Xhesika Limaj
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Luigi Messori
- Metmed Lab, Department of Chemistry, University of Florence, via della lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
14
|
Desai HS, Yan T, Yu F, Sun AW, Villanueva M, Nesvizhskii AI, Backus KM. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines. Mol Cell Proteomics 2022; 21:100218. [PMID: 35219905 PMCID: PMC9010637 DOI: 10.1016/j.mcpro.2022.100218] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation. High-coverage Cys oxidation state quantification using custom isotopic probes. FragPipe-IonQuant accurately quantifies Cys labeling comparably to Skyline. PTMProphet enables site-of-labeling localization for multi-Cys–containing peptides. SP3-Rox identifies changes in Cys oxidation during T cell activation.
Collapse
Affiliation(s)
- Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander W Sun
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.
| |
Collapse
|
15
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
16
|
Iannetta AA, Hicks LM. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. Methods Mol Biol 2022; 2499:1-41. [PMID: 35696073 DOI: 10.1007/978-1-0716-2317-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry-based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.
Collapse
Affiliation(s)
- Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Zhou Y, Pu Q, Chen J, Hao G, Gao R, Ali A, Hsiao A, Stock AM, Goulian M, Zhu J. Thiol-based functional mimicry of phosphorylation of the two-component system response regulator ArcA promotes pathogenesis in enteric pathogens. Cell Rep 2021; 37:110147. [PMID: 34936880 PMCID: PMC8728512 DOI: 10.1016/j.celrep.2021.110147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qinqin Pu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guijuan Hao
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Afsar Ali
- Department of Environmental and Global Health, College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Bibli SI, Fleming I. Oxidative Post-Translational Modifications: A Focus on Cysteine S-Sulfhydration and the Regulation of Endothelial Fitness. Antioxid Redox Signal 2021; 35:1494-1514. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Changes in the oxidative balance can affect cellular physiology and adaptation through redox signaling. The endothelial cells that line blood vessels are particularly sensitive to reactive oxygen species, which can alter cell function by a number of mechanisms, including the oxidative post-translational modification (oxPTM) of proteins on critical cysteine thiols. Such modifications can act as redox-switches to alter the function of targeted proteins. Recent Advances: Mapping the cysteine oxPTM proteome and characterizing the effects of individual oxPTMs to gain insight into consequences for cellular responses has proven challenging. A recent addition to the list of reversible oxPTMs that contributes to cellular redox homeostasis is persulfidation or S-sulfhydration. Critical Issues: It has been estimated that up to 25% of proteins are S-sulfhydrated, making this modification almost as abundant as phosphorylation. In the endothelium, persulfides are generated by the trans-sulfuration pathway that catabolizes cysteine and cystathionine to generate hydrogen sulfide (H2S) and H2S-related sulfane sulfur compounds (H2Sn). This pathway is of particular importance for the vascular system, as the enzyme cystathionine γ lyase (CSE) in endothelial cells accounts for a significant portion of total vascular H2S/H2Sn production. Future Directions: Impaired CSE activity in endothelial dysfunction has been linked with marked changes in the endothelial cell S-sulfhydrome and can contribute to the development of atherosclerosis and hypertension. It will be interesting to determine how changes in the S-sulfhydration of specific networks of proteins contribute to endothelial cell physiology and pathophysiology. Antioxid. Redox Signal. 35, 1494-1514.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
20
|
Yip J, Wang S, Tan J, Lim TK, Lin Q, Yu Z, Karmon O, Pines O, Lehming N. Fumarase affects the deoxyribonucleic acid damage response by protecting the mitochondrial desulfurase Nfs1p from modification and inactivation. iScience 2021; 24:103354. [PMID: 34805801 PMCID: PMC8590083 DOI: 10.1016/j.isci.2021.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 10/31/2022] Open
Abstract
The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.
Collapse
Affiliation(s)
- Joyce Yip
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Suqing Wang
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Jasper Tan
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhang Yu
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ofri Karmon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norbert Lehming
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| |
Collapse
|
21
|
Yu L, Iqbal S, Zhang Y, Zhang G, Ali U, Lu S, Yao X, Guo L. Proteome-wide identification of S-sulphenylated cysteines in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3571-3582. [PMID: 34347306 DOI: 10.1111/pce.14160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Deregulation of reduction-oxidation (redox) metabolism under environmental stresses results in enhanced production of intracellular reactive oxygen species (ROS), which ultimately leads to post-translational modifications (PTMs) of responsive proteins. Redox PTMs play an important role in regulation of protein function and cellular signalling. By means of large-scale redox proteomics, we studied reversible cysteine modification during the response to short-term salt stress in Brassica napus (B. napus). We applied an iodoacetyl tandem mass tags (iodoTMT)-based proteomic approach to analyse the redox proteome of B. napus seedlings under control and salt-stressed conditions. We identified 1,821 sulphenylated sites in 912 proteins from all samples. A great number of sulphenylated proteins were predicted to localize to chloroplasts and cytoplasm and GO enrichment analysis of differentially sulphenylated proteins revealed that metabolic processes such as photosynthesis and glycolysis are enriched and enzymes are overrepresented. Redox-sensitive sites in two enzymes were validated in vitro on recombinant proteins and they might affect the enzyme activity. This targeted approach contributes to the identification of the sulphenylated sites and proteins in B. napus subjected to salt stress and our study will improve our understanding of the molecular mechanisms underlying the redox regulation in response to salt stress.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
22
|
Hamitouche F, Gaillard JC, Schmitt P, Armengaud J, Duport C, Dedieu L. Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC Genomics 2021; 22:648. [PMID: 34493209 PMCID: PMC8425097 DOI: 10.1186/s12864-021-07962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. Results In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. Conclusions Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07962-y.
Collapse
Affiliation(s)
- Fella Hamitouche
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Philippe Schmitt
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Luc Dedieu
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France.
| |
Collapse
|
23
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
24
|
Barraud N, Létoffé S, Beloin C, Vinh J, Chiappetta G, Ghigo JM. Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress. NPJ Biofilms Microbiomes 2021; 7:34. [PMID: 33850153 PMCID: PMC8044216 DOI: 10.1038/s41522-021-00203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/18/2021] [Indexed: 02/03/2023] Open
Abstract
Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosylation), regulating a wide range of functions in eukaryotes, could also specifically occur in biofilms and contribute to bacterial adaptation to this widespread lifestyle. We used a redox proteomic approach to compare cysteine S-nitrosylation in aerobic and anaerobic biofilm and planktonic Escherichia coli cultures and we identified proteins with biofilm-specific S-nitrosylation status. Using bacterial genetics and various phenotypic screens, we showed that impairing S-nitrosylation in proteins involved in redox homeostasis and amino acid synthesis such as OxyR, KatG, and GltD altered important biofilm properties, including motility, biofilm maturation, or resistance to oxidative stress. Our study therefore revealed that S-nitrosylation constitutes a physiological basis underlying functions critical for E. coli adaptation to the biofilm environment.
Collapse
Affiliation(s)
- Nicolas Barraud
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France
| | - Sylvie Létoffé
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, CNRS FRE2032, 75005, Paris, France
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, CNRS FRE2032, 75005, Paris, France.
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France.
| |
Collapse
|
25
|
Guillaubez JV, Pitrat D, Bretonnière Y, Lemoine J, Girod M. Unbiased Detection of Cysteine Sulfenic Acid by 473 nm Photodissociation Mass Spectrometry: Toward Facile In Vivo Oxidative Status of Plasma Proteins. Anal Chem 2021; 93:2907-2915. [PMID: 33522244 DOI: 10.1021/acs.analchem.0c04484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine (Cys) is prone to diverse post-translational modifications in proteins, including oxidation into sulfenic acid (Cys-SOH) by reactive oxygen species generated under oxidative stress. Detection of low-concentration and metastable Cys-SOH within complex biological matrices is challenging due to the dynamic concentration range of proteins in the samples. Herein, visible laser-induced dissociation (LID) implemented in a mass spectrometer was used for streamlining the detection of Cys oxidized proteins owing to proper derivatization of Cys-SOH with a chromophore tag functionalized with a cyclohexanedione group. Once grafted, peptides undergo a high fragmentation yield under LID, leading concomitantly to informative backbone ions and to a chromophore reporter ion. Seventy-nine percent of the Cys-containing tryptic peptides derived from human serum albumin and serotransferrin tracked by parallel reaction monitoring (PRM) were detected as targets subjected to oxidation. These candidates as well as Cys-containing peptides predicted by in silico trypsin digestion of five other human plasma proteins were then tracked in real plasma samples to pinpoint the endogenous Cys-SOH subpopulation. Most of the targeted peptides were detected in all plasma samples by LID-PRM, with significant differences in their relative amounts. By eliminating the signal of interfering co-eluted compounds, LID-PRM surpasses conventional HCD (higher-energy collisional dissociation)-PRM in detecting grafted Cys-SOH-containing peptides and allows now to foresee clinical applications in large human cohorts.
Collapse
Affiliation(s)
- Jean-Valery Guillaubez
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Delphine Pitrat
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Yann Bretonnière
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Jérôme Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Marion Girod
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| |
Collapse
|
26
|
Zhang T, Gaffrey MJ, Li X, Qian WJ. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am J Physiol Cell Physiol 2020; 320:C182-C194. [PMID: 33264075 DOI: 10.1152/ajpcell.00040.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein, we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives toward a better understanding of cellular redox regulatory networks in cells and tissues.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xiaolu Li
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.,Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
27
|
Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2468986. [PMID: 32587657 PMCID: PMC7298344 DOI: 10.1155/2020/2468986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Slc7a11 is the key component of system Xc−, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.
Collapse
|
28
|
MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H 2O 2 Production. Antioxidants (Basel) 2020; 9:antiox9060490. [PMID: 32512786 PMCID: PMC7346125 DOI: 10.3390/antiox9060490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, a superoxide dismutase (SOD) mimic, is a known radioprotector of normal tissues. Our recent work demonstrated that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this study, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting the growth of PC3 and LNCaP cells, but the increased H2O2 levels affected the two cancer cells differently. In PC3 cells, many proteins were thiol oxidized with MnTE-2-PyP treatment, including Ser/Thr protein phosphatase 1 beta catalytic subunit (PP1CB). This resulted in reduced PP1CB activity; however, overall cell cycle progression was not altered, so this is not the main mechanism of PC3 cell growth inhibition. High H2O2 levels by MnTE-2-PyP treatment induced nuclear fragmentation, which could be synergistically enhanced with radiotherapy. In LNCaP cells, thiol oxidation by MnTE-2-PyP treatment was not observed previously and, similarly to PC3 cells, there was no effect of MnTE-2-PyP treatment on cell cycle progression. However, in LNCaP cells, MnTE-2-PyP caused an increase in low RNA population and sub-G1 population of cells, which indicates that MnTE-2-PyP treatment may cause cellular quiescence or direct cancer cell death. The protein oxidative modifications and mitotic catastrophes caused by MnTE-2-PyP may be the major contributors to cell growth inhibition in PC3 cells, while in LNCaP cells, tumor cell quiescence or cell death appears to be major factors in MnTE-2-PyP-induced growth inhibition.
Collapse
|
29
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
31
|
Xiao H, Jedrychowski MP, Schweppe DK, Huttlin EL, Yu Q, Heppner DE, Li J, Long J, Mills EL, Szpyt J, He Z, Du G, Garrity R, Reddy A, Vaites LP, Paulo JA, Zhang T, Gray NS, Gygi SP, Chouchani ET. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell 2020; 180:968-983.e24. [PMID: 32109415 DOI: 10.1016/j.cell.2020.02.012] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 02/04/2020] [Indexed: 01/14/2023]
Abstract
Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.
Collapse
Affiliation(s)
- Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jiani Long
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Bechtel TJ, Li C, Kisty EA, Maurais AJ, Weerapana E. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum. ACS Chem Biol 2020; 15:543-553. [PMID: 31899610 DOI: 10.1021/acschembio.9b01014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.
Collapse
Affiliation(s)
- Tyler J. Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chun Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eleni A. Kisty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Aaron J. Maurais
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
33
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Topf U, Uszczynska-Ratajczak B, Chacinska A. Mitochondrial stress-dependent regulation of cellular protein synthesis. J Cell Sci 2019; 132:132/8/jcs226258. [DOI: 10.1242/jcs.226258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.
Collapse
Affiliation(s)
- Ulrike Topf
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | | | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| |
Collapse
|
35
|
Prakash AS, Kabli AMF, Bulleid N, Burchmore R. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression. Anal Chem 2018; 90:14173-14180. [DOI: 10.1021/acs.analchem.8b02517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aruna S. Prakash
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| | - Abdulbaset M. F. Kabli
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| | - Neil Bulleid
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow, United Kingdom G12 8QQ
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| |
Collapse
|
36
|
Abstract
SIGNIFICANCE Aging is a complex trait that is influenced by a combination of genetic and environmental factors. Although many cellular and physiological changes have been described to occur with aging, the precise molecular causes of aging remain unknown. Given the biological complexity and heterogeneity of the aging process, understanding the mechanisms that underlie aging requires integration of data about age-dependent changes that occur at the molecular, cellular, tissue, and organismal levels. Recent Advances: The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, and automated imaging techniques provides researchers with new opportunities to understand the mechanisms of aging. Using these methods, millions of biological molecules can be simultaneously monitored during the aging process with high accuracy and specificity. CRITICAL ISSUES Although the ability to produce big data has drastically increased over the years, integration and interpreting of high-throughput data to infer regulatory relationships between biological factors and identify causes of aging remain the major challenges. In this review, we describe recent advances and survey emerging omics approaches in aging research. We then discuss their limitations and emphasize the need for the further development of methods for the integration of different types of data. FUTURE DIRECTIONS Combining omics approaches and novel methods for single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed with aging and disease states. Together, these studies are expected to provide a better understanding of the aging process and could provide insights into the pathophysiology of many age-associated human diseases. Antioxid. Redox Signal. 29, 985-1002.
Collapse
Affiliation(s)
- Jared S Lorusso
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| | - Oleg A Sviderskiy
- 2 Department of Ecology and Life Safety, Samara National Research University , Samara, Russia
| | - Vyacheslav M Labunskyy
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
37
|
Cuello F, Wittig I, Lorenz K, Eaton P. Oxidation of cardiac myofilament proteins: Priming for dysfunction? Mol Aspects Med 2018; 63:47-58. [PMID: 30130564 DOI: 10.1016/j.mam.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Oxidants are produced endogenously and can react with and thereby post-translationally modify target proteins. They have been implicated in the redox regulation of signal transduction pathways conferring protection, but also in mediating oxidative stress and causing damage. The difference is that in scenarios of injury the amount of oxidants generated is higher and/or the duration of oxidant exposure sustained. In the cardiovascular system, oxidants are important for blood pressure homeostasis, for unperturbed cardiac function and also contribute to the observed protection during ischemic preconditioning. In contrast, oxidative stress accompanies all major cardiovascular pathologies and has been attributed to mediate contractile dysfunction in part by inducing oxidative modifications in myofilament proteins. However, the proportion to which oxidative modifications of contractile proteins are beneficial or causatively mediate disease progression needs to be carefully reconsidered. These antithetical aspects will be discussed in this review with special focus on direct oxidative post-translational modifications of myofilament proteins that have been described to occur in vivo and to regulate actin-myosin interactions in the cardiac myocyte sarcomere, the methodologies for detection of oxidative post-translational modifications in target proteins and the feasibility of antioxidant therapy strategies as a potential treatment for cardiac disorders.
Collapse
Affiliation(s)
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center, Würzburg, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Dortmund, West German Heart and Vascular Center, Essen, Germany
| | - Philip Eaton
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
38
|
Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 2018; 15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Erica Gianazza
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cristina Banfi
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
39
|
van der Reest J, Lilla S, Zheng L, Zanivan S, Gottlieb E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat Commun 2018; 9:1581. [PMID: 29679077 PMCID: PMC5910380 DOI: 10.1038/s41467-018-04003-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are increasingly recognised as important signalling molecules through oxidation of protein cysteine residues. Comprehensive identification of redox-regulated proteins and pathways is crucial to understand ROS-mediated events. Here, we present stable isotope cysteine labelling with iodoacetamide (SICyLIA), a mass spectrometry-based workflow to assess proteome-scale cysteine oxidation. SICyLIA does not require enrichment steps and achieves unbiased proteome-wide sensitivity. Applying SICyLIA to diverse cellular models and primary tissues provides detailed insights into thiol oxidation proteomes. Our results demonstrate that acute and chronic oxidative stress causes oxidation of distinct metabolic proteins, indicating that cysteine oxidation plays a key role in the metabolic adaptation to redox stress. Analysis of mouse kidneys identifies oxidation of proteins circulating in biofluids, through which cellular redox stress can affect whole-body physiology. Obtaining accurate peptide oxidation profiles from complex organs using SICyLIA holds promise for future analysis of patient-derived samples to study human pathologies.
Collapse
Affiliation(s)
- Jiska van der Reest
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Liang Zheng
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, United Kingdom.
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, United Kingdom.
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK.
| | - Eyal Gottlieb
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, United Kingdom.
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK.
- Technion Integrated Cancer Center, Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|