1
|
Mazur DM, Artaev VB, Lebedev AT. GC × GC-HRMS with complementary ionization methods in the suspect screening analysis of fragrance allergens: overwhelming or justified? Anal Bioanal Chem 2024; 416:4987-4997. [PMID: 39001903 DOI: 10.1007/s00216-024-05436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Modern gas chromatography-mass spectrometry (GC-MS) allows for the analysis of complex samples, such as fragrances. However, identifying all the constituents in natural fragrance mixtures, especially allergens that need to be listed on product labels, is a significant challenge. This is primarily due to the high complexity of the sample and the fact that electron ionization, the most commonly used ionization method in GC-MS, produces numerous nonspecific fragment ions, often resulting in the absence or very low abundance of the molecular ion. These factors affect confidence in assigning the analyte. In this study, we demonstrate that the combination of GC × GC separation, with high mass resolution and accurate mass measurements, as well as chemical ionization in addition to traditional electron ionization, becomes an efficient tool for reliable qualitative analysis of a mixture containing 100 fragrance allergens, even when many of them are closely related species or isomers. The proposed approach expands the applicability of the comprehensive GC × GC-HRMS method, which includes complementary ionization techniques, from studies on anthropogenic priority pollutants and emerging contaminants to the analysis of natural products. Although targeted qualitative and quantitative analysis of allergens in the modern laboratories is well organized, GC × GC-HRMS, being a useful complement to routine quality control of volatile allergens in fragrances, definitely gives an additional contribution to the analytical cases when conventional 1D-GC-MS faces some problems or uncertainties.
Collapse
Affiliation(s)
- Dmitrii M Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China
| | | | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China.
| |
Collapse
|
2
|
Song K, Yang X, Wang Y, Wan Z, Wang J, Wen Y, Jiang H, Li A, Zhang J, Lu S, Fan B, Guo S, Ding Y. Addressing new chemicals of emerging concern (CECs) in an indoor office. ENVIRONMENT INTERNATIONAL 2023; 181:108259. [PMID: 37839268 DOI: 10.1016/j.envint.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Indoor pollutants change over time and place. Exposure to hazardous organics is associated with adverse health effects. This work sampled gaseous organics by Tenax TA tubes in two indoor rooms, i.e., an office set as samples, and the room of chassis dynamometer (RCD) set as backgrounds. Compounds are analyzed by a thermal desorption comprehensive two-dimensional gas chromatography-quadrupole mass spectrometer (TD-GC × GC-qMS). Four new chemicals of emerging concern (CECs) are screened in 469 organics quantified. We proposed a three-step pipeline for CECs screening utilizing GC × GC including 1) non-target scanning of organics with convincing molecular structures and quantification results, 2) statistical analysis between samples and backgrounds to extract useful information, and 3) pixel-based property estimation to evaluate the contamination potential of addressed chemicals. New CECs spotted in this work are all intermediate volatility organic compounds (IVOCs), containing mintketone, isolongifolene, β-funebrene, and (5α)-androstane. Mintketone and sesquiterpenes may be derived from the use of volatile chemical products (VCPs), while (5α)-androstane is probably human-emitted. The occurrence and contamination potential of the addressed new CECs are reported for the first time. Non-target scanning and the measurement of IVOCs are of vital importance to get a full glimpse of indoor organics.
Collapse
Affiliation(s)
- Kai Song
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zichao Wan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Wen
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Han Jiang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | | | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Peng B, Dong Q, Li F, Wang T, Qiu X, Zhu T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15314-15335. [PMID: 37703436 DOI: 10.1021/acs.est.3c03170] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.
Collapse
Affiliation(s)
- Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Qianli Dong
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Fangzhou Li
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Teng Wang
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Gunathilake TMSU, Ching YC, Kadokami K. An overview of organic contaminants in indoor dust, their health impact, geographical distribution and recent extraction/analysis methods. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:677-713. [PMID: 34170457 DOI: 10.1007/s10653-021-01013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 05/16/2023]
Abstract
People spend a substantial proportion of their time indoors; therefore, exposure to contaminants in indoor dust is persistent and profuse. According to the findings of recent studies, contaminants such as flame retardants (FRs), organochlorines (OCs), and phthalate esters (PAEs) are more prevalent in indoor dust. The discrepancy in the geographical distribution of these chemicals indicates country-specific applications. However, many studies have revealed that chlorophosphates, polychlorinated biphenyls (PCBs) and di-2-ethylhexyl phthalate are frequently detected in indoor dust throughout the world. Although some chemicals (e.g., OCs) were banned/severely restricted decades ago, they have still been detected in indoor dust. These organic contaminants have shown clear evidence of carcinogenic, neurotoxic, immunogenic, and estrogenic activities. Recent extraction methods have shown their advantages, such as high recoveries, less solvent consumption, less extraction time and simplicity of use. The latest separation techniques such as two-dimensional gas/liquid chromatography, latest ionization techniques (e.g., matrix-assisted laser desorption/ionization (MALDI)), and modern techniques of mass spectrometry (e.g., tandem mass spectrometry (MS/MS), time-of-flight (TOF) and high-resolution mass spectrometry (HRMS)) improve the detection limits, accuracy, reproducibility and simultaneous detection of organic contaminants. For future perspectives, it is suggested that the importance of the study of dust morphology for comprehensive risk analysis, introducing standard reference materials to strengthen the analytical methods, adopt common guidelines for comparison of research findings and the importance of dust analysis in the developing world since lack of records on the production and usage of hazardous substances. Such measures will help to evaluate the effectiveness of prevailing legislations and to set up new regulations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Hibikino 1-1, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
5
|
Du Y, Xu X, Liu Q, Bai L, Hang K, Wang D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150691. [PMID: 34600995 DOI: 10.1016/j.scitotenv.2021.150691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thousands of organic pollutants are intentionally and unintentionally discharged into water bodies, adversely affecting the ecological environment and human health. Screening for organic pollutants that pose a potential risk in aquatic environments is essential for risk management. This review evaluates the processes, methods, and technologies used to screen such pollutants in the aquatic environment and discuss their advantages and disadvantages, in addition to the challenges and knowledge gaps in this field. Combining non-target screening, target screening, and suspect screening is often effective for compiling a list of potential risk compounds and enables the quantitative analysis of these compounds. Sample preparation technologies and pollutant detection technologies considerably affect the results of pollutant screening. The limited amount of chemical and toxicological information contained in databases hinders the screening of organic pollutants with potential risk. Machine learning, high-throughput methods, and other technologies will increase the accuracy and convenience of screening for high-risk pollutants. This review provides an important reference for screening these compounds in aquatic environments and can be used in future pollutant screening and risk management.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kexin Hang
- Experimental High School Attached to Beijing Normal University, 100052 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
6
|
Ieda T, Hashimoto S, Tanabe K, Goto A, Kunisue T. Application of inert gas-mediated ionization for qualitative screening of chlorinated aromatics in house dust by comprehensive two-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry. J Chromatogr A 2021; 1657:462571. [PMID: 34614469 DOI: 10.1016/j.chroma.2021.462571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
The development of highly selective and sensitive analytical methods for the nontarget screening of persistent organic pollutants such as halogenated compounds in environmental samples is a challenging task. Soft ionization mass spectrometry has emerged as a powerful technique for obtaining essential molecular information, and it is expected to reveal compounds that remain hidden with conventional fragmentation techniques such as electron ionization (EI). In this study, a soft ionization method based on electron capture negative ionization using an inert gas was developed for the nontarget screening of chlorinated aromatics in environmental samples and was applied to comprehensive two-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (GC × GC-HRToFMS). In particular, argon (Ar) and helium (He) were evaluated as inert moderating gases, and were compared against the conventional methane (CH4). The optimal ionization conditions, including the flow rate and ion source temperature, were investigated based on the molecular ion intensities of highly chlorinated aromatics decachlorobiphenyl and octachlorodibenzofuran. Ar-mediated soft ionization provided the best sensitivity to molecular ions among the three gases at a low flow rate (0.1 mL min-1) and low ion source temperature, and more selective detection of molecular ions (i.e., less fragmentation) was obtained with the inert gases than with CH4. This method is also applicable to other chlorinated aromatics such as tetra- to nonachlorobiphenyls, tetra- to heptachlorinated dibenzofurans, pentachlorobenzene, and hexachlorobenzene. To demonstrate the applicability of the proposed method to a wide range of chlorinated aromatics in environmental samples, both Ar-mediated soft ionization and conventional EI were applied to GC × GC-HRToFMS for analysis of a crude extract of house dust. Soft ionization enabled the selective and sensitive detection of molecular ions for minor amounts of chlorinated aromatics, even in complex matrices. Furthermore, the extracted ion chromatograms of halide anions (Cl- or Br-) were useful for screening other chlorinated or brominated compounds in the environmental samples. The results suggest that combining information on halide anions obtained by soft ionization and the structural information provided by EI would constitute a powerful approach for the comprehensive identification of chlorinated aromatics.
Collapse
Affiliation(s)
- Teruyo Ieda
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shunji Hashimoto
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama-shi, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama-shi, Ehime 790-8577, Japan
| |
Collapse
|
7
|
Hashimoto S, Matsukami H, Ieda T, Suzuki G. Comprehensive screening of polybromochlorodibenzo-p-dioxins, dibenzofurans as mixed halogenated compounds in wastewater samples from industrial facilities by GC×GC/ToFMS and post-data processing. CHEMOSPHERE 2021; 276:130085. [PMID: 33690031 DOI: 10.1016/j.chemosphere.2021.130085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
An enormous number of pollutants must be investigated to be able to understand which types threaten human health and environmental biota. In this study, we propose a workflow for screening polybromochlorodibenzo-p-dioxins and dibenzofurans (PBCDD/Fs), which are compounds that have thousands of isomers and congeners, by combining measurement of a sample without any in-laboratory-cleanup with the results of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and post-data processing. This process can be regarded as "in silico sample cleanup." The post-data processing stage comprises two methods in which the extracted mass spectra are matched to exact mass and isotopic ratios specified as formulae and filtering via mass deficiency. We applied this workflow to wastewater samples from industrial facilities to identify mixtures of halogenated dioxins. As a result, it was estimated that dioxins in an absolute quantity of 10-500 pg could be detected with sufficient accuracy by recovery testing of a standard mixture against sample crude extracts. Tri- to octa-halogenated dioxins were detected in 8 of 13 samples. Leachate from an industrial landfill was found to contain relatively large numbers of PBCDD/Fs, and several congeners were found in wastewater from an industrial fabric facility that handles decabromodiphenyl ether. The workflow, including the post-data processing method developed and applied in this study, has the advantage that additional identifications can be performed at any time from a single set of measurement data. This also enables the screening of substances that have thousands of homologous isomers, such as chlorinated and brominated dioxins, as well as other non-halogenated compounds.
Collapse
Affiliation(s)
- Shunji Hashimoto
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Hidenori Matsukami
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Teruyo Ieda
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Go Suzuki
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
8
|
Höjer Holmgren K, Mörén L, Ahlinder L, Larsson A, Wiktelius D, Norlin R, Åstot C. Route Determination of Sulfur Mustard Using Nontargeted Chemical Attribution Signature Screening. Anal Chem 2021; 93:4850-4858. [PMID: 33709707 PMCID: PMC8041246 DOI: 10.1021/acs.analchem.0c04555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Route determination
of sulfur mustard was accomplished through
comprehensive nontargeted screening of chemical attribution signatures.
Sulfur mustard samples prepared via 11 different synthetic routes
were analyzed using gas chromatography/high-resolution mass spectrometry.
A large number of compounds were detected, and multivariate data analysis
of the mass spectrometric results enabled the discovery of route-specific
signature profiles. The performance of two supervised machine learning
algorithms for retrospective synthetic route attribution, orthogonal
partial least squares discriminant analysis (OPLS-DA) and random forest
(RF), were compared using external test sets. Complete classification
accuracy was achieved for test set samples (2/2 and 9/9) by using
classification models to resolve the one-step routes starting from
ethylene and the thiodiglycol chlorination methods used in the two-step
routes. Retrospective determination of initial thiodiglycol synthesis
methods in sulfur mustard samples, following chlorination, was more
difficult. Nevertheless, the large number of markers detected using
the nontargeted methodology enabled correct assignment of 5/9 test
set samples using OPLS-DA and 8/9 using RF. RF was also used to construct
an 11-class model with a total classification accuracy of 10/11. The
developed methods were further evaluated by classifying sulfur mustard
spiked into soil and textile matrix samples. Due to matrix effects
and the low spiking level (0.05% w/w), route determination was more
challenging in these cases. Nevertheless, acceptable classification
performance was achieved during external test set validation: chlorination
methods were correctly classified for 12/18 and 11/15 in spiked soil
and textile samples, respectively.
Collapse
Affiliation(s)
- Karin Höjer Holmgren
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Lina Mörén
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Linnea Ahlinder
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Andreas Larsson
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Daniel Wiktelius
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Rikard Norlin
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Crister Åstot
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| |
Collapse
|
9
|
Dürig W, Kintzi A, Golovko O, Wiberg K, Ahrens L. New extraction method prior to screening of organic micropollutants in various biota matrices using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry. Talanta 2020; 219:121294. [DOI: 10.1016/j.talanta.2020.121294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
|
10
|
Badea SL, Geana EI, Niculescu VC, Ionete RE. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137914. [PMID: 32208267 DOI: 10.1016/j.scitotenv.2020.137914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.
Collapse
Affiliation(s)
- Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania.
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| |
Collapse
|
11
|
Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N, Oberacher H, Lamoree M, Damont A, Fenaille F, Vlaanderen J, Meijer J, Krauss M, Sarigiannis D, Barouki R, Le Bizec B, Antignac JP. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. ENVIRONMENT INTERNATIONAL 2020; 139:105545. [PMID: 32361063 DOI: 10.1016/j.envint.2020.105545] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/07/2023]
Abstract
Large-scale suspect and non-targeted screening approaches based on high-resolution mass spectrometry (HRMS) are today available for chemical profiling and holistic characterisation of biological samples. These advanced techniques allow the simultaneous detection of a large number of chemical features, including markers of human chemical exposure. Such markers are of interest for biomonitoring, environmental health studies and support to risk assessment. Furthermore, these screening approaches have the promising capability to detect chemicals of emerging concern (CECs), document the extent of human chemical exposure, generate new research hypotheses and provide early warning support to policy. Whilst of growing importance in the environment and food safety areas, respectively, CECs remain poorly addressed in the field of human biomonitoring. This shortfall is due to several scientific and methodological reasons, including a global lack of harmonisation. In this context, the main aim of this paper is to present an overview of the basic principles, promises and challenges of suspect and non-targeted screening approaches applied to human samples as this specific field introduce major specificities compared to other fields. Focused on liquid chromatography coupled to HRMS-based data acquisition methods, this overview addresses all steps of these new analytical workflows. Beyond this general picture, the main activities carried out on this topic within the particular framework of the European Human Biomonitoring initiative (project HBM4EU, 2017-2021) are described, with an emphasis on harmonisation measures.
Collapse
Affiliation(s)
| | - Laurent Debrauwer
- TOXALIM (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, 31027 Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, F-31027 Toulouse, France
| | - Jana Klanova
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen Meijer
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Greece
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | | | | |
Collapse
|
12
|
Mommers J, van der Wal S. Column Selection and Optimization for Comprehensive Two-Dimensional Gas Chromatography: A Review. Crit Rev Anal Chem 2020; 51:183-202. [DOI: 10.1080/10408347.2019.1707643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John Mommers
- DSM Material Science Center, Geleen, The Netherlands
| | - Sjoerd van der Wal
- Polymer-Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Weggler BA, Gruber B, Teehan P, Jaramillo R, Dorman FL. Inlets and sampling. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Saleem A, Bell MA, Kimpe LE, Korosi JB, Arnason JT, Blais JM. Identifying novel treeline biomarkers in lake sediments using an untargeted screening approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133684. [PMID: 31398651 DOI: 10.1016/j.scitotenv.2019.133684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Paleolimnology uses sedimentary biomarkers as proxies to reconstruct long-term changes in environmental conditions from lake sediment cores. This work describes an untargeted metabolomics-based approach and uniquely applies it to the field of paleolimnology to identify novel sediment biomarkers to track long-term patterns in treeline dynamics. We identified new potential biomarkers across the Canadian northern Arctic, non-alpine, treeline using high-resolution accurate mass spectrometry, and pattern recognition analysis. This method was applied to 120 sediment core extracts from 14 boreal, 25 forest-tundra, and 21 tundra lakes to assess long-term fluctuations in treeline position. High resolution accurate mass spectrometry resolved many compounds from complex mixtures with low mass accuracy errors. This generated a large dataset that required metabolomics styled statistical analyses to identify potential biomarkers. In total, 29 potential biomarkers discriminated between boreal and tundra lakes. Tetrapyrrole-type phorbides and squalene derivatives dominated in boreal regions, while biohopane-type lipids were in the tundra regions. Tetrapyrroles were in both surface and subsurface sediments of boreal lakes indicating these compounds can survive long-term burial in sediments. At the ecozone level, tetrapyrroles were more abundant in boreal Taiga Shield, and Taiga Plains. Boreal plant extracts belonging to Pinaceae and Ericaceae also contained tetrapyrroles. Squalene derivatives demonstrated long-term preservation, but wider distribution than tetrapyrroles. Hopanoids were present in tundra and forest-tundra lake regions, specifically the Low Arctic and Taiga Shield, and were absent in all boreal lake sediments. Herein, we describe a method that can systematically identify new paleolimnological biomarkers. Novel biomarkers would facilitate multi-proxy paleolimnological studies and potentially lead to more accurate paleoenvironmental reconstructions.
Collapse
Affiliation(s)
- Ammar Saleem
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Madison A Bell
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Linda E Kimpe
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jennifer B Korosi
- Faculty of Liberal Arts & Professional Studies, Department of Geography, York University. Toronto, ON M3J 1P3, Canada
| | - John T Arnason
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
15
|
Andreu V, Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Bell M, Blais JM. "-Omics" workflow for paleolimnological and geological archives: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:438-455. [PMID: 30965259 DOI: 10.1016/j.scitotenv.2019.03.477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
"-Omics" is a powerful screening method with applications in molecular biology, toxicology, wildlife biology, natural product discovery, and many other fields. Genomics, proteomics, metabolomics, and lipidomics are common examples included under the "-omics" umbrella. This screening method uses combinations of untargeted, semi-targeted, and targeted analyses paired with data mining to facilitate researchers' understanding of the genome, proteins, and small organic molecules in biological systems. Recently, however, the use of "-omics" has expanded into the fields of geology, specifically petrology, and paleolimnology. Specifically, untargeted analyses stand to transform these fields as petroleomics, and sediment-"omics" become more prevalent. "-Omics" facilitates the visualization of small molecule profiles from environmental matrices (i.e. oil and sediment). Small molecule profiles can provide improved understanding of small molecules distributions throughout the environment, and how those compositions can change depending on conditions (i.e. climate change, weathering, etc.). "-Omics" also facilities discovery of next-generation biomarkers that can be used for oil source identification and as proxies for reconstructing past environmental changes. Untargeted analyses paired with data mining and multivariate statistical analyses represents a powerful suite of tools for hypothesis generation, and new method development for environmental reconstructions. Here we present an introduction to "-omics" methodology, technical terms, and examples of applications to paleolimnology and petrology. The purpose of this review is to highlight the important considerations at each step in the "-omics" workflow to produce high quality and statistically powerful data for petrological and paleolimnological applications.
Collapse
Affiliation(s)
- Madison Bell
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxicants, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules M Blais
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxicants, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
17
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
18
|
Shao B, Li H, Shen J, Wu Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu Rev Food Sci Technol 2019; 10:429-455. [DOI: 10.1146/annurev-food-032818-121233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nontargeted workflows for chemical hazard analyses are highly desirable in the food safety and integrity fields to ensure human health. Two different analytical strategies, nontargeted metabolomics and chemical database filtering, can be used to screen unknown contaminants in food matrices. Sufficient mass and chromatographic resolutions are necessary for the detection of compounds and subsequent componentization and interpretation of candidate ions. Analytical chemistry–based technologies, including gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and capillary electrophoresis–mass spectrometry (CE-MS), combined with chemometrics analysis are being used to generate molecular formulas of compounds of interest. The construction of a chemical database plays a crucial role in nontargeted detection. This review provides an overview of the current sample preparation, analytical chemistry–based techniques, and data analysis as well as the limitations and challenges of nontargeted detection methods for analyzing complex food matrices. Improvements in sample preparation and analytical platforms may enhance the relevance of food authenticity, quality, and safety.
Collapse
Affiliation(s)
- Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
19
|
The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 2019; 411:1957-1977. [PMID: 30830245 PMCID: PMC6458998 DOI: 10.1007/s00216-019-01615-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022]
Abstract
Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants. ![]()
Collapse
|
20
|
Ieda T, Hashimoto S, Isobe T, Kunisue T, Tanabe S. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples. Talanta 2019; 194:461-468. [DOI: 10.1016/j.talanta.2018.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
|
21
|
Muscalu AM, Górecki T. Comprehensive two-dimensional gas chromatography in environmental analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Lebedev AT, Mazur DM, Polyakova OV, Kosyakov DS, Kozhevnikov AY, Latkin TB, Andreeva Yu I, Artaev VB. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:416-427. [PMID: 29679939 DOI: 10.1016/j.envpol.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes.
Collapse
Affiliation(s)
- A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia.
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - O V Polyakova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D S Kosyakov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - A Yu Kozhevnikov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - T B Latkin
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - I Andreeva Yu
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| |
Collapse
|
23
|
Veenaas C, Bignert A, Liljelind P, Haglund P. Nontarget Screening and Time-Trend Analysis of Sewage Sludge Contaminants via Two-Dimensional Gas Chromatography-High Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7813-7822. [PMID: 29898598 DOI: 10.1021/acs.est.8b01126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nondestructive sample cleanup and comprehensive two-dimensional gas chromatography (GC×GC) high-resolution mass spectrometry (HRMS) analysis generated a massive amount of data that could be used for nontarget screening purposes. We present a data reduction and prioritization strategy that involves time-trend analysis of nontarget data. Sewage sludge collected between 2005 and 2015 in Stockholm (Sweden) was retrieved from an environmental specimen bank, extracted, and analyzed by GC×GC-HRMS. After data alignment features with high blank levels, artifacts and low detection frequency were removed. Features that appeared in four to six out of ten years were reprocessed to fill in gaps. The total number of compounds was reduced by more than 97% from almost 60 000 to almost 1500. The remaining compounds were analyzed for monotonic (log-linear) and nonmonotonic (smoother) time trends. In total, 192 compounds with log-linear trends and 120 compounds with nonmonotonic trends were obtained, respectively. Most compounds described by a log-linear trend exhibited decreasing trends and were traffic-related. Compounds with increasing trends included UV-filters, alkyl-phenols, and flavor and fragrances, which often could be linked to trade statistics. We have shown that nontarget screening and stepwise reduction of data provides a simple way of revealing significant changes in emissions of chemicals in society.
Collapse
Affiliation(s)
| | - Anders Bignert
- Contaminant Research Group , Swedish Museum of Natural History , PO Box 50 007 , SE-10405 Stockholm , Sweden
| | | | | |
Collapse
|