1
|
Zenner C, Hall LJ, Roy S, Hauer J, Sroka R, Maiti KS. Measurement of Bacterial Headspaces by FT-IR Spectroscopy Reveals Distinct Volatile Organic Compound Signatures. Anal Chem 2025; 97:106-113. [PMID: 39707942 PMCID: PMC11740187 DOI: 10.1021/acs.analchem.4c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Ensuring prompt and precise identification of bacterial pathogens is essential for initiating appropriate antibiotic therapy and combating severe bacterial infections effectively. Traditional microbiological diagnostics, involving initial culturing and subsequent pathogen detection, are often laborious and time-consuming. Even though modern techniques such as Raman spectroscopy, MALDI-TOF, and 16S rRNA PCR have significantly expedited this process, new methods are required for the accurate and fast detection of bacterial pathogens. In this context, using bacterial metabolites for detection is promising as a future diagnostic approach. Fourier-transform infrared spectroscopy was employed in our study to analyze the biochemical composition of gas phases of bacterial isolates. We can characterize individual bacterial strains and identify specific bacteria within mixtures by utilizing volatile-metabolite-based infrared detection techniques. This approach enables rapid identification by discerning distinctive spectral features and intensities for different bacteria, offering new perspectives for bacterial pathogen diagnostics. This technique holds innovative potential to accelerate progress in the field, providing a faster and potentially more precise alternative to conventional diagnostic methods.
Collapse
Affiliation(s)
- Christian Zenner
- Technical
University of Munich, School of Life Sciences, Intestinal Microbiome, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Lindsay J. Hall
- Technical
University of Munich, School of Life Sciences, Intestinal Microbiome, Weihenstephaner Berg 3, 85354 Freising, Germany
- University
of Birmingham, Institute of Microbiology and Infection, Chair of Microbiome
Research, B15 2TT Edgbaston Birmingham, U.K.
| | - Susmita Roy
- Department
of Clinical Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jürgen Hauer
- TUM
School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Ronald Sroka
- Department
of Urology, LMU University Hospital, LMU
Munich, 81377 Munich, Germany
- Laser-Forschungslabor,
LIFE-Center, LMU University Hospital, LMU
Munich, 82152 Planegg, Germany
| | - Kiran Sankar Maiti
- TUM
School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Laser-Forschungslabor,
LIFE-Center, LMU University Hospital, LMU
Munich, 82152 Planegg, Germany
| |
Collapse
|
2
|
Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms221910481. [PMID: 34638822 PMCID: PMC8508974 DOI: 10.3390/ijms221910481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.
Collapse
|
3
|
Saito-Moriya R, Nakayama J, Kamiya G, Kitada N, Obata R, Maki SA, Aoyama H. How to Select Firefly Luciferin Analogues for In Vivo Imaging. Int J Mol Sci 2021; 22:1848. [PMID: 33673331 PMCID: PMC7918177 DOI: 10.3390/ijms22041848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.
Collapse
Affiliation(s)
- Ryohei Saito-Moriya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Genta Kamiya
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Rika Obata
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Shojiro A Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
4
|
Akuoko Y, Hanson RL, Harris DH, Nielsen JB, Lazalde E, Woolley AT. Rapid and simple pressure-sensitive adhesive microdevice fabrication for sequence-specific capture and fluorescence detection of sepsis-related bacterial plasmid gene sequences. Anal Bioanal Chem 2021; 413:1017-1025. [PMID: 33247338 PMCID: PMC7855688 DOI: 10.1007/s00216-020-03060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Microbial resistance to currently available antibiotics poses a great threat in the global fight against infections. An important step in determining bacterial antibiotic resistance can be selective DNA sequence capture and fluorescence labeling. In this paper, we demonstrate the fabrication of simple, robust, inexpensive microfluidic devices for DNA capture and fluorescence detection of a model antibiotic resistance gene sequence. We laser micromachined polymethyl methacrylate microchannels and enclosed them using pressure-sensitive adhesive tapes. We then formed porous polymer monoliths with DNA capture probes in these microchannels and used them for sequence-specific capture, fluorescent labeling, and laser-induced fluorescence detection of picomolar (pM) concentrations of synthetic and plasmid antibiotic resistance gene targets. The relative fluorescence for the elution peaks increased with loaded target DNA concentration. We observed higher fluorescence signal and percent recovery for synthetic target DNA compared to plasmid DNA at the same loaded target concentration. A non-target gene was used for control experiments and produced < 3% capture relative to the same concentration of target. The full analysis process including device fabrication was completed in less than 90 min with a limit of detection of 30 pM. The simplicity of device fabrication and good DNA capture selectivity demonstrated herein have potential for application with processes for bacterial plasmid DNA extraction and single-particle counting to facilitate determination of antibiotic susceptibility. Graphical abstract.
Collapse
Affiliation(s)
- Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert L Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - David H Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Elaine Lazalde
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
5
|
González-Mendoza B, López-Callejas R, Rodríguez-Méndez BG, Eguiluz RP, Mercado-Cabrera A, Valencia-Alvarado R, Betancourt-Ángeles M, Reyes-Frías MDL, Reboyo-Barrios D, Chávez-Aguilar E. Healing of wounds in lower extremities employing a non-thermal plasma. CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2020.100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zhang Y, Tan W, Zhang Y, Mao H, Shi S, Duan L, Wang H, Yu J. Ultrasensitive and selective detection of Staphylococcus aureus using a novel IgY-based colorimetric platform. Biosens Bioelectron 2019; 142:111570. [PMID: 31401227 DOI: 10.1016/j.bios.2019.111570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
To develop a specific method for the detection of S. aureus, chicken anti-protein A IgY was adopted for specifically capturing S. aureus, depending on the specific recognition of staphylococcal protein A (SPA) by chicken anti-protein A IgY, which can eliminate the interference from protein G-producing Streptococcus. HRP labeled IgG, Fc region of which has a high affinity towards SPA, was paired with IgY for the colorimeter analysis of the system. By optimizing the system, a super-low detection limit of 11 CFU of S. aureus in 100 μL PBS without enrichment, with a linear range from 5.0 × 102 CFU mL-1 to 5.0 × 104 CFU mL-1 was obtained. The entire assay was accomplished in less than 90 min and no cross-reactivity with the other tested bacterial species was observed. Moreover, the developed assay has been applied for the detection of S. aureus in three different types of real samples (sodium chloride injection, apple juice and human urine) with satisfactory results. To the best of our knowledge, it is the first time to report using chicken anti-protein A IgY and any IgG to detect S. aureus based on the dual-recognition mode of SPA. The novel method opened up a way for monitoring S. aureus in food samples with high sensitivity, specificity and simple operation.
Collapse
Affiliation(s)
- Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Wenqing Tan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Huili Mao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Shuyou Shi
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|