1
|
Gupta A, Jadhav SR, Colaco V, Saha M, Ghosh A, Sreedevi A, Datta D, Hebbar S, Moorkoth S, Ligade VS, Dhas N. Harnessing unique architecture and emerging strategies of solid lipid nanoparticles to combat colon cancer: A state-of-the-art review. Int J Pharm 2025; 675:125562. [PMID: 40194729 DOI: 10.1016/j.ijpharm.2025.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Cancer is a serious worldwide public health problem, ranking as the second leading cause of death in the United States. The third most prevalent tumor kind in the world is a colon or rectal tumor. Colon Cancer (CC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths globally. In the US, CC has become the 2nd most common cause of death after having different advancements like detection, surgery, and chemotherapy. The current strategies for treating colon cancer have several disadvantages, including higher toxicity, drug resistance, damage to healthy cells, solubility, specificity, a lower therapeutic index, and more. Solid lipid nanoparticles (SLNs) are a viable targeted treatment option for colon cancer to avoid this problem. This comprehensive review discussed the severity, pathophysiology, risk factors, and stages of colon cancer. The review covers the most effective colon cancer therapy and diagnostic procedures, including HSgFOBT, Fecal immunological test (FIT), Colonoscopy, FIT-DNA Test/mt-sDNA screening test, Colon capsule (CCE), Blood-based DNA Tests, and Flexible sigmoidoscopy. This reviewemphasizes the need for novel and specific approaches to colon cancer treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Sandesh Ramchandra Jadhav
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Amartya Ghosh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Amatha Sreedevi
- Department of Pharmaceutical Regulatory Affairs, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Virendra S Ligade
- Department of Pharmaceutical Regulatory Affairs, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India.
| |
Collapse
|
2
|
Amiri M, Hashemi Z, Chekin F. Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:4. [PMID: 39775200 PMCID: PMC11706907 DOI: 10.1007/s10856-024-06847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract. A catalyst based on ZnO nanoparticles-nitrogen doped porous reduced graphene oxide (ZnO-NprGO) was prepared by hydrothermal method and characterized. The diameter of ZnO nanoparticles was ~22-37 nm, which were inserted between the NprGO sheets effectively prevented their aggregation. The ZnO-NprGO hybrid had high surface area and good electro-catalytic property, suiting for determination of HCQ. The ZnO-NprGO modified carbon paste electrode (CPE)-based sensor operated in a wide concentration range of 0.07-5.5 μmol L-1 with low limit of detection of 57 nmol L-1 and sensitivity of 14.175 μA μmol-1 L. Remarkably, the ZnO-NprGO/CPE sensor indicated acceptable accuracy, reproducibility, and stability. In addition, the proposed sensor was applied to detection of HCQ in biological samples and the recoveries were 92.0-102.5%, with relative standard deviations of 1.9-4.3%. The unique physical structure of ZnO-NprGO, as well as its chemical and electrical properties, make it promising interface for use in sensors and nanoelectronic applications.
Collapse
Affiliation(s)
- Mohammad Amiri
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Zahra Hashemi
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| |
Collapse
|
3
|
Moradi SE, Shokrollahi A, Shahdost-Fard F. Applicability of a green nanocomposite consists of reduced graphene oxide and β-cyclodextrin for electrochemical tracing of methadone in human biofluids validated by international greenness indexes. Heliyon 2024; 10:e40505. [PMID: 39669158 PMCID: PMC11636103 DOI: 10.1016/j.heliyon.2024.e40505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Background Detecting methadone (MET) is crucial due to its severe side effects. Method Herein, a green nanocomposite based on reduced graphene (rGO) and β-cyclodextrin (β-CD) has been introduced to modify a glassy carbon electrode (GCE) for real-time measurement of MET. This eco-friendly sensing interface has synergistically benefited from both advantages of rGO and β-CD including excellent electron transfer tunneling and surface area enhancement to selectively trap MET based on its shape and size. Significant findings The developed sensor electrochemically detected MET at 0.8 V in buffer phosphate with a pH value of 7 under a wide linear concentration range (1 μM-830 μM), including a MET concentration level alarmed based on the consumer opioid tolerance according to the WHO's report. The limit of detection and analytical sensitivity values were calculated to be 333.33 nM and 0.0502 μA μM-1. The acceptable performance of the sensor to detect MET in various real human biofluids including serum, urine, and saliva samples, which is a bonus for the real-time and on-site measurement of MET, may open up a route for noninvasive routine tests in clinical samples. Moreover, the greenness profile of this strategy has been well evaluated by two common international metrics.
Collapse
Affiliation(s)
| | | | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| |
Collapse
|
4
|
Du F, Gao Y, Zhang X, Wang LL. Bismuth, Nitrogen-Codoped Carbon Dots as a Dual-Read Optical Sensing Platform for Highly Sensitive, Ultrarapid, Ratiometric Detection of Doxorubicin. ACS OMEGA 2023; 8:41383-41390. [PMID: 37969990 PMCID: PMC10634206 DOI: 10.1021/acsomega.3c05093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, but it has side effects on normal tissues, particularly myocardial cells. Therefore, it is crucial to detect the DOX concentration in body fluids for effective clinical treatment. In this work, N,Bi-codoped CDs (Bi,N-CDs) were synthesized through a one-step hydrothermal method to carbonize the raw materials of 2,4-dinitroaniline and bismuth nitrate. The resulting Bi,N-CDs showed a reduced emission at 490 nm and an enhanced emission at 590 nm in the presence of DOX. The ratio of fluorescence (FL) intensity (F590/F490) was found to be a reliable indicator of DOX concentration, ranging from 0.05 to 30 μM and 40-200 μM, with detection limits (LOD) of 34 and 24 nM, respectively. A ratiometric fluorescence nanoprobe was established for highly selective and sensitive detection of DOX using a specific electrostatic interaction and inner filter effect between Bi,N-CDs and DOX. Meanwhile, Bi,N-CDs exhibited a distinct color change ranging from yellow to orange-red when exposed to DOX, allowing for a colorimetric method to measure DOX levels in the range of 0.05-30 μM, with a detection limit of 169 nM. The probe was triumphantly used to monitor DOX in actual samples via a dual-mode optical sensing strategy. This study contributes to the development of heteroatom-doped CDs and expands their potential applications for detecting biological samples.
Collapse
Affiliation(s)
- Fangfang Du
- School
of Pharmaceutical Science, Postdoctoral Research Station of Basic
Medicine, Hengyang Medical School, University
of South China, Hengyang, Hunan 421001, China
- Key
Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated
Hospital of Hainan Medical University, Hainan
Medical University, Haikou 571199, China
- Engineering
Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices,
Key Laboratory of Emergency and Trauma, Ministry of Education, Key
Laboratory of Hainan Functional Materials and Molecular Imaging, College
of Emergency and Trauma, Hainan Medical
University, Haikou 571199, China
| | - Yuan Gao
- School
of Pharmaceutical Science, Postdoctoral Research Station of Basic
Medicine, Hengyang Medical School, University
of South China, Hengyang, Hunan 421001, China
| | - Xibo Zhang
- School
of Pharmaceutical Science, Postdoctoral Research Station of Basic
Medicine, Hengyang Medical School, University
of South China, Hengyang, Hunan 421001, China
| | - Li-Li Wang
- School
of Pharmaceutical Science, Postdoctoral Research Station of Basic
Medicine, Hengyang Medical School, University
of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Gao X, Du J, Cheng L, Li Z, Li C, Ban X, Gu Z, Hong Y. Modification of Octenyl Succinic Anhydride Starch by Grafting Folic Acid and its Potential as an Oral Colonic Delivery Carrier. STARCH-STARKE 2023. [DOI: 10.1002/star.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiang Gao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Jing Du
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| |
Collapse
|
6
|
Mohammadinejad A, Abnous K, Alinezhad Nameghi M, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122200. [PMID: 36481534 DOI: 10.1016/j.saa.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy drugs of daunorubicin and doxorubicin treat cancers with many side effects. So, detection of them in the biological system for regulation and controlling of usage is essential. In this study, a ratiometric fluorescent method was introduced for detection of daunorubicin and doxorubicin using bell pepper-based carbon dots, as the variable signal, and silica-coated CdTe quantum dots, as the constant signal. The detection was done based on variations of carbon dots intensity in the presence of drugs in comparison with the constant intensity of silica-coated CdTe quantum dots. The proposed ratiometric fluorescent method was successfully used for detection of daunorubicin and doxorubicin range of 54.37-13594.34 nmolL-1 and 86.2-17242 nmolL-1, with a detection limit of 18.53 nmolL-1 and 29 nmolL-1, respectively. Also, this method was used for detection of drugs in serum samples with recovery ranges of 86.14-99.62 (RSD 3-1.47%) and 86.32-97.53 (3.38-1.48%), respectively. Finally, after evaluation of carbon dots toxicity by MTT test, carbon dots was applied for imaging of prostate cancer cell lines (PC-3) and breast cancer cell lines (MCF7). The results demonstrated that despite improvement of the repeatability and interferences reduction by ratiometric method, also carbon dots were successfully applied for imaging of cell lines.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hamrah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Senobari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
An ultrasensitive and preprocessing-free electrochemical platform for the detection of doxorubicin based on tryptophan/polyethylene glycol-cobalt ferrite nanoparticles modified electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Mehmandoust M, Khoshnavaz Y, Karimi F, Çakar S, Özacar M, Erk N. A novel 2-dimensional nanocomposite as a mediator for the determination of doxorubicin in biological samples. ENVIRONMENTAL RESEARCH 2022; 213:113590. [PMID: 35690088 DOI: 10.1016/j.envres.2022.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
In our study, the electrochemical properties of a novel activated nanocomposite were studied with 2-dimensional graphitic carbon nitride/sodium dodecyl sulfate/graphene nanoplatelets on the screen-printed electrodes (2D-g-C3N4/SDS/GNPs/SPE). The as-fabricated sensor exhibited excellent electrochemical performance, including wide dynamic ranges from 0.03 to 1.0 and 1.0-13.5 μM with a low limit of detection (LOD) of 10.0 nM. The fabricated 2D-g-C3N4/SDS/GNPs/SPE electrode exhibited high sensitivity, stability, good reproducibility, reusability, and repeatability towards DOX sensing. It can be utilized in real samples, including human plasma and urine, with excellent correlations and coefficients of variation below 6.0%. Therefore, this study presents potential application values in sensing DOX with efficient performance. Finally, the accuracy was attested by comparison with high-performance liquid chromatography (HPLC) as the reference method, signalizing a good agreement.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Yasamin Khoshnavaz
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Soner Çakar
- Zonguldak Bülent Ecevit University, Science and Arts Faculty, Chemistry Department, Zonguldak, 67100, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Faculty of Science & Arts, Department of Chemistry, 54187, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| |
Collapse
|
9
|
Bioinorganic Synthesis of Sodium Polytungstate/Polyoxometalate in Microbial Kombucha Media for Precise Detection of Doxorubicin. Bioinorg Chem Appl 2022; 2022:2265108. [PMID: 35979186 PMCID: PMC9377961 DOI: 10.1155/2022/2265108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, we have developed a new platform of polyoxometalate as a biocompatible and electrosensitive polymeric biosensor for the accurate detection of doxorubicin. For this purpose, we used a green synthesis approach using tartaric acid, glutamic acid, and kombucha solvent. Thanks to its bioinorganic components, the biogenic approach can chemically modify and improve the performance of the biosensor, which was experimentally confirmed. Our results showed excellent sensitivity (175.72 μA·μM−1·cm−2), low detection limit (DL, 8.12 nM), and low quantification limit (QL, 0.056 μM) when the newly developed biosensor was used. The results also show that the biosynthesized biosensor has improved performance in detecting DOX in the biological fluid with an accuracy of more than 99% depending on the components used, which underlines the high efficiency of the biosensor produced. Considering the body's physiological condition, the biosensor fabricated as a biocompatible component can show high efficiency. Therefore, its applicability for clinical use still needs to be studied in detail.
Collapse
|
10
|
Shokri F, Yari A, Jalalvand AR. Simultaneous estimation of rates of DNA damage induced by three important chemotherapy drugs by a novel electrochemical biosensor assisted by chemometric multivariate calibration methods. Int J Biol Macromol 2022; 219:650-662. [PMID: 35952814 DOI: 10.1016/j.ijbiomac.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
In this work, a novel electrochemical biosensor assisted by multivariate calibration methods was developed for simultaneous estimation of rates of DNA damage induced by doxorubicin (DX), daunorubicin (DR) and idarubicin (ID), and also to simultaneous determination of the drugs. A glassy carbon electrode was efficiently modified and used as the biosensing platform. Binding and interactions of DX, DR and ID with DNA were modeled by molecular docking methods, and theoretical information was completed by experimental results. The methylene blue was able to intercalate within the DNA structure and by incubation of the biosensor with DX or DR or ID, the methylene blue was replaced by drug and therefore, the voltammetric signal of the biosensor was changed due to the exposed DNA and repelling the electrochemical probe molecules carrying negative charge. The DNA damage induced by each drug was individually monitored by differential pulse voltammetry and then, rates of DNA damage were calibrated and validated by mixture design and multivariate calibration methods. The developed multivariate calibration model constructed based on vectorization of the data was able to simultaneous detection of the rates of DNA damage induced by all the three drugs. The change in the biosensor response in the presence of the drugs was also modeled by multivariate calibration methods to simultaneous determination of the drugs.
Collapse
Affiliation(s)
- Foroozan Shokri
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Abdollah Yari
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Ignatova T, Pourianejad S, Li X, Schmidt K, Aryeetey F, Aravamudhan S, Rotkin SV. Multidimensional Imaging Reveals Mechanisms Controlling Multimodal Label-Free Biosensing in Vertical 2DM-Heterostructures. ACS NANO 2022; 16:2598-2607. [PMID: 35061372 DOI: 10.1021/acsnano.1c09335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional materials and their van der Waals heterostructures enable a large range of applications, including label-free biosensing. Lattice mismatch and work function difference in the heterostructure material result in strain and charge transfer, often varying at a nanometer scale, that influence device performance. In this work, a multidimensional optical imaging technique is developed in order to map subdiffractional distributions for doping and strain and understand the role of those for modulation of the electronic properties of the material. As an example, vertical heterostructures comprised of monolayer graphene and single-layer flakes of transition metal dichalcogenide MoS2 were fabricated and used for biosensing. Herein, the optical label-free detection of doxorubicin, a common cancer drug, is reported via three independent optical detection channels (photoluminescence shift, Raman shift, and graphene enhanced Raman scattering). Non-uniform broadening of components of multimodal signal correlates with the statistical distribution of local optical properties of the heterostructure. Multidimensional nanoscale imaging allows one to reveal the physical origin for such a local response and propose the best strategy for the mitigation of materials variability and future device fabrication, enabling multiplexed biosensing.
Collapse
Affiliation(s)
- Tetyana Ignatova
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Sajedeh Pourianejad
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Xinyi Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kirby Schmidt
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Frederick Aryeetey
- Department of Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Shyam Aravamudhan
- Department of Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
High-Throughput Method for the Simultaneous Determination of Doxorubicin Metabolites in Rat Urine after Treatment with Different Drug Nanoformulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041177. [PMID: 35208967 PMCID: PMC8877250 DOI: 10.3390/molecules27041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
Doxorubicin (DOX) is one of the most effective cytotoxic agents against malignant diseases. However, the clinical application of DOX is limited, due to dose-related toxicity. The development of DOX nanoformulations that significantly reduce its toxicity and affect the metabolic pathway of the drug requires improved methods for the quantitative determination of DOX metabolites with high specificity and sensitivity. This study aimed to develop a high-throughput method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for the quantification of DOX and its metabolites in the urine of laboratory animals after treatment with different DOX nanoformulations. The developed method was validated by examining its specificity and selectivity, linearity, accuracy, precision, limit of detection, and limit of quantification. The DOX and its metabolites, doxorubicinol (DOXol) and doxorubicinone (DOXon), were successfully separated and quantified using idarubicin (IDA) as an internal standard (IS). The linearity was obtained over a concentration range of 0.05–1.6 μg/mL. The lowest limit of detection and limit of quantitation were obtained for DOXon at 5.0 ng/mL and 15.0 ng/mL, respectively. For each level of quality control (QC) samples, the inter- and intra-assay precision was less than 5%. The accuracy was in the range of 95.08–104.69%, indicating acceptable accuracy and precision of the developed method. The method was applied to the quantitative determination of DOX and its metabolites in the urine of rats treated by novel nanoformulated poly(lactic-co-glycolic acid) (DOX-PLGA), and compared with a commercially available DOX solution for injection (DOX-IN) and liposomal-DOX (DOX-MY).
Collapse
|
13
|
Motoc Ilies S, Schinteie B, Pop A, Negrea S, Cretu C, Szerb EI, Manea F. Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2788. [PMID: 34835559 PMCID: PMC8625772 DOI: 10.3390/nano11112788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Two paste electrodes based on graphene quantum dots and carbon nanotubes (GRQD/CNT) and one modified with a homoleptic liquid crystalline Cu(I) based coordination complex (Cu/GRQD/CNT) were obtained and morphostructurally and electrochemically characterized in comparison with simple CNT electrode (CNT) for doxorubicine (DOX) detection in aqueous solutions. GRQD/CNT showed the best electroanalytical performance by differential pulse voltammetry technique (DPV). Moreover, applying a preconcentration step prior to detection stage, the lowest limit of detection (1 ng/L) and the highest sensitivity (216,105 µA/mg·L-1) in comparison with reported literature data were obtained. Cu/GRQD/CNT showed good results using multiple pulse amperometry technique (MPA) and a favorable shifting of the potential detection to mitigate potential interferences. Both GRQD-based paste electrodes have a great potential for practical utility in DOX determination in water at trace concentration levels, using GRQD/CNT with DPV and in pharmaceuticals formulations using Cu/GRQD/CNT with MPA.
Collapse
Affiliation(s)
- Sorina Motoc Ilies
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Bianca Schinteie
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Aniela Pop
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| | - Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), Timisoara Branch, 300431 Timisoara, Romania;
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| |
Collapse
|
14
|
Nazila Samimi Tehrani, Masoumi M, Chekin F, Baei MS. Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521080139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rajaji U, K YK, Chen SM, Raghu MS, Parashuram L, Alzahrani FM, Alsaiari NS, Ouladsmane M. Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin. Mikrochim Acta 2021; 188:303. [PMID: 34435234 DOI: 10.1007/s00604-021-04950-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM-542.5 μM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 μA μM-1 cm-2. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China
| | - Yogesh Kumar K
- Department of Chemistry, School of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamed Ouladsmane
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Behrouzifar F, Shahidi SA, Chekin F, Hosseini S, Ghorbani-HasanSaraei A. Colorimetric assay based on horseradish peroxidase/reduced graphene oxide hybrid for sensitive detection of hydrogen peroxide in beverages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119761. [PMID: 33845390 DOI: 10.1016/j.saa.2021.119761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
We reported a simple and sensitive colorimetric assay for detection of hydrogen peroxide (H2O2) based on the oxidation of 2,2׳-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by UV-Vis spectroscopy method. The reduced graphene oxide (rGO) was prepared using green tea extract as bio-reducing and stabilizer agent and decorated by horseradish peroxidase (HRP). The surface of Au interface was modified with HRP-rGO hybrid. The formation of HRP-rGO hybrid was confirmed by cyclic voltammetry, scanning electron microscopy (SEM), energy-dispersive X-ray Spectroscopy (EDX) and Raman spectroscopy·H2O2 can be catalysed by HRP-rGO hybrid and converted into water and oxygen. The ABTS substrate takes up oxygen to form a green coloured product that has absorption peaks at 421, 655 nm and 737 nm. The colour development is linearly dependent on HRP in the range of 4-50 µg/L. The color of the green product solution is stable for 20 min. The absorption intensity is strongly related to the hydrogen peroxide concentration. The absorption intensity of the formed product scaled linearly with the hydrogen peroxide concentration in the ranges of 0.3-20 µM and 20-8000 µM with a detection limit of ≈15 nM could be achieved. The biosensor with excellent limit detection and wide linear ranges was adapted to monitor H2O2 in different beverages.
Collapse
Affiliation(s)
- Fatemeh Behrouzifar
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Shabnam Hosseini
- Department of Material Science and Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | |
Collapse
|
17
|
Reyhane Rahimpour, Sabeti B, Chekin F. Electrochemical Sensor Based on Nitrogen Doped Porous Reduced Graphene Oxide to Detection of Ciprofloxacin in Pharmaceutical Samples. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Hassani Moghadam F, Taher MA, Karimi-Maleh H. Doxorubicin Anticancer Drug Monitoring by ds-DNA-Based Electrochemical Biosensor in Clinical Samples. MICROMACHINES 2021; 12:808. [PMID: 34357218 PMCID: PMC8306963 DOI: 10.3390/mi12070808] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
In this research, glassy carbon electrode (GCE) amplified with single-wall carbon nanotubes (SWCNTs) and ds-DNA was fabricated and utilized for voltammetric sensing of doxorubicin with a low detection limit. In this technique, the reduction in guanine signal of ds-DNA in the presence of doxorubicin (DOX) was chosen as an analytical factor. The molecular docking study revealed that the doxorubicin drug interacted with DNA through intercalation mode, which was in agreement with obtained experimental results. The DOX detection performance of ds-DNA/SWCNTs/GCE was assessed at a concentration range of 1.0 nM-20.0 µM. The detection limit was found to be 0.6 nM that was comparable and even better (in many cases) than that of previous electrochemical reported sensors. In the final step, the ds-DNA/SWCNTs/GCE showed powerful ability for determination of the DOX in injection samples with acceptable recovery data.
Collapse
Affiliation(s)
| | - Mohammad A. Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
| |
Collapse
|
19
|
Ehsani M, Soleymani J, Mohammadalizadeh P, Hasanzadeh M, Jouyban A, Khoubnasabjafari M, Vaez-Gharamaleki Y. Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly(chitosan): A new platform in pharmaceutical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Prediction effect of ethanol molecules on doxorubicin drug delivery using single-walled carbon nanotube carrier through POPC cell membrane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Mi G, Shi H, Yang M, Wang C, Hao H, Fan J. Efficient detection doxorubicin hydrochloride using CuInSe 2@ZnS quantum dots and Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118673. [PMID: 32679484 DOI: 10.1016/j.saa.2020.118673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Doxorubicin hydrochloride (DOX) is an effective anthracycline anticancer drug. However, the exceeded taken up could induce several side-effects such as cardiotoxicity, alopecia. Therefore, the level of DOX needs to be closely monitored to avoid the occurrence of its side-effects. Herein, we report a novel core CuInSe2 - shell ZnS quantum dots (CuInSe2@ZnS, QDs) and Ag nanoparticles (NPs) fluorescence sensor based on the surface plasmon resonance effect (SPR) of Ag NPs. The CuInSe2@ZnS QDs were prepared by water phase reflux method with the 3-mercaptopropionic acid (MPA) as stabilizer and ligand. The fluorescence intensity of CuInSe2@ZnS QDs/Ag NPs significantly reduced by DOX, which is mainly based on the electrostatic interaction between the DOX and fluorescence sensors. The inhibition of photoluminescence (ln F0/F) was linearly relationship to the concentration of DOX in the range of 2-100 μM with the detection limit as low as 0.05 μM. The as-prepared sensor has a high selectivity and sensitivity to DOX. Furthermore, the new sensor has been successfully applied to the determination of DOX in human serum samples with satisfactory results. Our work provides a clue for developing a novel CuInSe2@ZnS QDs/Ag NPs based fluorescence sensor for DOX detection.
Collapse
Affiliation(s)
- Guohua Mi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Huanxian Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Min Yang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Cunjin Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
23
|
Bioanalysis of doxorubicin aglycone metabolites in human plasma samples-implications for doxorubicin drug monitoring. Sci Rep 2020; 10:18562. [PMID: 33122763 PMCID: PMC7596548 DOI: 10.1038/s41598-020-75662-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022] Open
Abstract
The widespread clinical use of the cytostatic doxorubicin together with the induction of chronic cardiomyopathy necessitates the conduct of further pharmacokinetic trials. Novel analytical technologies suitable for point-of-care applications can facilitate drug level analyses but might be prone to interferences from structurally similar compounds. Besides the alcohol metabolite doxorubicinol, aglycone metabolites of doxorubicin might affect its determination in plasma. To evaluate their analytical relevance, a validated HPLC method for the quantification of doxorubicin, doxorubicinol and four aglycones was used. The degradation pattern of doxorubicin in plasma under long-term storage was analysed with respect to the formation of aglycone products. In addition, overall 50 clinical samples obtained within the EPOC-MS-001-Doxo trial were analysed. Substantial degradation of doxorubicin in plasma occurred within a storage period of one year, but this did not lead to the formation of aglycones. In clinical samples, 7-deoxydoxorubicinolone was the major aglycone detectable in 35/50 samples and a concentration range of 1.0–12.7 µg L−1. If at all, the other aglycones were only determined in very low concentrations. Therefore, analytical interferences from aglycones seem to be unlikely with the exception of 7-deoxydoxorubicinolone whose concentration accounted for up to 65% of the doxorubicin concentration in the clinical samples analysed.
Collapse
|
24
|
Karimzadeh S, Safaei B, Jen TC. Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J Mol Graph Model 2020; 101:107745. [PMID: 32977299 DOI: 10.1016/j.jmgm.2020.107745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| | - Babak Safaei
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey.
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| |
Collapse
|
25
|
Ghanbari MH, Norouzi Z. A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
A review on various analytical methods for determination of anthracyclines and their metabolites as anti–cancer chemotherapy drugs in different matrices over the last four decades. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Tehrani NS, Masoumi M, Chekin F, Baei MS. Nitrogen Doped Porous Reduced Graphene Oxide Hybrid as a Nanocarrier of Imatinib Anticancer Drug. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220080157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Han L, Long Q, Li S, Xu Q, Zhang B, Dou X, Qian M, Jiramongkol Y, Guo J, Cao L, Chin YE, Lam EWF, Jiang J, Sun Y. Senescent Stromal Cells Promote Cancer Resistance through SIRT1 Loss-Potentiated Overproduction of Small Extracellular Vesicles. Cancer Res 2020; 80:3383-3398. [PMID: 32366480 DOI: 10.1158/0008-5472.can-20-0506] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a potent tumor-suppressive program that prevents neoplastic events. Paradoxically, senescent cells develop an inflammatory secretome, termed the senescence-associated secretory phenotype, which is implicated in age-related pathologies including cancer. Here, we report that senescent cells actively synthesize and release small extracellular vesicles (sEV) with a distinctive size distribution. Mechanistically, SIRT1 loss supported accelerated sEV production despite enhanced proteome-wide ubiquitination, a process correlated with ATP6V1A downregulation and defective lysosomal acidification. Once released, senescent stromal sEVs significantly altered the expression profile of recipient cancer cells and enhanced their aggressiveness, specifically drug resistance mediated by expression of ATP-binding cassette subfamily B member 4 (ABCB4). Targeting SIRT1 with agonist SRT2104 prevented development of cancer resistance by restraining sEV production by senescent stromal cells. In clinical oncology, sEVs in peripheral blood of posttreatment cancer patients were readily detectable by routine biotechniques, presenting an exploitable biomarker to monitor therapeutic efficacy and predict long-term outcome. Together, this study identifies a distinct mechanism supporting pathologic activities of senescent cells and provides a potent avenue to circumvent advanced human malignancies by cotargeting cancer cells and their surrounding microenvironment, which contributes to drug resistance via secretion of sEVs from senescent stromal cells. SIGNIFICANCE: Senescent stromal cells produce a large number of sEVs to promote cancer resistance in therapeutic settings, a process driven by SIRT1 decline in stromal cells and ABCB4 augmentation in cancer cells.See related commentary by Wiley, p. 3193 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/16/3383/F1.large.jpg.
Collapse
Affiliation(s)
- Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenjun Li
- Non-Clinical Research Department, RemeGen, Ltd. Yantai, Shandong, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Boyi Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Construction of a sensitive electrochemical sensor based on 1T-MoS 2 nanosheets decorated with shape-controlled gold nanostructures for the voltammetric determination of doxorubicin. Mikrochim Acta 2020; 187:223. [PMID: 32166596 DOI: 10.1007/s00604-020-4206-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/02/2020] [Indexed: 01/28/2023]
Abstract
An innovative and portable design to fabricate an electrochemical sensor based on metallic phase MoS2 (1T-MoS2) decorated with shape-dependent gold nanostructures for the determination of doxorubicin (DOX) is presented. In this context, homogenous and uniform single-crystal gold nanospheres (AuNSPs) and nanorods (AuNRDs) were firstly synthesized by seeded growth approach. Afterwards, AuNSPs and AuNRDs were anchored on 1T-MoS2 surfaces to construct the desired electrochemical sensing platform towards the DOX assay. 1T-MoS2 was exfoliated by metal intercalation process using NaK metal alloys. The structure and surface morphology of 1T-MoS2, AuNSPs, and AuNRDs were characterized by XPS, Raman, UV-vis, TEM, and SEM. The electrochemical behavior of DOX using various MoS2-based electrochemical sensors prepared on screen-printed electrode (SPE) was examined by cyclic voltammetry and adsorptive stripping differential pulse voltammetry. The electrocatalytic efficiency of AuNRDs on 1T-MoS2 was also compared with that of AuNSPs on 1T-MoS2, and it showed much better electrocatalytic activity towards the DOX. A nanocomposite prepared with AuNRDs and 1T-MoS2 on SPE (AuNRDs/1T-MoS2/SPE) exhibited a linear relationship between peak current and DOX concentration in the range 0.01-9.5 μM with a detection limit of 2.5 nM. The AuNRDs/1T-MoS2/SPE was successfully applied to the sensitive and rapid determination of DOX in spiked human serum samples with satisfactory recoveries in the range 99.2-100.8%. Graphical abstract Schematic representation of a portable design for electrochemical sensor based on shape-controlled gold nanostructures decorated on metallic phase molybdenum disulfide (1T-MoS2) towards the sensitive determination of doxorubicin.
Collapse
|
31
|
Synthesis of bifunctional cabbage flower-like Ho 3+/NiO nanostructures as a modifier for simultaneous determination of methotrexate and carbamazepine. Anal Bioanal Chem 2020; 412:1011-1024. [PMID: 31897563 DOI: 10.1007/s00216-019-02326-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Cabbage flower-like Ho3+/NiO nanostructure (CFL-Ho3+/NiO NSs) with significant electrocatalytic oxidation has been published for the first time. First, structure and morphology of CFL-Ho3+/NiO-NSs have been described by XRD, SEM, and EDX methods. Then, CFL-Ho3+/NiO-NSs have been applied as a modifier for simultaneous electrochemical detection of methotrexate (MTX) and carbamazepine (CBZ). Functions of the modified electrode have been dealt with through electrochemical impedance spectroscopy (EIS). It has been demonstrated that the electrode response has been linear from 0.001-310.0 μM with a limit of detection of 5.2 nM and 4.5 nM (3 s/m) through DPV for MTX and CBZ. Diffusion coefficient (D) and heterogeneous rate constant (kh) have been detected for MTX and CBZ oxidation at the surface of the modified electrode. Moreover, CFL-Ho3+/NiO-NS/GCE has been employed for determining MTX and CBZ in urine and drug specimens. Outputs showed the analyte acceptable recovery. Therefore, the electrode could be applied to analyze both analytes in drug prescription and clinical laboratories. Graphical abstract Electrochemical sensor based on bifunctional cabbage flower-like Ho3+/NiO nanostructures modified glassy carbon electrode for simultaneous detecting methotrexate and carbamazepine was fabricated.
Collapse
|
32
|
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. CHEM REC 2019; 20:682-692. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Fatemeh Karimi
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | | |
Collapse
|
33
|
Li J, Liu W, Hao H, Wang Q, Xue L. Rapamycin enhanced the antitumor effects of doxorubicin in myelogenous leukemia K562 cells by downregulating the mTOR/p70S6K pathway. Oncol Lett 2019; 18:2694-2703. [PMID: 31404320 PMCID: PMC6676723 DOI: 10.3892/ol.2019.10589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a common hematological malignancy. Some patients progressing to the blast phase develop chemotherapeutic drug resistance. In the authors' previous study, it was found that the mammalian target of rapamycin (mTOR) pathway was activated in CML and that rapamycin inhibited the proliferation of K562 cells. Targeting the mTOR pathway may be used in combination with chemotherapeutic drugs to enhance their efficacy and overcome multidrug resistance. The aim of the present study was to investigate the effects of rapamycin and doxorubicin on K562 cell proliferation following the combination treatment, and further focus on confirming whether rapamycin enhanced the antitumor effects of doxorubicin by downregulating the mTOR/ribosomal protein S6 kinase (p70S6K) pathway. It was found that rapamycin and doxorubicin significantly decreased the viability of K562 cells. The apoptotic cells were more frequently detected in rapamycin and doxorubicin treatment groups (25.50±1.25%). Both drugs decreased Bcl-2 and increased Bax expression in K562 cells. Rapamycin and doxorubicin also reduced the phosphorylation levels of mTOR and p70S6K. Meanwhile, p70S6K-targeting small interfering (si)RNA and doxorubicin inhibited cell proliferation and regulated key factors of the cell cycle. In addition, the exposure of cells to p70S6K siRNA and doxorubicin significantly increased cell apoptosis, as compared with single treatment. These results suggested that rapamycin could enhance the antitumor effects of doxorubicin on K562 cells by downregulating mTOR/p70S6K signaling. Targeting the mTOR/p70S6K pathway may be a new therapeutic approach for leukemia.
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenjing Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongling Hao
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiuyi Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liying Xue
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|