1
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Yunus G, Singh R, Raveendran S, Kuddus M. Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ 2023; 11:e15566. [PMID: 37397018 PMCID: PMC10312160 DOI: 10.7717/peerj.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Biosensors are nowadays being used in various fields including disease diagnosis and clinical analysis. The ability to detect biomolecules associated with disease is vital not only for accurate diagnosis of disease but also for drug discovery and development. Among the different types of biosensors, electrochemical biosensor is most widely used in clinical and health care services especially in multiplex assays due to its high susceptibility, low cost and small in size. This article includes comprehensive review of biosensors in medical field with special emphasis on electrochemical biosensors for multiplex assays and in healthcare services. Also, the publications on electrochemical biosensors are increasing rapidly; therefore, it is crucial to be aware of any latest developments or trends in this field of research. We used bibliometric analyses to summarize the progress of this research area. The study includes global publication counts on electrochemical biosensors for healthcare along with various bibliometric data analyses by VOSviewer software. The study also recognizes the top authors and journals in the related area, and determines proposal for monitoring research.
Collapse
Affiliation(s)
- Ghazala Yunus
- Department of Basic Science, University of Hail, Hail, Saudi Arabia
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Sindhu Raveendran
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| |
Collapse
|
3
|
Tombelli S, Trono C, Berneschi S, Berrettoni C, Giannetti A, Bernini R, Persichetti G, Testa G, Orellana G, Salis F, Weber S, Luppa PB, Porro G, Quarto G, Schubert M, Berner M, Freitas PP, Cardoso S, Franco F, Silverio V, Lopez-Martinez M, Hilbig U, Freudenberger K, Gauglitz G, Becker H, Gärtner C, O'Connell MT, Baldini F. An integrated device for fast and sensitive immunosuppressant detection. Anal Bioanal Chem 2022; 414:3243-3255. [PMID: 34936009 PMCID: PMC8956524 DOI: 10.1007/s00216-021-03847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.
Collapse
Affiliation(s)
- Sara Tombelli
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cosimo Trono
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Simone Berneschi
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Chiara Berrettoni
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Romeo Bernini
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Gianluca Persichetti
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Genni Testa
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francesca Salis
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Giampiero Porro
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Giovanna Quarto
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Markus Schubert
- Institute for Photovoltaics and Research Center SCoPE, University of Stuttgart, 70569, Stuttgart, Germany
| | - Marcel Berner
- Innovative Pyrotechnik GmbH, Steinwerkstraße 2, 71139, Ehningen, Germany
| | - Paulo P Freitas
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Fernando Franco
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Vânia Silverio
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Maria Lopez-Martinez
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Urs Hilbig
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Kathrin Freudenberger
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Günter Gauglitz
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Claudia Gärtner
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Mark T O'Connell
- Cornel Medical Limited, 17 Church Walk, St Neots, Cambridgeshire, PE19 1JH, UK
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Calabria D, Guardigli M, Severi P, Trozzi I, Pace A, Cinti S, Zangheri M, Mirasoli M. A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation. SENSORS (BASEL, SWITZERLAND) 2021; 21:5432. [PMID: 34450874 PMCID: PMC8401892 DOI: 10.3390/s21165432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/20/2022]
Abstract
In recent years, there has been a continuously growing interest in antioxidants by both customers and food industry. The beneficial health effects of antioxidants led to their widespread use in fortified functional foods, as dietary supplements and as preservatives. A variety of analytical methods are available to evaluate the total antioxidant capacity (TAC) of food extracts and beverages. However, most of them are expensive, time-consuming, and require laboratory instrumentation. Therefore, simple, cheap, and fast portable sensors for point-of-need measurement of antioxidants in food samples are needed. Here, we describe a smartphone-based chemosensor for on-site assessment of TAC of aqueous matrices, relying on the antioxidant-induced formation of gold nanoparticles. The reaction takes place in ready-to-use analytical cartridges containing an hydrogel reaction medium preloaded with Au(III) and is monitored by using the smartphone's CMOS camera. An analytical device including an LED-based lighting system was developed to ensure uniform and reproducible illumination of the analytical cartridge. The chemosensor permitted rapid TAC measurements of aqueous samples, including teas, herbal infusions, beverages, and extra virgin olive oil extracts, providing results that correlated with those of the reference methods for TAC assessment, e.g., oxygen radical absorbance capacity (ORAC).
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Paolo Severi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, I-80131 Naples, Italy;
- BAT Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli “Federico II”, I-80055 Portici, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI Agrofood), Alma Mater Studiorum-University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.); (P.S.); (I.T.); (A.P.); (M.Z.)
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
5
|
Park HD. Current Status of Clinical Application of Point-of-Care Testing. Arch Pathol Lab Med 2021; 145:168-175. [PMID: 33053162 DOI: 10.5858/arpa.2020-0112-ra] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The clinical applications of point-of-care testing (POCT) are gradually increasing in many health care systems. Recently, POCT devices using molecular genetic method techniques have been developed. We need to examine clinical pathways to see where POCT can be applied to improve them. OBJECTIVE.— To introduce up-to-date POCT items and equipment and to provide the content that should be prepared for clinical application of POCT. DATA SOURCES.— Literature review based on PubMed searches containing the terms point-of-care testing, clinical chemistry, diagnostic hematology, and clinical microbiology. CONCLUSIONS.— If medical resources are limited, POCT can help clinicians make quick medical decisions. As POCT technology improves and menus expand, areas where POCT can be applied will also increase. We need to understand the limitations of POCT so that it can be optimally used to improve patient management.
Collapse
Affiliation(s)
- Hyung-Doo Park
- From the Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Azimi S, Farahani A, Docoslis A, Vahdatifar S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal Bioanal Chem 2021; 413:1441-1452. [PMID: 33388843 DOI: 10.1007/s00216-020-03108-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
A cost-effective, point of care (POC) device based on highly oriented CNT arrays was developed as an electrochemical assay for real-time and sensitive detection of glucose in complex samples. A low-cost, microcontroller-based potentiostat consisting of Arduino Due and LMP9100-EVM was developed to perform electrochemical measurements such as cyclic voltammetry (CV) and amperometry. A syringe pump based on open-source electronics was designed to direct the flow through a microfluidic chip. Vertically aligned carbon nanotube (VACNT) sensor arrays, in combination with the miniature potentiostat and the syringe pumps, were utilized as a POC device for the rapid and accurate detection of glucose. The structure and morphology of samples were characterized by field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). CV as well as electrochemical impedance spectroscopy (EIS) was performed to investigate the electrochemical behavior of the electrode with respect to different diffusion regimes. The mediator-less biosensor had a limit of detection of 23 μM and sensitivity of 1462 μA mM-1 cm-2 and 1050 μA mM-1 cm-2 at the linear range of 1.2-7.8 mM and 7.8-11.2 mM, respectively. The presence of other biological compounds such as uric acid (UA) and ascorbic acid (AA) did not interfere with the detection of glucose. Finally, the designed POC device was successfully applied for the determination of glucose in human blood plasma samples.
Collapse
Affiliation(s)
- Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ali Farahani
- Nanobioelectronics Lab, School of Chemistry, College of Science, University of Tehran, Tehran, 1748714176, Iran.
| | - Aristides Docoslis
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sahar Vahdatifar
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, 1438615995, Iran
| |
Collapse
|
7
|
Sensitive immunoassay of cardiac troponin I using an optimized microelectrode array in a novel integrated microfluidic electrochemical device. Anal Bioanal Chem 2020; 412:8325-8338. [DOI: 10.1007/s00216-020-02968-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
|
8
|
Rani D, Singh Y, Salker M, Vu XT, Ingebrandt S, Pachauri V. Point-of-care-ready nanoscale ISFET arrays for sub-picomolar detection of cytokines in cell cultures. Anal Bioanal Chem 2020; 412:6777-6788. [PMID: 32725311 PMCID: PMC7496041 DOI: 10.1007/s00216-020-02820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Rapid and frequent screening of cytokines as immunomodulation agents is necessary for precise interventions in severe pathophysiological conditions. In addition to high-sensitivity detection of such analytes in complex biological fluids such as blood, saliva, and cell culture medium samples, it is also crucial to work out miniaturized bioanalytical platforms with potential for high-density integration enabling screening of multiple analytes. In this work, we show a compact, point-of-care-ready bioanalytical platform for screening of cytokines such as interleukin-4 (IL-4) and interleukin-2 (IL-2) based on one-dimensional ion-sensitive field-effect transistors arrays (nanoISFETs) of silicon fabricated at wafer-scale via nanoimprint lithography. The nanoISFETs biofunctionalized with receptor proteins alpha IL-4 and alpha IL-2 were deployed for screening cytokine secretion in mouse T helper cell differentiation culture media, respectively. Our nanoISFETs showed robust sensor signals for specific molecular binding and can be readily deployed for real-time screening of cytokines. Quantitative analyses of the nanoISFET-based bioanalytical platform was carried out for IL-4 concentrations ranging from 25 fg/mL (1.92 fM) to 2.5 μg/mL (192 nM), showing a limit of detection down to 3-5 fM, which was found to be in agreement with ELISA results in determining IL-4 concentrations directly in complex cell culture media. Graphical abstract.
Collapse
Affiliation(s)
- Dipti Rani
- Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibruecken, Germany
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University Tuebingen, Calwerstraße 7, 72076, Tübingen, Germany
| | - Madhuri Salker
- Women's Hospital, Eberhard-Karls University Tuebingen, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Xuan Thang Vu
- Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibruecken, Germany
- Institute of Materials in Electrical Engineering 1 (IWE1), RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Sven Ingebrandt
- Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibruecken, Germany
- Institute of Materials in Electrical Engineering 1 (IWE1), RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Vivek Pachauri
- Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibruecken, Germany.
- Institute of Materials in Electrical Engineering 1 (IWE1), RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Sung KJ, Jabbour Al Maalouf Y, Johns QR, Miller EA, Sikes HD. Functional comparison of paper-based immunoassays based on antibodies and engineered binding proteins. Analyst 2020; 145:2515-2519. [PMID: 32163071 DOI: 10.1039/d0an00299b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Binding protein scaffolds, such as rcSso7d, have been investigated for use in diagnostic tests; however, the functional performance of rcSso7d has not yet been studied in comparison to antibodies. Here, we assessed the analyte-binding capabilities of rcSso7d and antibodies on cellulose with samples in buffer and 100% human serum.
Collapse
Affiliation(s)
- Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
10
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Saylan Y, Denizli A. Molecularly Imprinted Polymer-Based Microfluidic Systems for Point-of-Care Applications. MICROMACHINES 2019; 10:mi10110766. [PMID: 31717964 PMCID: PMC6915378 DOI: 10.3390/mi10110766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023]
Abstract
Fast progress has been witnessed in the field of microfluidic systems and allowed outstanding approaches to portable, disposable, low-cost, and easy-to-operate platforms especially for monitoring health status and point-of-care applications. For this purpose, molecularly imprinted polymer (MIP)-based microfluidics systems can be synthesized using desired templates to create specific and selective cavities for interaction. This technique guarantees a wide range of versatility to imprint diverse sets of biomolecules with different structures, sizes, and physical and chemical features. Owing to their physical and chemical robustness, cost-friendliness, high stability, and reusability, MIP-based microfluidics systems have become very attractive modalities. This review is structured according to the principles of MIPs and microfluidic systems, the integration of MIPs with microfluidic systems, the latest strategies and uses for point-of-care applications and, finally, conclusions and future perspectives.
Collapse
|