1
|
Wang Z, Zhang LD, Zhou GG, Zhong QZ, Jiang YB, Wang GW, Liao ZH, Meng FC, Chen M. Chemical constituents from the roots of Dolomiaea souliei. Nat Prod Res 2024; 38:3103-3111. [PMID: 37282630 DOI: 10.1080/14786419.2023.2215902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
A new benzofuran-type neolignan (1), two new phenylpropanoids (2 - 3), and one new C21 steroid (4) were isolated from the ethyl acetate extract of the roots of Dolomiaea souliei by chromatographic methods, including silica gel, ODS column chromatography, MPLC, and semi-preparative HPLC. Their structures were identified as dolosougenin A (1), (S)-3-isopropylpentyl (E)-3-(4-hydroxy-3-methoxyphenyl) acrylate (2), (S)-3-isopropylpentyl (Z)-3-(4-hydroxy-3-methoxyphenyl) acrylate (3) and dolosoucin A (4) through various spectroscopic techniques including 1D NMR, 2D NMR, IR, UV, HR ESI MS, ORD, and computational ORD methods.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Li-Dan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Gang-Gang Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Qi-Zheng Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Yun-Bin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Guo-Wei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Zhi-Hua Liao
- School of Life Sciences, Southwest University, Chongqing, P.R. China
| | - Fan-Cheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
2
|
Wei C, Wu L, Wu Y, Xu C, Hu H, Wang Z. Selection and evaluation of quality markers (Q-markers) of vladimiriae radix extract for cholestatic liver injury based on spectrum-effect relationship, pharmacokinetics, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118151. [PMID: 38588988 DOI: 10.1016/j.jep.2024.118151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a representative local medicinal herb produced in China, Vladimiriae Radix (VR) has been proven to exert hepatoprotective and choleretic effects, with particular therapeutic efficacy in cholestatic liver injury (CLI), as demonstrated by the VR extract (VRE). However, the quality markers (Q-markers) of VRE for the treatment of CLI remain unclear. AIM OF THE STUDY A new strategy based on the core element of "efficacy" was proposed, using a combination of spectrum-effect relationship, pharmacokinetics, and molecular docking methods to select and confirm Q-markers of VRE. MATERIAL AND METHODS First, the HPLC fingerprinting of 10 batches of VRE was studied, and the in vivo pharmacological index of anti-CLI in rats was determined. The spectrum-effect relationship was utilized as a screening method to identify the Q-markers of VRE. Secondly, Q-markers were used as VRE pharmacokinetic markers to measure their concentrations in normal and CLI rat plasma, and to analyze their disposition. Finally, molecular docking was utilized to predict the potential interaction between the identified Q-markers and crucial targets of CLI. RESULTS The fingerprints of 10 batches of VRE was established. The in vivo pharmacological evaluation of rats showed that VRE had a significant therapeutic effect on CLI. The spectrum-effect correlation analysis showed that costunolide (COS) and dehydrocostus lactone (DEH) were the Q-markers of VRE anti-CLI. The pharmacokinetic results showed that AUC(0-t), Cmax, CLZ/F, and VZ/F of COS and DEH in CLI rats had significant differences (P < 0.01). They were effectively absorbed into the blood plasma of CLI rats, ensuring ideal bioavailability, and confirming their role as Q-markers. Molecular docking results showed that COS, DEH had good affinity with key targets (FXR, CAR, PXR, MAPK, TGR5, NRF2) for CLI treatment (Binding energy < -4.52 kcal mol-1), further verifying the correctness of Q-marker selection. CONCLUSIONS In this study, through the combination of experimental and theoretical approaches from the aspects of pharmacodynamic expression, in vivo process rules, and interaction force prediction, the therapeutic effect of VRE and Q-markers (COS、DEH) were elucidated. Furthermore, a new idea based on the principle of "efficacy" was successfully proposed for screening and evaluating Q-markers.
Collapse
Affiliation(s)
- Chunlei Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lingjiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuyi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Yang T, Chen M, Liu X, Xue L, Guo Y, Zhang H, Sun G, Sun W. Enhancing quality evaluation in traditional Chinese medicine: Utilizing dual wavelength fusion fingerprint, electrochemical fingerprint, and DSC fingerprint. J Chromatogr A 2024; 1722:464907. [PMID: 38615560 DOI: 10.1016/j.chroma.2024.464907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Developing a reliable and effective quality evaluation system for traditional Chinese medicine (TCM) is both challenging and crucial for its advancement. This study employs fingerprinting techniques to establish precise and comprehensive quality control for TCM, taking Xuezhikang capsules as an example and aiming to facilitate the internationalization of TCM. The "double wavelength absorption coefficient ratio fingerprint" and "Reliability theory" are developed to determine the fingerprint peak purity and fingerprint reliability respectively. Subsequently, the dual-wavelength fusion fingerprint was obtained to avoid the limitations of a single wavelength. In addition, an electrochemical fingerprint (ECFP) was obtained to assess the similarity of electroactive components in the sample, and the Differential Scanning Calorimetry quantized fingerprint (DSC QFP) was introduced for thermal analysis. Fingerprint-efficacy correlations between PL-EC* and dual-wavelength fusion fingerprint (DWFFP) provided valuable insights that there are 76.6 % of the fingerprint compounds exhibited electroactivity. Finally, samples were classified into grades 1∼3 by combining DWFFP, ECFP and DSC QFP through the mean method, meeting the evaluation standard (SL-M > 0.9, PL-M between 80 % and 120 %). This study provides valuable information for ensuring the quality of TCM products, which represents a significant step forward in enhancing the reliability and authenticity of TCM products.
Collapse
Affiliation(s)
- Ting Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103 110032, Shenyang 110016, China
| | - Ming Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103 110032, Shenyang 110016, China
| | - Xi Liu
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China
| | - Lan Xue
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China
| | - Yinlei Guo
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China
| | - Hong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103 110032, Shenyang 110016, China.
| | - Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103 110032, Shenyang 110016, China.
| | - Wanyang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103 110032, Shenyang 110016, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Li X, Wu M, Ding H, Li W, Yin J, Lin R, Wu X, Han L, Yang W, Bie S, Li F, Song X, Yu H, Dong Z, Li Z. Integration of non-targeted multicomponent profiling, targeted characteristic chromatograms and quantitative to accomplish systematic quality evaluation strategy of Huo-Xiang-Zheng-Qi oral liquid. J Pharm Biomed Anal 2023; 236:115715. [PMID: 37769526 DOI: 10.1016/j.jpba.2023.115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Huo-Xiang-Zheng-Qi oral liquid (HXZQOL) is a well-known traditional Chinese medicine formula for the treatment of gastrointestinal diseases, with the pharmacologic effects of antiinflammatory, immune protection and gastrointestinal motility regulation. More significantly, HXZQOL is recommended for the treatment of COVID-19 patients with gastrointestinal symptoms, and it has been clinically proven to reduce the inflammatory response in patients with COVID-19. However, the effective and overall quality control of HXZQOL is currently limited due to its complex composition, especially the large amount of volatile and non-volatile active components involved. In this study, aimed to fully develop a comprehensive strategy based on non-targeted multicomponent identification, targeted authentication and quantitative analysis for quality evaluation of HXZQOL from different batches. Firstly, the non-targeted high-definition MSE (HDMSE) approach is established based on UHPLC/IM-QTOF-MS, utilized for multicomponent comprehensive characterization of HXZQOL. Combined with in house library-driven automated peak annotation and comparison of 47 reference compounds, 195 components were initially identified. In addition, HS-SPME-GC-MS was employed to analyze the volatile organic compounds (VOCs) in HXZQOL, and a total of 61 components were identified by comparison to the NIST database, reference compounds as well as retention indices. Secondly, based on the selective ion monitoring (SIM) of 24 "identity markers" (involving each herbal medicine), characteristic chromatograms (CCs) were established on LC-MS and GC-MS respectively, to authenticate 15 batches of HXZQOL samples. The targeted-SIM CCs showed that all marker compounds in 15 batches of samples could be accurately monitored, which could indicate preparations authenticity. Finally, a parallel reaction monitoring (PRM) method was established and validated to quantify the nine compounds in 15 batches of HXZQOL. Conclusively, this study first reports chemical-material basis, SIM CCs and quality evaluation of HXZQOL, which is of great implication to quality control and ensuring the authenticity of the preparation.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengfan Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruimei Lin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinlong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ziliang Dong
- Chongqing Taiji Industry (Group) Co.,Ltd., 408000, China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Jiang Y, Wu H, Ho PCL, Tang X, Ao H, Chen L, Cai J. GC-MS Fingerprinting Combined with Chemical Pattern-Recognition Analysis Reveals Novel Chemical Markers of the Medicinal Seahorse. Molecules 2023; 28:7824. [PMID: 38067553 PMCID: PMC10708380 DOI: 10.3390/molecules28237824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Seahorse is a valuable marine-animal drug widely used in traditional Chinese medicine (TCM), and which was first documented in the "Ben Cao Jing Ji Zhu" during the Liang Dynasty. Hippocampus kelloggi (HK) is the most common seahorse species in the medicinal material market and is one of the genuine sources of medicinal seahorse documented in the Chinese pharmacopeia. It is mainly cultivated in the Shandong, Fujian, and Guangxi Provinces in China. However, pseudo-HK, represented by Hippocampus ingens (HI) due to its similar appearance and traits, is often found in the market, compromising the safety and efficacy of clinical use. Currently, there is a lack of reliable methods for identifying these species based on their chemical composition. In this study, we employed, for the first time, a strategy combining gas chromatography-mass spectrometry (GC-MS) fingerprints and chemical patterns in order to identify HK and HI; it is also the first metabolomic study to date of HI as to chemical components. The obtained results revealed remarkable similarities in the chemical fingerprints, while significant differences were also observed. By employing hierarchical cluster analysis (HCA) and principal component analysis (PCA), based on the relative contents of their characteristic peaks, all 34 samples were successfully differentiated according to their species of origin, with samples from the same species forming distinct clusters. Moreover, nonadecanoic acid and behenic acid were exclusively detected in HK samples, further distinguishing them from HI samples. Additionally, the relative contents of lauric acid, tetradecanoic acid, pentadecanoic acid, n-hexadecanoic acid, palmitoleic acid, margaric acid, oleic acid, fenozan acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) exhibited significant differences between HK and HI (p < 0.0001), as determined by an unpaired t-test. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified seven components (DHA, EPA, n-hexadecanoic acid, tetradecanoic acid, palmitoleic acid, octadecanoic acid, and margaric acid) with high discriminatory value (VIP value > 1). Thus, nonadecanoic acid, behenic acid, and these seven compounds can be utilized as chemical markers for distinguishing HK from HI. In conclusion, our study successfully developed a combined strategy of GC-MS fingerprinting and chemical pattern recognition for the identification of HK and HI, and we also discovered chemical markers that can directly differentiate between the two species. This study can provide a foundation for the authentication of Hippocampus and holds significant importance for the conservation of wild seahorse resources.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.J.); (H.W.); (H.A.)
| | - Hongfei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.J.); (H.W.); (H.A.)
| | - Paul Chi Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Xuemei Tang
- Chengdu Institute of Food Inspection, Chengdu 610045, China;
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.J.); (H.W.); (H.A.)
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.J.); (H.W.); (H.A.)
| | - Jinjin Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
6
|
Nguyen MH, Ha DL, Do BM, Chau NTN, Tran TH, Le NTH, Le MT. RP-HPLC-Based Flavonoid Profiling Accompanied with Multivariate Analysis: An Efficient Approach for Quality Assessment of Houttuynia cordata Thunb Leaves and Their Commercial Products. Molecules 2023; 28:6378. [PMID: 37687204 PMCID: PMC10489801 DOI: 10.3390/molecules28176378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Dieu Ly Ha
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Binh Minh Do
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Trong Nghia Chau
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi Huong Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thien Han Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Minh Tri Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, Dinh Tien Hoang Street, Ben Nghe Ward, 1 District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Bai Y, Wei W, Yao C, Wu S, Wang W, Guo DA. Advances in the chemical constituents, pharmacological properties and clinical applications of TCM formula Yupingfeng San. Fitoterapia 2023; 164:105385. [PMID: 36473539 DOI: 10.1016/j.fitote.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Yupingfeng San (YPFS) is a famous and commonly used traditional Chinese medicine (TCM) formula for the treatment of chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia in China. It is composed of three Chinese herbs, including Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix. In this review, the relevant references on YPFS were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literatures published from 2000 to 2022 were screened and summarized. The constituents in YPFS could be classified into nine groups according to their structures, including flavonoids, saponins, essential oils, coumarins, lactones, amino acids, organic acids, saccharides, chromones and others. The importance of chemical constituents in YPFS were demonstrated for specific pathological processes including immunoregulatory, anti-inflammatory, anti-tumor and pulmonary diseases. This article systematically reviewed the up-to-date information on its chemical compositions, pharmacology and safety, that could be used as essential data and reference for clinical applications of YPFS.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - De-An Guo
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
8
|
Quality evaluation of Syringae Folium using the five-wavelength fusion fingerprint technique combined with chemometric analysis and quantitative analysis of active constituents. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123520. [DOI: 10.1016/j.jchromb.2022.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
9
|
Chen CY, Li YH, Li Z, Lee MR. Characterization of effective phytochemicals in traditional Chinese medicine by mass spectrometry. MASS SPECTROMETRY REVIEWS 2022:e21782. [PMID: 35638257 DOI: 10.1002/mas.21782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicines (TCMs) have been widely used in clinical and healthcare applications around the world. The characterization of the phytochemical components in TCMs is very important for studying the therapeutic mechanism of TCMs. In the analysis process, sample preparation and instrument analysis are key steps to improve analysis performance and accuracy. In recent years, chromatography combined with mass spectrometry (MS) has been widely used for the separation and detection of trace components in complex TCM samples. This article reviews various sample preparation techniques and chromatography-MS techniques, including the application of gas chromatography-MS and liquid chromatography-MS and other MS techniques in the characterization of phytochemicals in TCM materials and Chinese medicine products. This article also describes a new ambient ionization MS method for rapid and high-throughput analysis of TCM components.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yen-Hsien Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
10
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
11
|
Comprehensive quality evaluation of Compound Bismuth Aluminate Tablets by multiple fingerprint profiles combined with quantitative analysis and antioxidant activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Feng H, Li S, Hu Y, Zeng X, Qiu P, Li Y, Li W, Li Z. Quality assessment of Succus Bambusae oral liquids based on gas chromatography/mass spectrometry fingerprints and chemometrics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9200. [PMID: 34532912 DOI: 10.1002/rcm.9200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Succus Bambusae is consumed as a kind of herbal medicine and natural beverage in China. However, the current quality standards for Succus Bambusae are low and lack safety indicators, which makes it difficult to effectively guarantee its quality. Therefore, it is of great significance to study the identification and quality control technology for the product. METHODS We have developed a set of qualitative and quantitative methods based on gas chromatography/mass spectrometry (GC/MS) for the analysis of volatile components in Succus Bambusae oral liquid (SBOL). Combining GC/MS fingerprint analysis and related chemometrics algorithms, with similarity evaluation, Hotelling T2 and distance to Model X (DModX) as criteria, the quality consistency of different batches was evaluated, and SBOL samples from different manufacturers were differentiated. RESULTS Twenty-nine volatile components were preliminarily identified from 40 batches of SBOL samples from six manufacturers, and six Q-markers (Quality Markers) for the SBOLs were discussed and determined using GC/MS. The products from different manufacturers were distinguished using chemometrics. CONCLUSIONS The results showed that the quality of the SBOL samples from different batches and different manufacturers fluctuated greatly, which suggested that research into the raw materials and manufacturing techniques should be strengthened to improve the quality of SBOL and ensure its quality consistency.
Collapse
Affiliation(s)
- Huimin Feng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shunan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Hu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyao Zeng
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Ping Qiu
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Zhao M, Hao M, Tong H, Su L, Fei C, Gu W, Mao J, Lu T, Mao C. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123022. [PMID: 34933255 DOI: 10.1016/j.jchromb.2021.123022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Curcuma wenyujin Y.H. Chen et C. Ling rhizome (also called EZhu in China) has long been used as plant medicine for its traditional effect on promoting blood circulation and remove blood stasis. However, the active components of EZhu are still unclear at present. This research is managed to investigate the pharmacodynamics material basis on removing blood stasis of EZhu by exploring the spectrum-effect relationship between UPLC-Q/TOF-MS fingerprints and pharmacologic actions. Hemorheology and related functional parameters were detected to evaluate the pharmacologic actions of EZhu. Relative content Changes of components in rat plasma were detected by UPLC-Q/TOF-MS. A compound-target-pathway network was built to predict the pharmacological activity of components in plasma. Then, bivariate correlation analysis (BCA) was used to explore the correlation degree between components in plasma and pharmacologic actions of EZhu. In UPLC-Q/TOF-MS fingerprints of rat plasma, 10 prototype components were identified. BCA results show that 8 components were concerned with the pharmacological activity for treating blood stasis syndrome (BSS) in varying degrees (R > 0.5, P < 0.05). Among them, zedoarofuran and curzerenone have shown correlation with more pharmacological indicators. The network predicted that 80 targets were closely related to 10 components, in which 48 targets were connected with 159 metabolic pathways including arachidonic acid metabolism, sphingolipid signaling pathway, and linoleic acid metabolism. Overall, this study provided a scientific basis for TCM quality control to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Mengting Zhao
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou (550025), China; College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Min Hao
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Huangjin Tong
- Affiliated hospital of integrated traditional Chinese and western medicine, Nanjing university of Chinese medicine, Nanjing (210028), China; College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Lianlin Su
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Chenghao Fei
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Wei Gu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing (210023), China
| | - Tulin Lu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| | - Chunqin Mao
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| |
Collapse
|
14
|
Huang Z, Wei C, Yang K, Yu Z, Wang Z, Hu H. Aucklandiae Radix and Vladimiriae Radix: A systematic review in ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114372. [PMID: 34186101 DOI: 10.1016/j.jep.2021.114372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR), as commonly used traditional Chinese herbal medicine, were widely used in the treatment of gastrointestinal diseases. The two herbal medicines were warm, pungent and bitter. They entered the spleen, stomach, large intestine and gallbladder meridians, and had the effect of promoting qi circulation to relieve pain. It is usually used for chest and hypochondrium, abdominal fullness and pain, tenesmus, indigestion, and warming the middle to harmonize the stomach in clinically. AIM OF THIS REVIEW To provide a reference for the identification of traditional use, the material basis of efficacy and preclinical research between AR and VR, this review systematically summarized the similarities and differences in ethnopharmacology, phytochemistry and modern pharmacology. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine, master's thesis, doctoral thesis. RESULTS In the plateau areas of Sichuan Province, VR used to be regarded as substitute or local habit for AR, which is regularly used for chest, abdominal fullness and pain, diarrhea, and other related diseases. In Chinese Pharmacopoeia (ChP) 2020 edition, 145 prescription preparations with AR were collected, such as Xianglian Wan, Muxiang Shunqi Wan, Liuwei Muxiang San. However, only one prescription preparation (Jiuxiang Zhitong Wan) contained VR. Additionally, 237 and 254 chemical components were separately isolated and identified from AR and VR, 69 kinds of compounds were common among them, and the significant differences were presented in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids. Moreover, Costunolide (COS) and Dehydrocostus lactone (DEH), two main research objects of modern pharmacology, showed multiple pharmacological activities. Not only could they inhibit the activity of some cancer cells (such as breast cancer and leukemia cells), but they regulated the levels of various inflammatory factors (including TNF-α, NF-κB, IL-1β, IL-6) and repressed the growth and reproduction of various microorganisms (like Helicobacter pylori, Staphylococcus aureus). CONCLUSION COS and DEH as the common active components, provide a certain basis for local medicine about the substitution of VR for AR in Sichuan province of China in the past. In addition, the sesquiterpenoids are the main common compounds in AR and VR by collecting and collating a large number of literature and various data websites. Furthermore, AR and VR have significant differences in ethnopharmacology and phytochemistry, especially in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids, and are probably viewed as reference of a separate list of AR and VR in Chinese Pharmacopoeia.
Collapse
Affiliation(s)
- Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Chunlei Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu, 610106, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
15
|
Yan X, Huang Z, Wu Y, Yu Z, Yang K, Chen Z, Wang W, Hu H, Wang Z. Sequential loading of inclusion complex/nanoparticles improves the gastric retention of Vladimiriae Radix essential oil to promote the protection of acute gastric mucosal injury. Int J Pharm 2021; 610:121234. [PMID: 34718092 DOI: 10.1016/j.ijpharm.2021.121234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
The essential oil from Vladimiriae Radix (VEO) is a medicinal natural product with anti-ulcer activity. A novel gastroretentive drug delivery system was developed by preparing the hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex incorporated into chitosan nanoparticles (V-CD/NPs), to improve the bioavailability of VEO and its protective effect on gastric mucosa. The optimum preparation process of V-CD/NPs was obtained by Plackett-Burman and Box-Behnken response surface methodology. The resulting V-CD/NPs gained a suitable positive potential and small particle size, and showed stability in simulated gastric fluid, whose morphology and in vitro drug release profiles had a pH-sensitivity. Besides, V-CD/NPs was proved to strongly bind with mucin, and in vivo imaging revealed that it could be retained in the stomach for more than 8 h. The results of drug concentration in gastric tissues showed that the sequential loading of inclusion complex/nanoparticles promoted the local absorption of VEO in gastric tissues, which was favorable to reach the effective therapeutic concentration in the lesioned mucosa area. In comparison to VEO and V-CD, the callback effect of V-CD/NPs on 1L-1β, 1L-6, TNF-α, NF-κB, MDA and SOD was comparable to cimetidine, and V-CD/NPs outperformed in gastric mucosal protection. Therefore, the gastroretentive drug delivery system developed in our study effectively enhanced the anti-ulcer activity of VEO, which could be a promising strategy for the prevention and treatment of the acute gastric mucosal injury.
Collapse
Affiliation(s)
- Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu 610106, China.
| |
Collapse
|
16
|
Wang X, Zhou W, Wang Q, Zhang Y, Ling Y, Zhao T, Zhang H, Li P. A novel and comprehensive strategy for quality control in complex Chinese medicine formula using UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS combined with network pharmacology analysis: Take Tangshen formula as an example. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122889. [PMID: 34626904 DOI: 10.1016/j.jchromb.2021.122889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
The quality control of Chinese herbal medicines (CHM) is a key concern on the modernization and globalization. However, it is still a difficult task due to its multi-component, multi-target, multi-pathways. This study aims to provide a novel and comprehensive strategy for quality control in complex Chinese medicines (CHM) formulas by UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS combined with network pharmacology analysis. Tangshen formula (TSF) was used as an example for complex CHM formulas. The UHPLC-Q-Orbitrap HRMS was firstly applied to identify or tentatively assign 85 compounds in TSF. Subsequently, key active compounds for TSF treating diabetic nephropathy (DN) were chose by chemical-target-pathways network in network pharmacology. The results showed that 13 key bioactive compounds against DN including naringin, daidzein, genistein, formononetin, chlorogenic acid, aloe-emodin, nobiletin, tangeritin, ginsenoside Rg1, hesperetin, hesperidin, rhein, and limonin with three high topological features in chemical-target-pathways network were selected as Q-markers for quality control of TSF. Finally, the UHPLC-MS/MS was performed to simultaneously determine the concentrations of 13 Q-markers. And their concentrations were ranged from 11.57 to 3 788 µg·g-1. It suggested that many key bioactive compounds not only have high contents but also have wide range contents for the quality of complex CHM formulas. This study should be helpful to guide the selection of the Q-markers and provide new strategy for quality control of complex CHM formulas.
Collapse
Affiliation(s)
- Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine Beijing 100176, China
| | - Weie Zhou
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine Beijing 100176, China; Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Department of Nephrology, China-Japan Friendship Hospital Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730, China
| | - Qian Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine Beijing 100176, China
| | - Yuan Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine Beijing 100176, China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine Beijing 100176, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Department of Nephrology, China-Japan Friendship Hospital Beijing 100029, China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Department of Nephrology, China-Japan Friendship Hospital Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Department of Nephrology, China-Japan Friendship Hospital Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730, China.
| |
Collapse
|
17
|
Guo M, Wu Z, An Q, Li H, Wang L, Zheng Y, Guo L, Zhang D. Comparison of Volatile Oils and Primary Metabolites of Raw and Honey-Processed Ephedrae Herba by GC-MS and Chemometrics. J AOAC Int 2021; 105:576-586. [PMID: 34626113 DOI: 10.1093/jaoacint/qsab139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Ephedrae Herba (EH) is the terrestrial stem of Ephedra sinica Stapf, E. intermedia Schrenk et C. A. Mey., or E. equisetina Bge, which has been used as a diaphoretic, antiasthmatic, and diuretic. Honey-processed EH (HEH) is a widely used traditional Chinese medicine, and has a better effect of dispersing lung qi and relieving asthma and a lower effect of dispelling cold than raw EH (REH). OBJECTIVE To understand the differences of volatile oils and primary metabolites between REH and honey-processed HEH, and to provide a reference for elucidating the mechanism behind the effect of this processing. METHODS A system data acquisition and mining strategy was designed to investigate the differences of volatiles and primary metabolites between the REH and HEH, based on gas chromatography-mass spectrometry coupled with multivariate statistical analysis, including principal component analysis and orthogonal partial least squares discriminant analysis. RESULTS Overall, 15 volatile oils and 14 primary metabolites were shown to be potential characteristic markers differentiating REH and HEH. CONCLUSION The results may provide a scientific foundation for comprehensively revealing the honey-processing mechanism of EH. HIGHLIGHT Volatile oils and primary metabolites were used to distinguish REH and HEH and elucidate the processing mechanism of EH for the first time.
Collapse
Affiliation(s)
- Mei Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.,School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Zhicong Wu
- Shijiazhuang People's Hospital, Shijiazhuang 050000, China
| | - Qi An
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hengyang Li
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lei Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.,Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
18
|
Li H, Li Y, Zhang X, Ren G, Wang L, Li J, Wang M, Ren T, Zhao Y, Yang M, Huang X. The Combination of Aquilaria sinensis (Lour.) Gilg and Aucklandia costus Falc. Volatile Oils Exerts Antidepressant Effects in a CUMS-Induced Rat Model by Regulating the HPA Axis and Levels of Neurotransmitters. Front Pharmacol 2021; 11:614413. [PMID: 33716727 PMCID: PMC7943885 DOI: 10.3389/fphar.2020.614413] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The Aquilaria sinensis (Lour.) Gilg (CX)-Aucklandia costus Falc. (MX) herbal pair is frequently used in traditional Chinese medicine prescriptions for treating depression. The volatile oil from CX and MX has been shown to have good pharmacological activities on the central nervous system, but its curative effect and mechanism in the treatment of depression are unclear. Therefore, the antidepressant effect of the volatile oil from CX-MX (CMVO) was studied in chronic unpredictable mild stress (CUMS) rats. The suppressive effects of CMVO (25, 50, 100 μL/kg) against CUMS-induced depression-like behavior were evaluated using the forced swimming test (FST), open field test (OFT) and sucrose preference test (SPT). The results showed that CMVO exhibited an antidepressant effect, reversed the decreased sugar preference in the SPT and prolongation of immobility time in the FST induced by CUMS, increased the average speed, time to enter the central area, total moving distance, and enhanced the willingness of rats to explore the environment in the OFT. Inhalational administration of CMVO decreased levels of adrenocorticotropic hormone and corticosterone in serum and the expression of corticotropin-releasing hormone mRNA in the hypothalamus, which indicated regulation of over-activation of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, CMVO restored levels of 5-hydroxytryptamine (5-HT), dopamine, norepinephrine and acetylcholine in the hippocampus. The RT-PCR and immunohistochemistry results showed that CMVO up-regulated the expression of 5-HT1A mRNA. This study demonstrated the antidepressant effect of CMVO in CUMS rats, which was possibly mediated via modulation of monoamine and cholinergic neurotransmitters and regulation of the HPA axis.
Collapse
Affiliation(s)
- Huiting Li
- College of Pharmacy, Chengdu University of traditional Chinese Medicine, Chengdu, China
| | - Yuanhui Li
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaofei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Guilin Ren
- Southwest Medical University Affiliated Hospital of Traditional Chinese Medicine, Luzhou, China
| | - Liangfeng Wang
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianzhe Li
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mengxue Wang
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Tao Ren
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yi Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ming Yang
- College of Pharmacy, Chengdu University of traditional Chinese Medicine, Chengdu, China.,Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoying Huang
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Peris-Díaz MD, Krężel A. A guide to good practice in chemometric methods for vibrational spectroscopy, electrochemistry, and hyphenated mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Quality Assessment of Licorice Based on Quantitative Analysis of Multicomponents by Single Marker Combined with HPLC Fingerprint. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021. [DOI: 10.1155/2021/8834826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Licorice is a commonly used traditional Chinese medicine and natural sweetening agent, rich in numerous bioactive compounds. Moreover, it is one of the oldest and most frequently employed folk medicines in both eastern and western countries. It is prescribed for the treatment of asthma, fever, and cough. However, with the increasing demand of licorice, its quality and safety become the important issue. The content in licorice varies significantly in materials from different geographical origins. In this study, a reasonable and feasible evaluation method for the quality assessment of licorice was developed based on the analysis of high-performance liquid chromatography (HPLC) fingerprint, combined with the quantitative analysis of multicomponents by single marker (QAMS) method. Glycyrrhizic acid was selected as the internal reference substance, and ten components were simultaneously determined based on relative correction factors. The contents of eleven components in 21 batches of licorice were determined by the QAMS and the ESM (external standard method); there was no significant difference by comparison of the quantitative results between the QAMS and the ESM method; the cosine value (Cir > 0.9999) confirmed the consistency of the two methods. According to the outcomes of 21 batches of licorice samples, the contents of the eleven components were used for further chemometric analysis. All of the samples of licorice from various geographical origins were divided into five categories based on hierarchical cluster analysis, which indicated the crucial influence of geographical origins on licorice. This study showed that QAMS combined with HPLC fingerprint and chemometrics methods could effectively control the quality of licorice. Hence, QAMS is a feasible and promising method for promoting the quality control standardization process of herbal medicines.
Collapse
|
21
|
Lebanov L, Ghiasvand A, Paull B. Data handling and data analysis in metabolomic studies of essential oils using GC-MS. J Chromatogr A 2021; 1640:461896. [PMID: 33548825 DOI: 10.1016/j.chroma.2021.461896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Gas chromatography electron impact ionization mass spectrometry (GC-EI-MS) has been, and remains, the most widely applied analytical technique for metabolomic studies of essential oils. GC-EI-MS analysis of complex samples, such as essential oils, creates a large volume of data. Creating predictive models for such samples and observing patterns within complex data sets presents a significant challenge and requires application of robust data handling and data analysis methods. Accordingly, a wide variety of software and algorithms has been investigated and developed for this purpose over the years. This review provides an overview and summary of that research effort, and attempts to classify and compare different data handling and data analysis procedures that have been reported to-date in the metabolomic study of essential oils using GC-EI-MS.
Collapse
Affiliation(s)
- Leo Lebanov
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; ARC Industrial Transformation Research Hub for Processing Advanced Lignocellulosics (PALS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; ARC Industrial Transformation Research Hub for Processing Advanced Lignocellulosics (PALS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
22
|
Chen Y, Hong Y, Yang D, He Z, Lin X, Wang G, Yu W. Simultaneous determination of phenolic metabolites in Chinese citrus and grape cultivars. PeerJ 2020; 8:e9083. [PMID: 32547855 PMCID: PMC7275686 DOI: 10.7717/peerj.9083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 11/22/2022] Open
Abstract
Background As the major bioactive compounds in citrus and grape, it is significant to use the contents of flavonoids and phenolic acids as quality evaluation criteria to provide a better view of classifying the quality and understanding the potential health benefits of each fruit variety. Methods A total of 15 varieties of citrus and 12 varieties of grapes were collected from Fujian, China. High-performance liquid chromatography method was used for the simultaneous determination of 17 phenolic compounds, including gallic acid, chlorogenic acid, caffeic acid, syringic acid, ρ-coumaric acid, ferulic acid, benzoic acid, salicylic acid, catechin, epicatechin, resveratrol, rutin, naringin, hesperidin, quercetin, nobiletin and tangeritin in the peels of citrus and grape cultivars. Further, the cultivars of citrus and grape were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Results A thorough separation of the 17 compounds was achieved within 100 min. The tested method exhibited good linearity (the limits of detection and limits of quantification were in the range of 0.03–1.83 µg/mL and 0.09–5.55 µg/mL, respectively), precision (the relative standard deviations of repeatability were 1.02–1.97%), and recovery (92.2–102.82%) for all the compounds, which could be used for the simultaneous determination of phenolic compounds in citrus and grape. Hesperidin (12.93–26,160.98 µg/g DW) and salicylic acid (5.35–751.02 µg/g DW) were the main flavonoids and phenolic acids in 15 citrus varieties, respectively. Besides, the hesperidin (ND to 605.48 µg/g DW) and salicylic acid (ND to 1,461.79 µg/g DW) were found as the highest flavonoid and the most abundant phenolic acid in grapes, respectively. A total of 15 citrus and 12 grape samples were classified into two main groups by PCA and HCA with strong consistency.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.,Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.,Fujian Key Laboratory of Agricultural Product Food Processing (FAAS), Fuzhou, Fujian, China
| | - Yanyun Hong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Daofu Yang
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhigang He
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.,Fujian Key Laboratory of Agricultural Product Food Processing (FAAS), Fuzhou, Fujian, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.,Fujian Key Laboratory of Agricultural Product Food Processing (FAAS), Fuzhou, Fujian, China
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|