1
|
Lu Y, Zhang C, Feng K, Luan J, Cao Y, Rahman K, Ba J, Han T, Su J. Characterization of saffron from different origins by HS-GC-IMS and authenticity identification combined with deep learning. Food Chem X 2024; 24:101981. [PMID: 39850938 PMCID: PMC11754009 DOI: 10.1016/j.fochx.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 01/25/2025] Open
Abstract
With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed. Sixty-nine volatile compounds (VOCs) including 7 groups of isomers were detected rapidly and directly. A CNN prediction model based on GC-IMS data was proposed. With the merit of minimal data prepossessing and automatic feature extraction capability, GC-IMS images were directly input to the CNN model. The origin prediction results were output with the average accuracy about 90 %, which was higher than traditional methods like PCA (61 %) and SVM (71 %). This established CNN also showed ability in identifying counterfeit saffron with a high accuracy of 98 %, which can be used to authenticate saffron.
Collapse
Affiliation(s)
- Yingjie Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chi Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Military Pharmacy Education, Naval Medical University, Shanghai 200433, China
| | - Kunmiao Feng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jie Luan
- Naval Medicine Center of PLA, Naval Medical University, Shanghai 200433, China
| | - Yuqi Cao
- Technical Centre, Shanghai Tobacco (Group) Corp., Shanghai 200082, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jianbo Ba
- Naval Medicine Center of PLA, Naval Medical University, Shanghai 200433, China
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Military Pharmacy Education, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Huang G, Li Y, Liu J, Jiang D, Jiang K. Interference of the gas chromatography- mass spectrometry instrumental background on the determination of trace cyclic volatile methylsiloxanes and exclusion of it by delayed injection. J Chromatogr A 2024; 1726:464894. [PMID: 38733926 DOI: 10.1016/j.chroma.2024.464894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Cyclic volatile methylsiloxanes (cVMS) have been widely found in various types of environmental media and attracted increasing attention as new pollutants. However, there is still a great challenge in the accurate quantification of trace cVMS, due to their volatility, and the high background originating from GC/MS accessories and surroundings. In this work, the main sources of the high background were investigated in detail for octamethylcyclotetrasiloxane (D4), decmethylcyclopentasiloxane (D5) and dodecmethylcyclohexosiloxane (D6). Several effective measures were employed to minimize these backgrounds, including the delayed injection method to minimize the interference from the injection septum. Then, a GC-MS method was developed for the accurate determination of D4, D5 and D6, with a linear range of 2 - 200 μg/L. The coefficient of determination was 0.9982-0.9986, the limit of detection (LOD) was 0.40-0.52 μg/L, and the quantitative range was 1.88-190 μg/L. Good reproducibility and recovery were obtained, indicating the reliability of the established analytical method.
Collapse
Affiliation(s)
- Guoliang Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou, China
| | - Yunna Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Xueyuan Road 117, Xihu District, Hangzhou, China.
| | - Duohao Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou, China
| | - Kezhi Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou, China.
| |
Collapse
|
3
|
Jiang J, Ding X, Patra SS, Cross JN, Huang C, Kumar V, Price P, Reidy EK, Tasoglou A, Huber H, Stevens PS, Boor BE, Jung N. Siloxane Emissions and Exposures during the Use of Hair Care Products in Buildings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19999-20009. [PMID: 37971371 DOI: 10.1021/acs.est.3c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.
Collapse
Affiliation(s)
- Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaosu Ding
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Satya S Patra
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jordan N Cross
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chunxu Huang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vinay Kumar
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Paige Price
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Emily K Reidy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Heinz Huber
- Edelweiss Technology Solutions, LLC, Novelty, Ohio 44072, United States
| | - Philip S Stevens
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nusrat Jung
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Othman AM, Poulos AS, Torres O, Routh AF. Liquid-Liquid Phase Separation Induced by Vapor Transfer in Evaporative Binary Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13242-13257. [PMID: 37677134 PMCID: PMC10515642 DOI: 10.1021/acs.langmuir.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Drying of binary sessile droplets consisting of ethanol and octamethyltrisiloxane on a high-energy surface is investigated. During the process of evaporation, the droplets undergo liquid-liquid phase separation, resulting in the appearance of microdroplets at the liquid-air interface, which subsequently violently burst. This phase separation is attributed to water vapor transfer into the droplet, which modifies the solubility and leads to the formation of a ternary mixture. The newly formed ternary mixture may undergo nucleation and growth or spinodal decomposition, depending on the droplet composition path. By control of the relative humidity of air, phase separation can be mitigated or even eliminated. The droplets also display high mobility and complex wetting behavior due to phase separation, with two contracting and two spreading stages. The mass loss experiments reveal that the droplets undergo three distinct drying stages with an enhanced evaporation rate observed during the phase separation stage. A modified diffusion-limited model was employed to predict the evaporation rate, accounting for the physiochemical changes during evaporation and proved to be consistent with experimental observations. The findings of this work enhance our understanding of a coupled fundamental process involving the evaporation of multicomponent mixtures, wetting, and phase separation.
Collapse
Affiliation(s)
- Ahmed M. Othman
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| | | | - Ophelie Torres
- Unilever
R & D Port Sunlight, Quarry Road East, Wirral CH63 3JW, U.K.
| | - Alexander. F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| |
Collapse
|
5
|
Wang WL, Zhang Y, Sun DM, Chen ZY, Qian M, Zhou Y, Feng XS, Zhang XY. Volatile Methylsiloxanes in Complex Samples: Recent Updates on Pretreatment and Analysis Methods. Crit Rev Anal Chem 2023; 54:3377-3397. [PMID: 37603425 DOI: 10.1080/10408347.2023.2245050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Volatile methylsiloxanes (VMSs) are massively produced chemicals having applications in industry and home because of their physical and chemical characteristics. They are used in personal care products such as cosmetics, household coatings, cleaners, skin care products, and others. Resultantly, large number of VMSs are discharged into air where they can be subjected to atmospheric migrations over long distances causing toxic and estrogenic effects, persistence, and bioaccumulations. Many institutions have taken measures to control VMSs. They require accurate, rapid, and sensitive pretreatment and analysis methods for diverse samples. Herein, the pretreatment and determination methods of VMSs as reported in recent years are reviewed and summarized. Pretreatments include commonly methods such as membrane-assisted solvent extraction, liquid-liquid extraction, and others, while novel methods are solid phase extraction, solid phase microextraction, diverse liquid phase microextraction and others. Analyses are made through gas chromatography-based methods. In addition, the advantages, and disadvantages of techniques are compared, and the prospects of pretreatment and analysis methods are discussed.
Collapse
Affiliation(s)
- Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zu-Yi Chen
- School of Pharmacy, China Medical University, Shenyang, China
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Vikrant K, Kim KH. Insights into critical sources of bias in quantitation of volatile organic compounds based on headspace extraction approach. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|