1
|
Díaz MA, O’Connell DP, Jordan S, O’Connor C, Martin P, Jones JC, Garvey J. Analysis of Pesticide Levels in Honey and Pollen from Irish Honey Bee Colonies Using a Modified Dutch Mini-Luke Method with Gas and Liquid Chromatography-Tandem Mass Spectrometry Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12657-12667. [PMID: 37584230 PMCID: PMC10472503 DOI: 10.1021/acs.jafc.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Determining the levels of agrochemicals, such as pesticides, that honey bees are exposed to is critical for understanding what stress factors may be contributing to colony declines. Although several pesticide detection methods are available for honey, limited work has been conducted to adapt these methods for pollen. Here, we address this gap by modifying the Dutch mini-Luke extraction method (NL method) for pesticide analysis in honey and pollen from throughout the island of Ireland. The NL method was modified to enable detection in small-sized samples and validated for both pollen and honey matrices. The modified NL method combined with liquid and gas chromatography-tandem mass spectrometry gave consistent results in terms of accuracy and precision measured by recovery experiments and was successfully applied in the analysis of a range of pesticide residues. The modified NL method developed here provides a key tool for detecting pesticides in honey bee colony resources and the environment more broadly.
Collapse
Affiliation(s)
- Marcela A. Díaz
- School
of Biology and Environmental Science, University
College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Darren P. O’Connell
- School
of Biology and Environmental Science, University
College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Seana Jordan
- Food
Chemistry Division, Department of Agriculture, Food and The Marine, Celbridge W23 X3PH, Ireland
| | - Catriona O’Connor
- Food
Chemistry Division, Department of Agriculture, Food and The Marine, Celbridge W23 X3PH, Ireland
| | - Paul Martin
- Food
Chemistry Division, Department of Agriculture, Food and The Marine, Celbridge W23 X3PH, Ireland
| | - Julia C. Jones
- School
of Biology and Environmental Science, University
College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jim Garvey
- Food
Chemistry Division, Department of Agriculture, Food and The Marine, Celbridge W23 X3PH, Ireland
| |
Collapse
|
2
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Pang X, Qiu J, Zhang Z, Li P, Xing J, Su X, Liu G, Yu C, Weng R. Wide-Scope Multi-residue analysis of pesticides in beef by gas chromatography coupled with quadrupole Orbitrap mass spectrometry. Food Chem 2023; 407:135171. [PMID: 36508866 DOI: 10.1016/j.foodchem.2022.135171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Increasing pesticide contamination in foods of animal origin has made the wide-scope multi-residue analysis of pesticides an international concern. By using 191 pesticides, this study investigates a sensitive and reliable method for multi-residue analysis of pesticides in beef to determine the extent of the application of this method. The QuEChERS method was employed to extract and purify the pesticides as C18 was utilized as the absorbents. Then, the purified pesticides were analysed using gas chromatography - quadrupole orbitrap mass spectrometry (GC-Q-Orbitrap-MS). The validation test results revealed that this method was satisfactorily sensitive since its screening detection limit (SDL) ranged from 0.2 to 100 µg∙kg-1. The recovery tests implemented at three spiking levels, namely 100, 200, and 500 µg∙kg-1, generated the results of 71.95 %-113.97 %, while the intra- and inter-day precisions were 0.27 %-17.94 %, indicating that this method had excellent accuracy and precision.
Collapse
Affiliation(s)
- Xu Pang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Jing Qiu
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoyang Zhang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | | | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiqiao Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Pedersen M, Hakme E, Ninga E, Frandsen HL. Analysis of veterinary drug- and pesticide residues in pig muscle by LC-QTOF-MS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
You H, Abraham EJ, Mulligan J, Zhou Y, Montoya M, Willig J, Chen BK, Wang CK, Wang LS, Dong A, Shamtsyan M, Nguyen H, Wong A, Wallace TC. Label compliance for ingredient verification: regulations, approaches, and trends for testing botanical products marketed for "immune health" in the United States. Crit Rev Food Sci Nutr 2022; 64:2441-2460. [PMID: 36123797 DOI: 10.1080/10408398.2022.2124230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the COVID-19 pandemic, the botanical product market saw a consumer interest increase in immune health supplements. While data are currently insufficient to support public health guidance for using foods and dietary supplements to prevent or treat COVID-19 and other immune disorders, consumer surveys indicate that immune support is the second-most cited reason for supplement use in the United States. Meanwhile, consumers showed increased attention to dietary supplement ingredient labels, especially concerning authenticity and ingredient claims. Top-selling botanical ingredients such as elderberry, turmeric, and functional mushrooms have been increasingly marketed toward consumers to promote immune health, but these popular products succumb to adulteration with inaccurate labeling due to the intentional or unintentional addition of lower grade ingredients, non-target plants, and synthetic compounds, partially due to pandemic-related supply chain issues. This review highlights the regulatory requirements and recommendations for analytical approaches, including chromatography, spectroscopy, and DNA approaches for ingredient claim verification. Demonstrating elderberry, turmeric, and functional mushrooms as examples, this review aims to provide industrial professionals and scientists an overview of current United States regulations, testing approaches, and trends for label compliance verification to ensure the safety of botanical products marketed for "immune health."
Collapse
Affiliation(s)
- Hong You
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
- Eurofins US Food, Des Moines, Iowa, USA
| | | | - Jason Mulligan
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
| | - Yucheng Zhou
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
| | | | | | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Andrea Wong
- Council for Responsible Nutrition, Washington, DC, USA
| | - Taylor C Wallace
- Think Healthy Group, LLC, Washington, DC, USA
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
6
|
Pitoi MM, Harmoko H, Tresnawati A, Pardede HF, Ariyani M, Ridwan YS, Yusiasih R. Pesticide residues in fruits and vegetables in Indonesia: findings of five-year proficiency testing. ACCREDITATION AND QUALITY ASSURANCE : JOURNAL FOR QUALITY, COMPARABILITY AND RELIABILITY IN CHEMICAL MEASUREMENT 2022; 27:181-193. [PMID: 35572789 PMCID: PMC9087159 DOI: 10.1007/s00769-022-01502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/02/2022] [Indexed: 05/05/2023]
Abstract
The first proficiency testing of pesticides in fruits and vegetables in Indonesia is reported. This report covers the findings of five-year proficiency testings. Every year, from 2016 to 2020, 18-25 laboratories join the proficiency testings and analyze 5-11 pesticides in tomato, orange, lettuce, brown rice, strawberry respectively. The number of laboratories participating in the proficiency testings tends to increase, although only 38 % of the laboratories are able to report all pesticides. More than 72 % of participants use QuEChERS or its modifications for sample preparation, all participants use gas chromatography or liquid chromatography for separation, at least 20 % of participants still rely on detectors other than mass spectrophotometer for detection, and 20 %-60 % of participants use matrix-matched calibration for quantification. The performance of laboratories is evaluated as z-score with an average of 90.8 % achieves satisfactory results while 3.3 % and 5.9 % achieve questionable and unsatisfactory results correspondingly. Overall, the performance of laboratory participants during proficiency testings is good. However, improvement is still needed, especially for the number of target pesticides for multi-residue pesticide analysis. Moreover, unsatisfactory z-scores are likely to be resulted from laboratories which use conventional solvent extraction, use detectors other than mass spectrometers, and are not accredited.
Collapse
Affiliation(s)
- Mariska M. Pitoi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Indonesia
| | - Harmoko Harmoko
- Directorate of Standardization and Quality Control, Ministry of Trade Republic of Indonesia, Jakarta, Indonesia
| | - Astika Tresnawati
- Directorate of Standardization and Quality Control, Ministry of Trade Republic of Indonesia, Jakarta, Indonesia
| | - Hilman F. Pardede
- Research Center for Data and Information Sciences, National Research and Innovation Agency, Bandung, Indonesia
| | - Miranti Ariyani
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Indonesia
| | - Yohanes S. Ridwan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Indonesia
| | - Retno Yusiasih
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Indonesia
| |
Collapse
|
7
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|