1
|
Ding Y, Yang L, Wen J, Ma Y, Dai G, Mo F, Wang J. A Comprehensive Review of Advanced Lactate Biosensor Materials, Methods, and Applications in Modern Healthcare. SENSORS (BASEL, SWITZERLAND) 2025; 25:1045. [PMID: 40006275 PMCID: PMC11858931 DOI: 10.3390/s25041045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Lactate is a key metabolite in cellular respiration, and elevated levels usually indicate tissue hypoxia or metabolic dysregulation. The real-time detection of lactate levels is particularly important in situations such as exercise, shock, severe trauma, and tissue injury. Conventional lactate assays are insufficient to address today's complex and variable testing environments, and thus, there is an urgent need for highly sensitive biosensors. This review article provides an overview of the concept and composition of electrochemical lactate biosensors, as well as their recent advances. Comparisons of popular studies on enzymatic and non-enzymatic lactate sensors, the surface-related materials used for modifications to electrochemical lactate biosensors, and the detection methods commonly used for sensors are discussed separately. In addition, advances in implantable and non-implantable miniaturized lactate sensors are discussed, emphasizing their application for continuous real-time monitoring. Despite their potential, challenges such as non-specific binding, biomaterial interference, and biorecognition element stability issues remain during practical applications. Future research should aim to improve sensor design, biocompatibility, and integration with advanced signal processing techniques. With continued innovation, lactate sensors are expected to revolutionize personalized medicine, helping clinicians to increase treatment efficiency and improve the experience of their use.
Collapse
Affiliation(s)
- Yifeng Ding
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Liuhong Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jing Wen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yuhang Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Key Laboratory of Biosafety Defense, Naval Medical University, Ministry of Education, 800 Xiangyin Road, Shanghai 200433, China
| | - Fengfeng Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Key Laboratory of Biosafety Defense, Naval Medical University, Ministry of Education, 800 Xiangyin Road, Shanghai 200433, China
| | - Jiafeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Chen J, Fang Y, Feng J, Shi X, Li J, Wang S, Zhang S, Peng H, Sun X. Fast-response fiber organic electrochemical transistor with vertical channel design for electrophysiological monitoring. J Mater Chem B 2024; 12:9206-9212. [PMID: 39248714 DOI: 10.1039/d4tb01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Fiber organic electrochemical transistors (OECTs) hold significant promise for in vivo bio-signal amplification due to their minimally invasive and seamless integration with biological tissues. However, their use in monitoring rapid physiological changes, such as electrophysiological signals, has been constrained by slow response time, arising from their extensive channel dimensions. Here, we introduce a novel fiber OECT designed with a micro-scale vertical channel (F-vOECT) that substantially reduces the response time by an order of magnitude to 12 ms and achieves a maximum transconductance of 16 mS at zero gate bias, marking a substantial improvement over previous fiber OECTs. This compact and flexible fiber device demonstrates robust performance under cyclic switching, dynamic deformation and exhibits excellent biocompatibility. When subcutaneously implanted in rats, the F-vOECT enables stable, continuous electrocardiogram monitoring for 7 days, successfully identifying episodes of atrioventricular block. These capabilities illustrate its potential for clinical electrophysiological diagnostics. The design strategy of F-vOECT opens new avenues for developing fast-responsive fiber bioelectronic devices.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Yuan Fang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Jinyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Shuzhuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
4
|
Wang X, Zhang Z, Li P, Xu J, Zheng Y, Sun W, Xie M, Wang J, Pan X, Lei X, Wang J, Chen J, Chen Y, Wang SJ, Lei T. Ultrastable N-Type Semiconducting Fiber Organic Electrochemical Transistors for Highly Sensitive Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400287. [PMID: 38433667 DOI: 10.1002/adma.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) have attracted increasing attention due to their merits of high transconductance, low operating voltage, and good biocompatibility, ideal for biosensors. However, further advances in their practical applications face challenges of low n-type performance and poor stability. Here, it is demonstrated that wet-spinning the commercially available n-type conjugated polymer poly(benzimidazobenzophenanthroline) (BBL) into highly aligned and crystalline fibers enhances both OECT performance and stability. Although BBL is only soluble in high-boiling-point strong acids, it can be wet-spun into high-quality fibers with adjustable diameters. The BBL fiber OECTs exhibit a record-high area-normalized transconductance (gm,A) of 2.40 µS µm-2 and over 10 times higher figure-of-merit (µC*) than its thin-film counterparts. More importantly, these fiber OECTs exhibit remarkable stability with no noticeable performance attenuation after 1500 cycles over 4 h operation, outperforming all previously reported n-type OECTs. The superior performance and stability can be attributed to shorter π-π stacking distance and ordered molecular arrangement in the fibers, endowing the BBL fiber OECT-based biosensors with outstanding sensitivity while keeping a miniaturized form factor. This work demonstrates that, beyond new material development, developing new fabrication technology is also crucial for addressing the performance and stability issues in n-type OECTs.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingcao Xu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuting Zheng
- College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenxi Sun
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingyue Xie
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Juanrong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiheng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shu-Jen Wang
- Department of Physics, Hong Kong Baptist University, Hong Kong, SAR, P. R. China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
6
|
Nguyen KV, Lee D, Kim Y, Lee WH. Fiber-Type Transistor-Based Chemical and Physical Sensors Using Conjugated Polymers. Polymers (Basel) 2023; 15:4062. [PMID: 37896306 PMCID: PMC10609800 DOI: 10.3390/polym15204062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fiber-type electronics is a crucial field for realizing wearable electronic devices with a wide range of sensing applications. In this paper, we begin by discussing the fabrication of fibers from conjugated polymers. We then explore the utilization of these fibers in the development of field-effect and electrochemical transistors. Finally, we investigate the diverse applications of these fiber-type transistors, encompassing chemical and physical sensors. Our paper aims to offer a comprehensive understanding of the use of conjugated polymers in fiber-type transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Dual-gate thin film transistor lactate sensors operating in the subthreshold regime. Biosens Bioelectron 2023; 222:114958. [PMID: 36502715 DOI: 10.1016/j.bios.2022.114958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Organic thin-film transistors (TFTs) with an electrochemically functionalized sensing gate are promising platforms for wearable health-monitoring technologies because they are light, flexible, and cheap. Achieving both high sensitivity and low power is highly demanding for portable or wearable devices. In this work, we present flexible printed dual-gate (DG) organic TFTs operating in the subthreshold regime with ultralow power and high sensitivity. The subthreshold operation of the gate-modulated TFT-based sensors not only increases the sensitivity but also reduces the power consumption. The DG configuration has deeper depletion and stronger accumulation, thereby further making the subthreshold slope sharper. We integrate an enzymatic lactate-sensing extended-gate electrode into the printed DG TFT and achieve exceptionally high sensitivity (0.77) and ultralow static power consumption (10 nW). Our sensors are successfully demonstrated in physiological lactate monitoring with human saliva. The accuracy of the DG TFT sensing system is as good as that of a high-cost conventional assay. The developed platform can be readily extended to various materials and technologies for high performance wearable sensing applications.
Collapse
|
8
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Shen Y, Liu C, He H, Zhang M, Wang H, Ji K, Wei L, Mao X, Sun R, Zhou F. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. BIOSENSORS 2022; 12:1164. [PMID: 36551131 PMCID: PMC9776101 DOI: 10.3390/bios12121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.
Collapse
Affiliation(s)
- Yutong Shen
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology of the Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mengdi Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Wang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. BIOSENSORS 2022; 12:919. [PMID: 36354428 PMCID: PMC9688009 DOI: 10.3390/bios12110919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Monitoring of lactate is spreading from the evident clinical environment, where its role as a biomarker is notorious, to the agrifood ambit as well. In the former, lactate concentration can serve as a useful indicator of several diseases (e.g., tumour development and lactic acidosis) and a relevant value in sports performance for athletes, among others. In the latter, the spotlight is placed on the food control, bringing to the table meaningful information such as decaying product detection and stress monitoring of species. No matter what purpose is involved, electrochemical (bio)sensors stand as a solid and suitable choice. However, for the time being, this statement seems to be true only for discrete measurements. The reality exposes that real and continuous lactate monitoring is still a troublesome goal. In this review, a critical overview of electrochemical lactate (bio)sensors for clinical and agrifood situations is performed. Additionally, the transduction possibilities and different sensor designs approaches are also discussed. The main aim is to reflect the current state of the art and to indicate relevant advances (and bottlenecks) to keep in mind for further development and the final achievement of this highly worthy objective.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Spain
| | - Alfonso Sierra-Padilla
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - Juan Jesús Fernández-Alba
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Carmen González Macías
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
11
|
Tao Y, Wang Y, Zhu R, Chen Y, Liu X, Li M, Yang L, Wang Y, Wang D. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta 2022; 238:123055. [PMID: 34801911 DOI: 10.1016/j.talanta.2021.123055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
In this study, poly(3, 4-ethylenedioxythiophene) (PEDOT) nanocluster structure was synthesized on the reduced graphene oxide (rGO) modified cotton fibers. The organic electrochemical transistors based on the modified fiber have been assembled and their performance of different gate electrode transistors has been investigated. The transistor exhibits an excellent transconductance of up to 15.5 mS and a high on-off ratio close to 2*102. The bending angle and bending times have little effect on the device performance. The uric acid (UA) sensor based transistor has been fabricated for the first time. Flexible sensors based on molecularly imprinted polymer (MIP) membrane with different fiber gate electrodes have been investigated. The UA sensor with MIP/PEDOT/carbon fiber as the gate electrode has a sensitivity of 100 μA per decade from 1 nM to 500 μM, a linear coefficient of 0.97143, excellent selectivity, and good reproducibility. In addition, fiber based organic electrochemical transistors (FECTs) can be sewn into the fabric for monitoring and have successfully evaluated the detection of UA in artificial urine sample, with data consistent well with the UA concentration obtained from single fiber. Therefore, the sensor based FECTs can be used for low cost, accurate, non-enzymatic detection of UA in clinical diagnostics and bioanalytical applications.
Collapse
Affiliation(s)
- Yang Tao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yao Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Rufeng Zhu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yuanli Chen
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Xue Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Liyan Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yuedan Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
12
|
Gualandi I, Tessarolo M, Mariani F, Possanzini L, Scavetta E, Fraboni B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers (Basel) 2021; 13:894. [PMID: 33799437 PMCID: PMC8000821 DOI: 10.3390/polym13060894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/26/2023] Open
Abstract
Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic.
Collapse
Affiliation(s)
- Isacco Gualandi
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Federica Mariani
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Luca Possanzini
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Erika Scavetta
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| |
Collapse
|