1
|
Dulsat-Masvidal M, Bertolero A, Mateo R, Lacorte S. Legacy and emerging contaminants in flamingos' chicks' blood from the Ebro Delta Natural Park. CHEMOSPHERE 2023; 312:137205. [PMID: 36368533 DOI: 10.1016/j.chemosphere.2022.137205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The Ebro Delta is a wetland of international importance for waterbird conservation but severally affected by intensive agriculture, toxic waste discharges from a past chloro-alkali industry and affluence of tourism. The discharge of contaminants associated to these activities pose waterbirds breeding in the Ebro Delta at risk. The aim of this study is to evaluate the exposure of 91 emerging and legacy micropollutants in flamingo chicks (Phoenicopterus roseus), an emblematic species of the area. Fifty chicks of 45-60 days were captured, biometric parameters measured and whole blood collected. Compounds analyzed included perfluoroalkyl substances (PFASs), pharmaceuticals, organophosphate esters (OPEs), in-use pesticides, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), and polycyclic aromatic hydrocarbons (PAHs). The results indicate a multi-exposure of flamingo's chicks from a very young age. PFASs were the most ubiquitous compounds with ∑PFASs ranging from 9.34 to 576 ng/mL, being PFOA, PFOS and PFHxS detected in all samples. ∑PAHs ranged from 0.19 to 423 ng/mL, ∑PCBs from 0.5 to 15.6 ng/mL and ∑OCs from 1.35 to 37.8 ng/mL. Pharmaceuticals, OPEs and in-use pesticides were not detected. The flamingo's filtering behavior on mud and maternal ovo-transference are the more likely routes of exposure of organic micropollutants to flamingos' chicks. The reported levels of micropollutants were not associated with any alteration in the body condition of chicks. This is the first study to describe flamingos chicks' exposure to multiple contaminants, highlighting the importance of biomonitoring for wildlife conservation and biodiversity preservation.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Albert Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, Trinquet 8, 43580, Deltebre, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research (IREC), CSIC-UCLM-JCCM, Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Sun Y, Tang S, Cui H, Wang C, Yan H, Hu J, Wan Y. Tetraphenylphosphonium Chloride-Enhanced Ionization Coupled to Orbitrap Mass Spectrometry for Sensitive and Non-targeted Screening of Polyhalogenated Alkyl Compounds from Limited Serum. Anal Chem 2022; 94:14195-14204. [PMID: 36214478 DOI: 10.1021/acs.analchem.2c02158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many types of halogenated compounds are known to bioaccumulate in humans, few are routinely biomonitored and many have remained uncharacterized in human exposome studies due to a lack of high-sensitivity and high-resolution analytical methods. In this study, we discovered tetraphenylphosphonium chloride (Ph4PCl, 10 μM) as a simple additive to the mobile phase, which enhanced the ionizations of polyhalogenated alkyl compounds (such as organochlorinated pesticides [OCPs], chlorinated paraffins [CPs], dechlorane plus [DPs], and some brominated flame retardants [BFRs]) in the form [M + Cl]- and boosted mass spectrometry responses by an average of 1-3 orders of magnitude at a resolution of 140,000. Ph4PCl-enhanced ionization coupled with a halogenation-guided screening process was used to establish a sensitive and non-targeted method that required only single-step sample preparation and identified Cl- and/or bromine-containing alkyl compounds. The method enabled the identification of ∼700 polyhalogenated compounds from 200 μL of human serum, 240 of which were known compounds: 33 short-chain CPs, 52 median-chain CPs, 97 long-chain CPs, 22 very short-chain CPs (vSCCPs), 19 OCPs, 13 DPs, and 4 BFRs. We also identified 325 emerging contaminants (34 unsaturated CPs, 285 chlorinated fatty acid methyl esters [CFAMEs], and 6 chloro-bromo alkenes) and 130 new contaminants (114 oxygen-containing CPs, 2 hexachlorocyclohexane structural analogs, and 11 amino-containing and 3 nitrate-containing chlorinated compounds). The full scan results highlighted the dominance of CPs, CFAMEs, vSCCPs, and dichlorodiphenyltrichloroethanes in the serum samples. Ph4PCl-enhanced ionization enabled the sensitive and non-targeted identifications of polyhalogenated compounds in small volumes of biological fluid.
Collapse
Affiliation(s)
- Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ayala-Cabrera JF, Montero L, Meckelmann SW, Uteschil F, Schmitz OJ. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part II: Current applications. Anal Chim Acta 2022; 1238:340379. [DOI: 10.1016/j.aca.2022.340379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
4
|
Sun J, Shaw S, Berger M, Halaska B, Roos A, Bäcklin BM, Zheng X, Liu K, Wang Y, Chen D. Spatiotemporal Trends of Legacy and Alternative Flame Retardants in Harbor Seals from the Coasts of California, the Gulf of Maine, and Sweden. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5714-5723. [PMID: 35442023 DOI: 10.1021/acs.est.2c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Temporal trends of polybrominated diphenyl ethers (PBDEs) have been extensively studied in various environmental compartments globally. However, despite the increasing use of alternative flame retardants following PBDE bans, the spatiotemporal trends of these replacements have rarely been studied, and the available results are often inconsistent. In the present study, we retrospectively investigated the spatiotemporal trends of PBDEs and a suite of alternative brominated FRs (aBFRs) and chlorinated FRs (i.e., dechloranes or DECs) in three harbor seal (Phoca vitulina) populations from the coasts of California, the Gulf of Maine, and southern Sweden during 1999-2016. We observed significantly decreasing trends of ΣPBDEs in all the three populations at an annual rate of 9-11%, which were predominantly driven by the declining concentrations of tetra- and penta-BDEs. The levels of ΣaBFRs decreased significantly in seals from California (mainly 1,3,5-tribromobenzene) and Sweden (mainly hexabromobenzene), while no trend was observed for those from Maine. By contrast, DECs (dominated by DEC 602) did not decrease significantly in any population. Compared with the consistent PBDE congener profiles across regions, aBFRs and DECs exhibited varying compositional profiles between regions, likely indicating region-specific sources of these alternative FR mixtures. Spatial analysis also revealed regional differences in the concentrations of PBDEs, aBFRs, and DECs in harbor seals. Our reconstructed spatiotemporal trends suggest the effective regulation of commercial penta-BDE mix in these regions and warrant further monitoring of the higher brominated BDEs and alternative FRs.
Collapse
Affiliation(s)
- Jiachen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Susan Shaw
- Shaw Institute, Blue Hill Research Center, Blue Hill ME-04614, Maine, United States
| | - Michelle Berger
- Shaw Institute, Blue Hill Research Center, Blue Hill ME-04614, Maine, United States
| | - Barbie Halaska
- The Marine Mammal Center, Sausalito CA-94965, California, United States
| | - Anna Roos
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Britt-Marie Bäcklin
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Xiaoshi Zheng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Kunyan Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Yan Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| |
Collapse
|