1
|
Li J, Shao Y, Li X, Wang X, Wang K, Zhang X, Pan Q, Gao F, Li Y, Su Z. Cadmium MOF-Based Varied {Cd 2} Clusters as Multifunctional Fluorescence Sensors to Detect Fe 3+, Cr 2O 72-, TNP, and NFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8270-8278. [PMID: 40105361 DOI: 10.1021/acs.langmuir.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Metal-organic frameworks (MOFs) have been widely used in the field of fluorescence sensing due to their highly ordered spatial structures, large porosity, and uniform pore sizes. Here, two new Cd- MOFs (JLJU-2 and JLJU-3), based on the ligand 4-(1H-1,2,4-triazol-1-yl)phenyl-4,2':6',4"-terpyridine (L) and two carboxylate ligands, were synthesized by the solvothermal method. JLJU-2 and JLJU-3 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, UV-visible spectroscopy, and thermogravimetric analysis. Respectively, JLJU-2 and JLJU-3 exhibit 2D and 3D structures using the L ligand and 2-aminoterephthalic acid (2-ATA)/nitroterephthalic acid (NTPA), adopted with different coordination modes. Furthermore, the porous crystal structures of JLJU-2 and JLJU-3 enable them to be well-suited for applications in the field of fluorescence sensing, in which JLJU-3 can detect Fe3+, Cr2O72-, TNP, and NFT with high selectivity and sensitivity. This work provides useful information for a versatile fluorescence sensing platform for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Yan Shao
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xiankuo Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Kuishan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Xuejian Zhang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Qingqing Pan
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Fengwei Gao
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yongtao Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Su X, Liu H, Zhu G, Ge G, Wang Y, Zhou P, Zhou Q. Construction of eco-friendly dual carbon dots ratiometric fluorescence probe for highly selective and efficient sensing mercury ion. J Environ Sci (China) 2025; 148:1-12. [PMID: 39095148 DOI: 10.1016/j.jes.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 08/04/2024]
Abstract
In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso‑tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guobei Ge
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuxin Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
3
|
Xie HH, Yu H, Xu X, Tang SF. Rational fabrication of an anionic zinc carboxylate framework as a fluorescent probe for 2,6-pyridinedicarboxylic acid. Dalton Trans 2024; 54:159-165. [PMID: 39526411 DOI: 10.1039/d4dt02529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sensitive, rapid and convenient sensing of 2,6-pyridinedicarboxylic acid (DPA, a biomarker for Bacillus anthracis) is crucial for the screening and diagnosis of anthrax. Metal organic framework (MOF)-based sensors are very promising for sensing DPA; however, the design and construction of high-performance sensors with high specificity and sensitivity is still challenging. In this work, a novel luminescent carboxylate MOF (TTCA-Zn) was assembled and employed specifically for the recognition of DPA. We found that it has a three-dimensional anionic framework structure with sqc topology and uses [NH2(CH3)2]+ as the counter ions. The fluorescence intensity of TTCA-Zn displays a "turn-on" response to the addition of DPA and can function as a high-performance fluorescent sensor of DPA over a wide detection range of 0 to 70 μM, with a low detection limit of 14 nM. The sensing mechanism is also systematically investigated. This work not only reports a new fluorescence sensing material for DPA, but also provides a strategy for the structural design, assembly, and application of such sensors.
Collapse
Affiliation(s)
- Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.
| | - Hao Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.
| | - Xiuling Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.
| |
Collapse
|
4
|
Yang S, Lin J, Wang S, Wu X, Schipper D, Yang X. Qualitative and Quantitative Luminescence Detection of 2,6-Dipicolinic Acid and Levofloxacin Based on a High-Nuclearity Eu(III) Nanomolecular Sensor. Anal Chem 2024. [PMID: 39556047 DOI: 10.1021/acs.analchem.4c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Rapid and accurate testing of 2,6-dipicolinic acid (DPA) and levofloxacin (LFX) has been attracting much attention due to the fact that the former is an important biomarker of anthrax spores and the latter is a third-generation fluoroquinolone drug and has been recognized as an important environmental pollutant. Herein, we report the preparation of a 13-metal Eu(III) nanomolecular sensor (molecular sizes: 2.0 × 2.4 × 3.2 nm) bearing a new flexible Schiff base ligand for luminescence testing of DPA and LFX with high selectivity and sensitivity. The rapid enhancement of the Eu(III) luminescence of 1 caused by DPA and LFX is expressed by fitting equation I615nm = k × [C] + a, which can be used to quantitatively detect DPA and LFX concentrations in CH3CN, fetal calf serum (FCS), and a real drug. The response times of 1 to DPA and LFX are less than ten seconds, with detection limits as low as 3.78 × 10-2 to 2.71 nM. The test strips containing 1, as well as 1@SA films, can be used to qualitatively detect DPA and LFX by the color changes under the irradiation of UV light.
Collapse
Affiliation(s)
- Shimin Yang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiazhao Lin
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shiqing Wang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Desmond Schipper
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street - A5300, Austin, Texas 78712-1224, United States
| | - Xiaoping Yang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Zhao B, Liu X, Cheng Z, Liu X, Zhang X, Feng X. A portable Eu-MOF-loaded paper-based probe integrated with smartphone for the visual and on-site detection of Cr 2O 72- in aqueous media. Talanta 2024; 278:126462. [PMID: 38917552 DOI: 10.1016/j.talanta.2024.126462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The high toxicity of dichromate anion (Cr2O72-) its accurate necessitates its sensitive and effective detection to safeguard human health. The study introduces a Eu-MOF fluorescent probe, named as Eu-TDCA, synthesized using 2,5-thiophenedicarboxylic acid (H2TDCA) as a bridging ligand for the detection of Cr2O72- in aqueous media. The probe suspension can detect Cr2O72- through fluorescence quenching, and the detection process exhibits a wide linear range (0-85 and 85-230 mg/L), low limit of detection (LOD, 5.1 μg/L) and rapid response speed (2 min). Furthermore, a portable Eu-TDCA-loaded paper-based probe, integrated with a smartphone color recognition app, was developed for the visual, sensitive and quantitative detection of Cr2O72- in real lake and river water samples, achieving satisfactory recoveries of 99.72%-103.75 %. Additionally, an advanced logic gate device was designed to simplify the detection process, providing a new direction for intelligent on-line detection of analytes.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Zheng Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xu Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
6
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Liu Y, Chen L, Su X, Wang L, Jiao Y, Zhou P, Li B, Duan R, Zhu G. Constructing an eco-friendly and ratiometric fluorescent sensor for highly efficient detection of mercury ion in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4318-4329. [PMID: 38100024 DOI: 10.1007/s11356-023-31167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
Mercury ion (Hg2+) is a highly toxic and ubiquitous pollutant, whose effective detection has aroused widespread concern. A novel ratiometric fluorescent sensor has been designed to rapidly and efficiently detect Hg2+ based on blue/red carbon dots (CDs) with environmental friendliness. This sensor was well characterized via TEM, FTIR, XPS, UV-vis, and zeta potential analysis and displayed excellent fluorescence properties and stability. The fluorescence of blue CDs at 447 nm was significantly quenched with the addition of Hg2+ resulted from the static quenching, whereas that of red CDs at 650 nm remained invariable. A sensitive method for Hg2+ determination was constructed in the range of 0.05-7.0 nmol mL-1 with optimal conditions, and the detection limit was down to 0.028 nmol mL-1. Meanwhile, compared to other 17 metal ions, the ratiometric fluorescent sensor exhibited high selectivity for Hg2+. Furthermore, satisfied recoveries had also been obtained for measuring trace Hg2+ in practical environmental samples. This developed ratiometric fluorescent sensor provided a reliable, environmental-friendly, rapid, and efficient platform for the detection of Hg2+ in environmental applications.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Letian Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Li Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Ya Jiao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Bin Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruijuan Duan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
8
|
Zhang D, Jia D, Fang Z, Min H, Xu X, Li Y. The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid. Molecules 2023; 28:6557. [PMID: 37764333 PMCID: PMC10537030 DOI: 10.3390/molecules28186557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus anthracis has gained international attention as a deadly bacterium and a potentially deadly biological warfare agent. Dipicolinic acid (DPA) is the main component of the protective layer of anthracis spores, and is also an anthrax biomarker. Therefore, it is of great significance to explore an efficient and sensitive DPA detection method. Herein, a novel ratio hybrid probe (CQDs-PIL-Eu3+) was prepared by a simple one-step hydrothermal method using carbon quantum dots (CQDs) as an internal reference fluorescence and a covalent bond between CQDs and Eu3+ by using a polyionic liquid (PIL) as a bridge molecule. The ratiometric fluorescence probe was found to have the characteristics of sensitive fluorescence visual sensing in detecting DPA. The structure and the sensing properties of CQDs-PIL-Eu3+ were investigated in detail. In particular, the fluorescence intensity ratio of Eu3+ to CQDs (I616/I440) was linear with the concentration of DPA in the range of 0-50 μM, so the detection limit of the probe was as low as 32 nm, which was far lower than the DPA dose released by the number of anthrax spores in human body (60 μM) and, thus, can achieve sensitive detection. Therefore, the ratiometric fluorescence probe in this work has the characteristics of strong anti-interference, visual sensing, and high sensitivity, which provides a very promising scheme for the realization of anthrax biomarker DPA detection.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Dongsheng Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Zhou Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Hua Min
- Technology Transfer Center, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Xiaoyi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Ying Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| |
Collapse
|
9
|
Miao P, Li Y, Du Y. Dual-ligand 3D lammelar chiral metal-organic framework for capillary electrochromatographic enantioseparations. Mikrochim Acta 2023; 190:302. [PMID: 37464133 DOI: 10.1007/s00604-023-05890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Dual-ligand metal-organic frameworks (MOFs) based on tryptophan and camphoric acid were designed and synthesized as the stationary phase of the capillary electrochromatography (CEC) system. This CEC system showed significantly improved enantioseparation ability for nine drugs, compared with the single-ligand MOF stationary phase. Characterization methods such as N2 adsorption-desorption isotherms and scanning electron microscopy proved that the dual-ligand MOFs possessed excellent 3D spatial structures (ligand ratio is 1:1) which ensured the enantioseparation capability of the CEC system. The influence of ligand types on the chiral selectivity of MOFs was explored using racemic phenylalaninol and its single enantiomers as models. When the chiral type of the ligands is consistent, the enantioseparation ability of the CEC system is better. The chromatographic conditions such as buffer concentration, buffer pH, organic solvent addition ratio, and applied voltage were optimized, and satisfactory repeatability and stability of the CEC system were verified. Additionally, the enantioseparation mechanism of the CEC system was discussed through adsorption kinetic experiments, adsorption isotherm fitting, and thermodynamics.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuchen Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
10
|
Wu Y, Zhou Y, Long H, Chen X, Jiang Y, Zhang L, Le T. A novel Zn/Eu-MOF for the highly sensitive, reversible and visualized sensing of ofloxacin residues in pork, beef and fish. Food Chem 2023; 422:136250. [PMID: 37126953 DOI: 10.1016/j.foodchem.2023.136250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The study investigates a bimetallic organic framework (Zn/Eu-MOF) based fluorescent probe for visual detection of ofloxacin (OFL) in pork, beef and fish. The developed sensing probe recognizes OFL through internal filtration and cation-π interaction between OFL and Zn/Eu-MOF, resulting in a distinct color change from orange-red to light green. The content of OFL can be determined through RGB analysis by a mobile-phone. The developed sensing probe offers several advantages such as broad linear range (0.1 ∼ 80 μM), rapid response time (30 s), low detection line (0.44 μM). The effectiveness of the sensing probe can last for five rounds with good recovery. Moreover, the application of the sensing probe on pork, beef and fish samples are reliable, with recoveries ranging from 93.4 to 112.1%, and the relative standard deviations (RSD) within 1.17% to 2.06%. These results suggest that the developed sensing probe could have significant potential for practical on-site test in food.
Collapse
Affiliation(s)
- Yan Wu
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Zhou
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Hongchen Long
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiangyu Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yuanyuan Jiang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
11
|
Deng D, Xu J, Li T, Tan D, Ji Y, Li R. Dual-mode strategy for 2,6-dipicolinic acid detection based on the fluorescence property and peroxidase-like activity inhibition of Fe-MIL-88NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122363. [PMID: 36702084 DOI: 10.1016/j.saa.2023.122363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
This work designed a fluorometric/colorimetric dual-mode sensor for detecting 2,6-dipicolinic acid (DPA) based on the blue emission property and peroxidase-like activity of Fe-MIL-88NH2. The fluorescence of Fe-MIL-88NH2 was obviously turned off by Cu2+, but DPA was able to bring it back because it has a strong chelate bond with Cu2+. Fe-MIL-88NH2 also displayed high peroxidase-like activity, which accelerated the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidation product (oxTMB) when H2O2 was present. When DPA was added, it efficiently inhibited the peroxidase-like activity of Fe-MIL-88NH2, causing less oxTMB and less absorbance at 652 nm. The fluorescence recovery of Fe-MIL-88NH2 and the change in absorbance at 652 nm were used as analytical signals for dual-mode detection of DPA. The linear responses in the range of 10-60 μM and 60-160 μM were achieved for the fluorometric mode, and the limit of detection (LOD) was 1.46 μM. The respective values of linear range and LOD for the colorimetric mode were 5-25 μM and 3.00 μM, respectively. In summary, the dual-mode testing strategy successfully detected DPA in aqueous environmental samples, suggesting great potential in disease prevention and environmental analysis.
Collapse
Affiliation(s)
- Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Dongdong Tan
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
12
|
Wang H, Ai M, Liu J. Detecting phosphate using lysine-sensitized terbium coordination polymer nanoparticles as ratiometric luminescence probes. Anal Bioanal Chem 2023; 415:2185-2191. [PMID: 36864308 DOI: 10.1007/s00216-023-04624-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Probes for detecting phosphate ions (Pi) are required for environmental monitoring and to protect human health. Here, novel ratiometric luminescent lanthanide coordination polymer nanoparticles (CPNs) were successfully prepared and used to selectively and sensitively detect Pi. The nanoparticles were prepared from adenosine monophosphate (AMP) and Tb3+, and lysine (Lys) was used as a sensitizer (through the antenna effect) to switch on Tb3+ luminescence at 488 and 544 nm while Lys luminescence at 375 nm was quenched because of energy transfer from Lys to Tb3+. The complex involved is here labeled AMP-Tb/Lys. Pi destroyed the AMP-Tb/Lys CPNs and therefore decreased the AMP-Tb/Lys luminescence intensity at 544 nm and increased the luminescence intensity at 375 nm at an excitation wavelength of 290 nm, meaning ratiometric luminescence detection was possible. The ratio between the luminescence intensities at 544 and 375 nm (I544/I375) was strongly associated with the Pi concentration between 0.1 and 6.0 μM, and the detection limit was 0.08 μM. The dual-emission reverse-change ratio luminescence sensing method can exclude environmental effects, so the proposed assay was found to be very selective. The method was successfully used to detect Pi in real water samples, and acceptable recoveries were found, suggesting that the method could be used in practice to detect Pi in water samples.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
13
|
Wu K, Fei T, Zhang T. Humidity Sensors Based on Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4208. [PMID: 36500831 PMCID: PMC9740828 DOI: 10.3390/nano12234208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Humidity sensors are important in industrial fields and human activities. Metal-organic frameworks (MOFs) and their derivatives are a class of promising humidity-sensing materials with the characteristics of a large specific surface area, high porosity, modifiable frameworks, and high stability. The drawbacks of MOFs, such as poor film formation, low electrical conductivity, and limited hydrophilicity, have been gradually overcome with the development of material science. Currently, it is moving towards a critical development stage of MOF-based humidity sensors from usability to ease of use, of which great challenges remain unsolved. In order to better understand the related challenges and point out the direction for the future development of MOF-based humidity sensors, we reviewed the development of such sensors based on related published work, focusing on six primary types (impedance, capacitive, resistive, fluorescent, quartz crystal microbalance (QCM), and others) and analyzed the sensing mechanism, material design, and sensing performance involved, and presented our thoughts on the possible future research directions.
Collapse
Affiliation(s)
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
15
|
Wang X, Wang X. UiO-66-NH 2 based fluorescent sensing for detection of tetracyclines in milk. RSC Adv 2022; 12:23427-23436. [PMID: 36090428 PMCID: PMC9382652 DOI: 10.1039/d2ra04023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, a fluorescent sensor based on a zirconium-based metal organic framework was prepared for the detection of tetracyclines (TCs) in milk. The UiO-66-NH2 fluorescent sensor was synthesized by a simple microwave-assisted method with 2-aminoterephthalic acid and zirconium chloride as precursors. In the presence of target TCs, the synergistic effect of the inner filter effect (IFE) and photo-induced electron transfer (PET) was responsible for the fluorescence quenching of UiO-66-NH2, and the fluorescence sensor showed a rapid fluorescence quenching response (5 min) to target TCs. The proposed UiO-66-NH2 sensor had good sensitivity and selectivity, and under the optimal conditions possessed detection limits of 0.449, 0.431, and 0.163 μM for tetracycline (TET), oxytetracycline (OTC), and doxycycline (DOX), respectively. Besides, the UiO-66-NH2 sensor was successfully applied to the quantitative detection of TCs in milk samples with reasonable recoveries of 93.26-115.17%, and the detection results achieved from the as-fabricated fluorescence sensing assay were consistent with those of high-performance liquid chromatography (HPLC), indicating the potential applicability of the UiO-66-NH2 sensor for detecting TCs in actual food samples.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xufeng Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
16
|
Wang H, Fu T, Ai M, Liu J. Ratiometric fluorescence nanoprobe based on carbon dots and terephthalic acid for determining Fe 2+ in environmental samples. Anal Bioanal Chem 2022; 414:6735-6741. [PMID: 35864267 DOI: 10.1007/s00216-022-04233-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
A ratiometric fluorescent nanoprobe using carbon dots (CDs) and involving oxidation of terephthalic acid (TPA) induced by hydroxyl radicals (·OH) was developed for sensitively and selectively determining Fe2+ ions. When Fe2+ ions are added to the TPA@CDs/H2O2 system, ·OH produced through the Fenton reaction oxidizes the non-fluorescent TPA to give 2-hydroxyl terephthalic acid, which fluoresces at 423 nm when excited at 286 nm. The ·OH and Fe3+ produced quench CD fluorescence at 326 nm. The 2-hydroxyl terephthalic acid to CD fluorescence intensity ratio linearly increased as the Fe2+ concentration increased in the range 0.5-50 μM, and the detection limit was 0.25 μM. The new assay is very selective because it involves dual-emission reverse change ratio fluorescence sensing, which can exclude matrix effects. The new nanoprobe was used to determine Fe2+ concentrations in real water samples, and the recoveries were found to be acceptable. Schematic of the ratiometric fluorometric method for determining Fe2+ based on CDs and TPA.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Ting Fu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
17
|
Ma Y, Zhao Z, Zhu M, Zhang Y, Kosinova M, Fedin VP, Wu S, Gao E. Rapid detection of lamotrigine by a water stable fluorescent lanthanide metal-organic framework sensor. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Wen T, Shao Z, Wang H, Zhao Y, Cui Y, Hou H. Enhancement of Proton Conductivity in Fe-Metal-Organic Frameworks by Postsynthetic Oxidation and High-Performance Hybrid Membranes with Low Acidity. Inorg Chem 2021; 60:18889-18898. [PMID: 34883019 DOI: 10.1021/acs.inorgchem.1c02671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The postsynthetic oxidation (PSO) of metal nodes in metal-organic frameworks (MOFs) has received widespread attention because PSO can significantly improve the performance of materials without changing the framework. This study investigates the influence of PSO on the proton conductivity of MOFs. The PSO product {[FeIII3L2(H2O)6]•3(OH)}n (2) is obtained by oxidizing {[FeII3L2(H2O)6]•3H2O}n (1) with Cu(NO3)2. At 98% RH and 70 °C, the proton conductivity of 2 is 66 times higher than that of 1, indicating that PSO can promote proton conduction. In the PSO process, metal ions shuttle in the MOF framework to functionalize the pores, and the change in the guest molecule forms more host-guest collaborative hydrogen bonds. All of these have made a significant contribution to proton conduction. Because 2 exhibits high proton conductivity (2.66 × 10-4 S·cm-1) at 98% RH and 80 °C, we doped 2 into a highly economical poly(vinylidene fluoride) (PVDF)/polyvinylpyrrolidone (PVP) substrate to make a hybrid membrane. The resulting hybrid membrane exhibits a high proton conductivity of 1.77 × 10-3 S·cm-1 at 98% RH and 80 °C, which is 4 times higher than the proton conductivity of the PVDF/PVP membrane and 6.6 times higher than that of 2.
Collapse
Affiliation(s)
- Tianyang Wen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Hongfei Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|