1
|
Yang M, Wang C, Cai J, Lai X, Cao M, Zhao X. Advancement of microchip electrophoresis coupled with capacitively coupled contactless conductivity detection-from design to application (2018-2024). ANAL SCI 2025:10.1007/s44211-025-00771-3. [PMID: 40279040 DOI: 10.1007/s44211-025-00771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Over the past three decades, microchip electrophoresis coupled with capacitively coupled contactless conductivity detection (ME-C4D) has garnered considerable interest due to its various merits, including minimal sample consumption, compact structure, immediate detection, and high analytical precision. Continuous technological innovation and improvement have significantly advanced ME-C4D in structural design, fabrication processes, and experimental methodologies. As a result, the application of this technology has expanded into a wider range of electrochemical analysis fields, including disease diagnosis, food safety assessment, environmental pollutant detection, and soil nutrient analysis. This review meticulously examines the forefront of ME-C4D over the last five years. It methodically categorizes and scrutinizes advancements from various dimensions, including newly emerged ME microchips, C4D electrodes, experimental protocols, and pioneering applications. Moreover, this paper critically summarizes these developments, identifying the prevailing limitations and challenges within ME-C4D. Ultimately, it projects potential future trajectories for innovation in the field of ME-C4D, suggesting pathways to overcome existing hurdles and hinting at the untapped possibilities that lie ahead.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
| | - Chaofan Wang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Jun Cai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Mingyi Cao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
2
|
Hauser PC, Kubáň P. Contactless Conductivity Detection for Capillary Electrophoresis-Developments From 2020 to 2024. Electrophoresis 2024. [PMID: 39607304 DOI: 10.1002/elps.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The review covering the development of capillary electrophoresis with capacitively coupled contactless conductivity detection from 2020 to 2024 is the latest in a series going back to 2004. The article considers applications employing conventional capillaries and planar lab-on-chip devices as well as fundamental and technical developments of the detector and complete electrophoresis instrumentation.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
Silver K, Li J, Porch A, Jamieson WD, Castell O, Dimitriou P, Kallnik C, Barrow D. 3D-printed microfluidic-microwave device for droplet network formation and characterisation. LAB ON A CHIP 2024; 24:5101-5112. [PMID: 39324512 DOI: 10.1039/d4lc00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microfluidic-microwave devices (MMDs) have emerged as precision tools for the rapid, accurate, sensitive, and non-invasive characterisation of liquids in low-volumes. However, the fabrication of MMDs remains a significant challenge. This is due to the complexities associated with integrating fluidic ducts and electronic components. Herein, we present a versatile and economical 3D-printing approach using ducts filled with liquid metal as an electrical conductor. Cyclic olefin copolymer, polylactic acid, and polypropylene were identified as printable dielectric materials for MMD fabrication. Substrates of 3D-printed cyclic olefin copolymer exhibited the lowest loss tangent (0.002 at 2.7 GHz), making them suitable materials for high-frequency microwave devices. Liquid metal, specifically gallium-indium eutectic, was injected into the printed ducts to form electrically conductive microwave structures. Exemplary MMDs operating at 2 GHz integrated split-ring microwave resonators that serve as sensitive detection geometries able to measure changes in dielectric properties, with droplet-forming fluidic junctions and flow channels. The performance of 3D-printed MMDs for microwave droplet sensing was comprehensively evaluated. These devices were used in the formation and characterisation of water-in-oil emulsions, constructing definable lipid-segregated droplet interface bilayer (DIB) networks. This work indicates the feasibility of using 3D-printed manifolds for the rapid prototyping of customised MMDs, and also demonstrates the potential of MMDs as new analytical research tools in droplet-based materials and biochemistry studies.
Collapse
Affiliation(s)
- Kai Silver
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Adrian Porch
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Oliver Castell
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | | | - Colin Kallnik
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - David Barrow
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| |
Collapse
|
4
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
5
|
Selemani MA, Martin RS. Use of 3D printing to integrate microchip electrophoresis with amperometric detection. Anal Bioanal Chem 2024; 416:4749-4758. [PMID: 38581532 DOI: 10.1007/s00216-024-05260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
This paper describes the use of PolyJet 3D printing to fabricate microchip electrophoresis devices with integrated microwire electrodes for amperometric detection. The fabrication process involves 3D printing of two separate pieces, a channel layer and an electrode layer. The channel layer is created by 3D printing on a pre-fabricated mold with a T-intersection. For the electrode layer, a stencil design is printed directly on the printing tray and covered with a piece of transparent glass. Microwire electrodes are adhered over the glass piece (guided by underlaying stencil) and a CAD design of the electrode layer is then printed on top of the microwire electrode. After delamination from the glass after printing, the microwire is embedded in the printed piece, with the stencil design ensuring that alignment and positioning of the electrode is reproducible for each print. After a thermal bonding step between the channel layer and electrode layer, a complete electrophoresis device with integrated microelectrodes for amperometric detection results. It is shown that this approach enables different microwire electrodes (gold or platinum) and sizes (100 or 50 µm) to be integrated in an end-channel configuration with no gap between the electrode and the separation channel. These devices were used to separate a mixture of catecholamines and the effect of separation voltage on the potential voltage applied on the working electrode was also investigated. In addition, the effect of electrode size on the number of theoretical plates and limit of detection was studied. Finally, a device that contains different channel heights and a detection electrode was 3D-printed to integrate continuous flow sampling with microchip electrophoresis and amperometric detection.
Collapse
Affiliation(s)
- Major A Selemani
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA.
- Center for Additive Manufacturing, Saint Louis University, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Veloso WB, Meloni GN, Arantes IVS, Pradela-Filho LA, Muñoz RAA, Paixão TRLC. Gold film deposition by infrared laser photothermal treatment on 3D-printed electrodes: electrochemical performance enhancement and application. Analyst 2024; 149:3900-3909. [PMID: 38912921 DOI: 10.1039/d4an00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Promsuwan K, Kareng Y, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, Limbut W. A novel 3D-printed portable electroplating device enhances latent fingerprints on metal substrates. Talanta 2024; 272:125822. [PMID: 38422904 DOI: 10.1016/j.talanta.2024.125822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
This work introduces a 3D-printed portable electroplating device for the visualization of latent fingerprints (LFPs) on metallic substrates. An electroplating solution of Ag+-Cu2+ in a deep eutectic solvent (DES) is used. The electroplating is performed by two electrodes equivalent to an anode (+) and a cathode (-). The cathode is connected to the metal surface with the magnetic or alligator clip for carrying the LFP. The anode is connected to cotton dipped in the electroplating solution. The device was optimized in terms of the electroplating solution composition, and electroplating potential, current, and time. The device produced images with good resolution, revealing LFP ridges in minute detail of more than 12 points. The device also exhibited good repeatability and images were assessed against guidelines from the Centre for Applied Science and Technology (CAST) and the International Fingerprint Research Group (IFRG). The developed device could be applied to visualize LFPs in forensic investigations.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yameelah Kareng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
8
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Pradela Filho LA, Paixão TRLC, Nordin GP, Woolley AT. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem 2024; 416:2031-2037. [PMID: 37470814 PMCID: PMC10799186 DOI: 10.1007/s00216-023-04862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.
Collapse
Affiliation(s)
- Lauro A Pradela Filho
- Department of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Yin B, Zhang Z, Wang Y, Zeng H, Xu J, Li H, Li Y, Zhang M. Compact contactless conductometric, ultraviolet photometric and dual-detection cells for capillary electrophoresis via additive manufacturing. J Chromatogr A 2023; 1712:464469. [PMID: 37924616 DOI: 10.1016/j.chroma.2023.464469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
The growing demand for tailored detectors in capillary electrophoresis (CE), addressing tasks like field deployment or dual-detection analysis, emphasizes the necessity for compact detection cells. In this work, we propose cost-effective and user-friendly additive manufacturing (3D-printing) approaches to produce such miniaturized detection cells suitable for a range of CE applications. Firstly, capacitively-coupled contactless conductivity detection (C4D) cells of different sizes are fabricated by casting low-melting-point alloy into 3D-printed molds. Various designs of Faraday shields are integrated within the cells and compared. A mini-C4D cell (9.5×7.0×7.5 mm3) is produced, with limits of detection for alkaline cations ranging from 8-12 μM in a short-capillary based CE application. Secondly, ultraviolet photometric (UV-PD) detection cells are fabricated using 3D printing. These cells feature two narrow slits with a width of 60 μm, which are positioned along the path of incident and transmission light to facilitate collimation. A deep UV-LED (235 nm or 255 nm) is employed as the light source, and black resin is determined to be the optimal material for 3D printing the UV-PD cell, owing to its superior UV light absorption capabilities. The UV-PD cell is connected to the LED and photodetector through two optical fibers, making it easy to switch the light source and detector. The effective pathlength and stray light percentage for detecting on a 75 μm id capillary are 74 μm and 0.5 %, respectively. Thirdly, a dual-detection cell that combined C4D and UV-PD at a single detection point is proposed. The performance of direct detection by C4D and indirect detection by UV-PD is compared for detecting organic acids. The strategies for developing cost-effective compact detection cells facilitate the versatile integration of multiple detection methods in CE analysis.
Collapse
Affiliation(s)
- Bangjie Yin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zheng Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yingchun Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hongzhou Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
11
|
HUANG J, XIA L, XIAO X, LI G. [Advances in microchip electrophoresis for the separation and analysis of biological samples]. Se Pu 2023; 41:641-650. [PMID: 37534551 PMCID: PMC10398827 DOI: 10.3724/sp.j.1123.2022.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 08/04/2023] Open
Abstract
Microchip electrophoresis is a separation technology that involves fluid manipulation in a microchip; the advantages of this technique include high separation efficiency, low sample consumption, and fast and easy multistep integration. Microchip electrophoresis has been widely used to rapidly separate and analyze complex samples in biology and medicine. In this paper, we review the research progress on microchip electrophoresis, explore the fabrication and separation modes of microchip materials, and discuss their applications in the detection and analysis of biological samples. Research on microchip materials can be mainly categorized into chip materials, channel modifications, electrode materials, and electrode integration methods. Microchip materials research involves the development of silicon, glass, polydimethylsiloxane and polymethyl methacrylate-based, and paper electrophoretic materials. Microchannel modification research primarily focuses on the dynamic and static modification methods of microchannels. Although chip materials and fabrication technologies have improved over the years, problems such as high manufacturing costs, long processing time, and short service lives continue to persist. These problems hinder the industrialization of microchip electrophoresis. At present, few static methods for the surface modification of polymer channels are available, and most of them involve a combination of physical adsorption and polymers. Therefore, developing efficient surface modification methods for polymer channels remains a necessary undertaking. In addition, both dynamic and static modifications require the introduction of other chemicals, which may not be conducive to the expansion of subsequent experiments. The materials commonly used in the development of electrodes and processing methods for electrode-microchip integration include gold, platinum, and silver. Microchip electrophoresis can be divided into two modes according to the uniformity of the electric field: uniform and non-uniform. The uniform electric field electrophoresis mode mainly involves micro free-flow electrophoresis and micro zone electrophoresis, including micro isoelectric focusing electrophoresis, micro isovelocity electrophoresis, and micro density gradient electrophoresis. The non-uniform electric field electrophoresis mode involves micro dielectric electrophoresis. Microchip electrophoresis is typically used in conjunction with conventional laboratory methods, such as optical, electrochemical, and mass spectrometry, to achieve the rapid and efficient separation and analysis of complex samples. However, the labeling required for most widely used laser-induced fluorescence technologies often involves a cumbersome organic synthesis process, and not all samples can be labeled, which limits the application scenarios of laser-induced fluorescence. The applications of unlabeled microchip electrophoresis-chemiluminescence/dielectrophoresis are also limited, and simplification of the experimental process to achieve simple and rapid microchip electrophoresis remains challenging. Several new models and strategies for high throughput in situ detection based on these detection methods have been developed for microchip electrophoretic systems. However, high throughput analysis by microchip electrophoresis is often dependent on complex chip structures and relatively complicated detection methods; thus, simple high throughput analytical technologies must be further explored. This paper also reviews the progress on microchip electrophoresis for the separation and analysis of complex biological samples, such as biomacromolecules, biological small molecules, and bioparticles, and forecasts the development trend of microchip electrophoresis in the separation and analysis of biomolecules. Over 250 research papers on this field are published annually, and it is gradually becoming a research focus. Most previous research has focused on biomacromolecules, including proteins and nucleic acids; biological small molecules, including amino acids, metabolites, and ions; and bioparticles, including cells and pathogens. However, several problems remain unsolved in the field of microchip electrophoresis. Overall, microchip electrophoresis requires further study to increase its suitability for the separation and analysis of complex biological samples.
Collapse
|
12
|
Garmasukis R, Hackl C, Charvat A, Mayr SG, Abel B. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace. Curr Opin Biotechnol 2023; 81:102948. [PMID: 37163825 DOI: 10.1016/j.copbio.2023.102948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/12/2023]
Abstract
Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions. This is particularly useful for applications such as cell culture, drug discovery, and diagnostic assays, where precise control over the biological environment is crucial for obtaining accurate results. Established methods, for example, soft lithography, 3D printing, injection molding, as well as other recently highlighted innovative approaches, will be compared and challenges as well as limitations will be discussed. It will be shown that rapid prototyping of microfluidic chips enables the use of advanced materials and technologies, such as smart materials and digital sensors, which can further enhance the capabilities of microfluidic systems for biotechnology applications. Overall, rapid prototyping of microfluidic chips is an important enabling technology for controlled biotechnology applications in microspaces, as well as for upscaling it into macroscopic bioreactors, and its continued development and improvement will play a critical role in advancing the field. The review will highlight recent trends in terms of materials and competing approaches and shed light on current challenges on the way toward integrated microtechnologies. Also, the possibility to easy and direct implementation of novel functions (membranes, functionalization of interfaces, etc.) is discussed.
Collapse
Affiliation(s)
- Rokas Garmasukis
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany; Helmholtz-Centre for Environmental Research (UFZ), Permoserstr.15, 04318 Leipzig, Germany
| | - Claudia Hackl
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ales Charvat
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Stefan G Mayr
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Esene JE, Nasman PR, Akuoko Y, Tahir A, Woolley AT. Past, current, and future roles of 3D printing in the development of capillary electrophoresis systems. Trends Analyt Chem 2023; 162:117032. [PMID: 37008739 PMCID: PMC10062378 DOI: 10.1016/j.trac.2023.117032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
3D printing, an additive manufacturing technology, has made significant inroads into improving systems for bioanalysis in recent years. This approach is particularly powerful due to the ease and flexibility in rapidly creating novel and complex designs for analytical applications. As such, 3D printing offers an emerging technology for creating systems for electrophoretic analysis. Here, we review 3D printing work on improving and miniaturizing capillary electrophoresis (CE), emphasizing publications from 2019‒2022. We describe enabling uses of 3D printing in interfacing upstream sample preparation or downstream detection with CE. Recent developments in miniaturized CE enabled by 3D printing are also elaborated, including key areas where 3D printing could further improve over the current state-of-the-art. Lastly, we highlight promising future trends for using 3D printing in miniaturizing CE and the significant potential for innovative advancements. 3D printing is poised to play a key role in moving forward miniaturized CE in the coming years.
Collapse
Affiliation(s)
- Joule E. Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Parker R. Nasman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Anum Tahir
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
14
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Sebechlebská T, Vaněčková E, Choińska-Młynarczyk MK, Navrátil T, Poltorak L, Bonini A, Vivaldi F, Kolivoška V. 3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels. Anal Chem 2022; 94:14426-14433. [PMID: 36200526 PMCID: PMC9951178 DOI: 10.1021/acs.analchem.2c03191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
Fused deposition modeling 3D printing (FDM-3DP) employing electrically conductive filaments has recently been recognized as an exceptionally attractive tool for the manufacture of sensing devices. However, capabilities of 3DP electrodes to measure electric properties of materials have not yet been explored. To bridge this gap, we employ bimaterial FDM-3DP combining electrically conductive and insulating filaments to build an integrated platform for sensing conductivity and permittivity of liquids by impedance measurements. The functionality of the device is demonstrated by measuring conductivity of aqueous potassium chloride solution and bottled water samples and permittivity of water, ethanol, and their mixtures. We further implement an original idea of applying impedance measurements to investigate dimensions of 3DP channels as base structures of microfluidic devices, complemented by their optical microscopic analysis. We demonstrate that FDM-3DP allows the manufacture of microchannels of width down to 80 μm.
Collapse
Affiliation(s)
- Táňa Sebechlebská
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, 84215Bratislava 4, Slovakia
| | - Eva Vaněčková
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| | | | - Tomáš Navrátil
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| | - Lukasz Poltorak
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403Lodz, Poland
| | - Andrea Bonini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124Pisa, Italy
| | - Federico Vivaldi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124Pisa, Italy
| | - Viliam Kolivoška
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| |
Collapse
|
17
|
3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes. Mikrochim Acta 2022; 189:235. [PMID: 35633399 PMCID: PMC9142345 DOI: 10.1007/s00604-022-05323-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their integration was based on a threadable assembling without commercial component requirements. Printed electrodes were exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemical impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast heterogeneous rate constants ((1.5 ± 0.1) × 10−3 cm s−1). Operational parameters of BIA cell were optimized using a redox probe composed of [Fe(CN)6]4−/3− under stirring and the best analytical performance was achieved using a dispensing rate of 9.0 µL s−1 and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), linear concentration range (5 to 40 µmol L−1; R2 = 0.99), limit of detection (0.61 µmol L−1), and high analytical frequency (494 ± 13 h−1). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.
Collapse
|
18
|
Selemani M, Castiaux AD, Martin RS. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS OMEGA 2022; 7:13362-13370. [PMID: 35474767 PMCID: PMC9026087 DOI: 10.1021/acsomega.2c01265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 μm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.
Collapse
Affiliation(s)
- Major
A. Selemani
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Andre D. Castiaux
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| |
Collapse
|
19
|
Almughamsi HM, Howell KM, Parry SR, Esene JE, Nielsen JB, Nordin GP, Woolley AT. Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices. Analyst 2022; 147:734-743. [PMID: 35103723 PMCID: PMC8849610 DOI: 10.1039/d1an01365c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an effort to develop biomarker-based diagnostics for preterm birth (PTB) risk, we created 3D printed microfluidic devices with multiplexed immunoaffinity monoliths to selectively extract multiple PTB biomarkers. The equilibrium dissociation constant for each monoclonal antibody toward its target PTB biomarker was determined. We confirmed the covalent attachment of three different individual antibodies to affinity monoliths using fluorescence imaging. Three different PTB biomarkers were successfully extracted from human blood serum using their respective single-antibody columns. Selective binding of each antibody toward its target biomarker was observed. Finally, we extracted and eluted three PTB biomarkers from depleted human blood serum in multiplexed immunoaffinity columns in 3D printed microfluidic devices. This is the first demonstration of multiplexed immunoaffinity extraction of PTB biomarkers in 3D printed microfluidic devices.
Collapse
Affiliation(s)
- Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Karyna M. Howell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Samuel R. Parry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joule E. Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA,corresponding author: ; 1-801-422-1701
| |
Collapse
|