1
|
Aizezi Y, Yuan Y, Xu SL, Wang ZY. A tale of two sugars: O-GlcNAc and O-fucose orchestrate growth, development, and acclimation in plants. Trends Biochem Sci 2025; 50:332-343. [PMID: 39934053 PMCID: PMC11972145 DOI: 10.1016/j.tibs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Post-translational modifications of nucleocytoplasmic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) and O-linked fucose (O-fucose) are emerging as key signaling mechanisms in plants. O-fucosylation and O-GlcNAcylation are catalyzed by SPINDLY (SPY) and SECRET AGENT (SEC), respectively, which are redundantly essential for viability and growth yet function antagonistically or independently in specific developmental contexts. Proteomic studies have identified hundreds of O-GlcNAcylated and O-fucosylated nucleocytoplasmic proteins, revealing their regulatory roles and intersections with phosphorylation pathways that mediate nutrient and hormone signaling. Functional studies on O-glycosylated proteins demonstrate diverse impacts on protein activity and biological processes. Together, O-fucosylation, O-GlcNAcylation, and phosphorylation form a regulatory network that controls plant growth, development, and acclimation. This review highlights recent progress and outlines future directions in studying O-fucosylation and O-GlcNAcylation in plants.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yizhong Yuan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
2
|
Zhang N, Julian JD, Zabotina OA. Multiprotein Complexes of Plant Glycosyltransferases Involved in Their Function and Trafficking. PLANTS (BASEL, SWITZERLAND) 2025; 14:350. [PMID: 39942912 PMCID: PMC11820401 DOI: 10.3390/plants14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Plant cells utilize protein oligomerization for their functions in numerous important cellular processes. Protein-protein interactions are necessary to stabilize, optimize, and activate enzymes, as well as localize proteins to specific organelles and membranes. Glycosyltransferases-enzymes that attach sugars to polysaccharides, proteins, lipids, and RNA-across multiple plant biosynthetic processes have been demonstrated to interact with one another. The mechanisms behind these interactions are still unknown, but recent research has highlighted extensive examples of protein-protein interactions, specifically in the plant cell wall hemicellulose and pectin biosynthesis that takes place in the Golgi apparatus. In this review, we will discuss what is known so far about the interactions among Golgi-localized glycosyltransferases that are important for their functioning, trafficking, as well as structural aspects.
Collapse
Affiliation(s)
| | | | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.Z.); (J.D.J.)
| |
Collapse
|
3
|
Joiner CM, Glogowski TJ, NewRingeisen EM, Huynh HV, Roberts MG, Rognerud MM, Huebsch HE. Photoactivatable O-GlcNAc Transferase Library Enables Covalent Chemical Capture of Solvent-Exposed TPR Domain Interactions. Chembiochem 2025; 26:e202400709. [PMID: 39541256 PMCID: PMC11729469 DOI: 10.1002/cbic.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential, stress-sensing enzyme responsible for adding the O-GlcNAc monosaccharide to thousands of nuclear and cytoplasmic proteins to regulate cellular homeostasis. OGT substrates are found in almost all intracellular processes, and perturbations in protein O-GlcNAc levels have been implicated in proteostatic diseases, such as cancers, metabolic disorders, and neurodegeneration. This broad disease activity makes OGT an attractive therapeutic target; however, the substrate diversity makes pan-inhibition as a therapeutic strategy unfeasible. Rather, a substrate-specific approach to targeting is more advantageous, but how OGT chooses its substrates remains poorly understood. Substrate specificity is controlled by the interactions between OGT's non-catalytic tetratricopeptide repeat (TPR) domain, rather than its glycosyltransferase domain. OGT's TPR domain forms a 100 Å superhelical structure, containing a lumenal surface, known as the substrate-binding surface, and a solvent-exposed surface. To date, there are no tools to site-selectively target regions of the domain and differentiate between the two binding surfaces. Here, we developed a library of recombinant OGT constructs containing site-specifically incorporated photoactivatable unnatural amino acids (UAAs) along the solvent-exposed surface of the TPR domain to covalently capture and map OGT's interactome.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Tiarra J. Glogowski
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Erin M. NewRingeisen
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Huy V. Huynh
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Melanie G. Roberts
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Madison M. Rognerud
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Hahns E. Huebsch
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| |
Collapse
|
4
|
Anghelescu GDC, Mernea M, Mihăilescu DF. Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study. Int J Mol Sci 2025; 26:327. [PMID: 39796186 PMCID: PMC11720221 DOI: 10.3390/ijms26010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible. Extensive database searches revealed glycosylation sites in a range of membrane proteins. Only the sites falling in the TM regions and at the membrane interface (according to Uniprot annotations) were retained. The location of these sites was confirmed based on available 3D structures. We identified 32 O-glycosylation sites and 7 N-glycosylation sites in the TM domains of 29 proteins. O-GlcNAc sites validated as located within TM regions presented side chains either oriented toward the lipid bilayer or buried within the protein. N-glycosylation sites predicted in protein TM regions were largely confined to interface or extracellular domains. The results obtained here highlight the occurrence of glycosylation in TM regions of proteins and at membrane interfaces. This dataset provides a valuable foundation for the further exploration of structural and functional roles of glycosylation in membrane-associated regions.
Collapse
Affiliation(s)
- Giorgiana Diana Carmen Anghelescu
- Doctoral School in Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Dan Florin Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| |
Collapse
|
5
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Zeng X, Chen Z, Zhu Y, Liu L, Zhang Z, Xiao Y, Wang Q, Pang S, Zhao F, Xu B, Leng M, Liu X, Hu C, Zeng S, Li F, Xie W, Tan W, Zheng Z. O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma. Drug Resist Updat 2024; 77:101150. [PMID: 39276723 DOI: 10.1016/j.drup.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser331, Ser440 and Ser669 regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC. Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiliang Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhiyong Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongyuan Xiao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fengjin Zhao
- Department of Urology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Bihong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mengxin Leng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaocen Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wenlian Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Yagi H, Takagi K, Kato K. Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains. Biochim Biophys Acta Gen Subj 2024; 1868:130687. [PMID: 39097174 DOI: 10.1016/j.bbagen.2024.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of "add-on" domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan
| | - Katsuki Takagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan.
| |
Collapse
|
8
|
Hammel F, Payne NC, Marando VM, Mazitschek R, Walker S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J Am Chem Soc 2024; 146:26320-26330. [PMID: 39276112 PMCID: PMC11440498 DOI: 10.1021/jacs.4c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.
Collapse
Affiliation(s)
- Forrest
A. Hammel
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - N. Connor Payne
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Victoria M. Marando
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- T.H.
Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Suzanne Walker
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Potter SC, Gibbs BE, Hammel FA, Joiner CM, Paulo JA, Janetzko J, Levine ZG, Fei GQ, Haggarty SJ, Walker S. Dissecting OGT's TPR domain to identify determinants of cellular function. Proc Natl Acad Sci U S A 2024; 121:e2401729121. [PMID: 38768345 PMCID: PMC11145291 DOI: 10.1073/pnas.2401729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.
Collapse
Affiliation(s)
- Sarah C Potter
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Bettine E Gibbs
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Forrest A Hammel
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Cassandra M Joiner
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - John Janetzko
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Zebulon G Levine
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - George Q Fei
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Ma B, Khan KS, Xu T, Xeque Amada J, Guo Z, Huang Y, Yan Y, Lam H, Cheng ASL, Ng BWL. Targeted Protein O-GlcNAcylation Using Bifunctional Small Molecules. J Am Chem Soc 2024; 146:9779-9789. [PMID: 38561350 PMCID: PMC11009946 DOI: 10.1021/jacs.3c14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Protein O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.
Collapse
Affiliation(s)
- Bowen Ma
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Khadija Shahed Khan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tongyang Xu
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Josefina Xeque Amada
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Zhihao Guo
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Yunpeng Huang
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Yu Yan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Henry Lam
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong
| | - Alfred Sze-Lok Cheng
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Billy Wai-Lung Ng
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
- Li Ka
Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong
Kong
| |
Collapse
|
11
|
Blankenship CM, Xie J, Benz C, Wang A, Ivarsson Y, Jiang J. Motif-dependent binding on the intervening domain regulates O-GlcNAc transferase. Nat Chem Biol 2023; 19:1423-1431. [PMID: 37653170 PMCID: PMC10723112 DOI: 10.1038/s41589-023-01422-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
The modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Using proteomic peptide phage display (ProP-PD) coupled with structural, biochemical and cellular characterizations, we discovered a strongly enriched peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs, including response to nutrient deprivation and glucose metabolism. These findings illustrate a mode of OGT substrate recognition and offer key insights into the biological roles of this unique domain.
Collapse
Affiliation(s)
- Connor M Blankenship
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Jinshan Xie
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Li Y, Yang Z, Chen J, Chen Y, Jiang C, Zhong T, Su Y, Liang Y, Sun H. OGT Binding Peptide-Tagged Strategy Increases Protein O-GlcNAcylation Level in E. coli. Molecules 2023; 28:2129. [PMID: 36903375 PMCID: PMC10004047 DOI: 10.3390/molecules28052129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
O-GlcNAcylation is a single glycosylation of GlcNAc mediated by OGT, which regulates the function of substrate proteins and is closely related to many diseases. However, a large number of O-GlcNAc-modified target proteins are costly, inefficient, and complicated to prepare. In this study, an OGT binding peptide (OBP)-tagged strategy for improving the proportion of O-GlcNAc modification was established successfully in E. coli. OBP (P1, P2, or P3) was fused with target protein Tau as tagged Tau. Tau or tagged Tau was co-constructed with OGT into a vector expressed in E. coli. Compared with Tau, the O-GlcNAc level of P1Tau and TauP1 increased 4~6-fold. Moreover, the P1Tau and TauP1 increased the O-GlcNAc-modified homogeneity. The high O-GlcNAcylation on P1Tau resulted in a significantly slower aggregation rate than Tau in vitro. This strategy was also used successfully to increase the O-GlcNAc level of c-Myc and H2B. These results indicated that the OBP-tagged strategy was a successful approach to improve the O-GlcNAcylation of a target protein for further functional research.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zelan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jia Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yihao Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengji Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yi Liang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Blankenship C, Xie J, Benz C, Wang A, Ivarsson Y, Jiang J. A novel binding site on the cryptic intervening domain is a motif-dependent regulator of O-GlcNAc transferase. RESEARCH SQUARE 2023:rs.3.rs-2531412. [PMID: 36778302 PMCID: PMC9915769 DOI: 10.21203/rs.3.rs-2531412/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The modification of intracellular proteins with O-linked β- N -acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we have identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Utilizing an innovative proteomic peptide phage display (ProP-PD) coupled with structural, biochemical, and cellular characterizations, we discovered a novel peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs including nutrient stress response and glucose metabolism. These findings illustrate a novel mode of OGT substrate recognition and offer the first insights into the biological roles of this unique domain.
Collapse
Affiliation(s)
| | | | | | - Ao Wang
- University of Wisconsin-Madison
| | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison
| |
Collapse
|
14
|
Xi X, Xiao G, An G, Liu L, Liu X, Hao P, Wang JY, Song D, Yu W, Gu Y. A novel shark single-domain antibody targeting OGT as a tool for detection and intracellular localization. Front Immunol 2023; 14:1062656. [PMID: 36855630 PMCID: PMC9968394 DOI: 10.3389/fimmu.2023.1062656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
Introduction O-GlcNAcylation is a type of reversible post-translational modification on Ser/Thr residues of intracellular proteins in eukaryotic cells, which is generated by the sole O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Thousands of proteins, that are involved in various physiological and pathological processes, have been found to be O-GlcNAcylated. However, due to the lack of favorable tools, studies of the O-GlcNAcylation and OGT were impeded. Immunoglobulin new antigen receptor (IgNAR) derived from shark is attractive to research tools, diagnosis and therapeutics. The variable domain of IgNARs (VNARs) have several advantages, such as small size, good stability, low-cost manufacture, and peculiar paratope structure. Methods We obtained shark single domain antibodies targeting OGT by shark immunization, phage display library construction and panning. ELISA and BIACORE were used to assess the affinity of the antibodies to the antigen and three shark single-domain antibodies with high affinity were successfully screened. The three antibodies were assessed for intracellular function by flow cytometry and immunofluorescence co-localization. Results In this study, three anti-OGT VNARs (2D9, 3F7 and 4G2) were obtained by phage display panning. The affinity values were measured using surface plasmon resonance (SPR) that 2D9, 3F7 and 4G2 bound to OGT with KD values of 35.5 nM, 53.4 nM and 89.7 nM, respectively. Then, the VNARs were biotinylated and used for the detection and localization of OGT by ELISA, flow cytometry and immunofluorescence. 2D9, 3F7 and 4G2 were exhibited the EC50 values of 102.1 nM, 40.75 nM and 120.7 nM respectively. VNAR 3F7 was predicted to bind the amino acid residues of Ser375, Phe377, Cys379 and Tyr 380 on OGT. Discussion Our results show that shark single-domain antibodies targeting OGT can be used for in vitro detection and intracellular co-localization of OGT, providing a powerful tool for the study of OGT and O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guiqi An
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peiyu Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Jennifer Yiyang Wang
- College of Letters and Science Dept. of Microbiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dandan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Wang HF, Wang YX, Zhou YP, Wei YP, Yan Y, Zhang ZJ, Jing ZC. Protein O-GlcNAcylation in cardiovascular diseases. Acta Pharmacol Sin 2023; 44:8-18. [PMID: 35817809 PMCID: PMC9813366 DOI: 10.1038/s41401-022-00934-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
O-GlcNAcylation is a post-translational modification of protein in response to genetic variations or environmental factors, which is controlled by two highly conserved enzymes, i.e. O-GlcNAc transferase (OGT) and protein O-GlcNAcase (OGA). Protein O-GlcNAcylation mainly occurs in the cytoplasm, nucleus, and mitochondrion, and it is ubiquitously implicated in the development of cardiovascular disease (CVD). Alterations of O-GlcNAcylation could cause massive metabolic imbalance and affect cardiovascular function, but the role of O-GlcNAcylation in CVD remains controversial. That is, acutely increased O-GlcNAcylation is an adaptive heart response, which temporarily protects cardiac function. While it is harmful to cardiomyocytes if O-GlcNAcylation levels remain high in chronic conditions or in the long run. The underlying mechanisms include regulation of transcription, energy metabolism, and other signal transduction reactions induced by O-GlcNAcylation. In this review, we will focus on the interactions between protein O-GlcNAcylation and CVD, and discuss the potential molecular mechanisms that may be able to pave a new avenue for the treatment of cardiovascular events.
Collapse
Affiliation(s)
- Hui-Fang Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yi-Xuan Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ze-Jian Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Guo H, Li W, Zhou N, Sun H, Han Z. Research and Implementation of Robot Vision Scanning Tracking Algorithm Based on Deep Learning. SCANNING 2022; 2022:3330427. [PMID: 35950087 PMCID: PMC9345732 DOI: 10.1155/2022/3330427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In order to solve the difficult problem of deep learning-based robot vision tracking algorithm research and implementation, a deep learning-based target tracking algorithm and a classical tracking algorithm were proposed. It mainly uses the combination of traditional TLD algorithm and GOTURN algorithm to benefit from a large number of offline training data and updates the learner online, so that the whole system has better performance in real-time and accuracy. The results show that the performance of the TLD algorithm is poor regardless of the accuracy curve or the accuracy curve, and the performance of GOTURN-LD is significantly improved when the illumination changes. In the face of occlusion problem, the TLD algorithm shows strong robustness. Although GOTURN-LD is not very stable, its performance is better than GOTURN on the whole.
Collapse
Affiliation(s)
- Haifeng Guo
- College of Electrical and Information Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning 117004, China
| | - Wenyi Li
- College of Electrical and Information Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning 117004, China
| | - Na Zhou
- College of Electrical and Information Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning 117004, China
| | - He Sun
- College of Electrical and Information Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning 117004, China
| | - Zhao Han
- College of Electrical and Information Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning 117004, China
| |
Collapse
|
17
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
18
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|