1
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO 2 matrix, for detection of Ochratoxin-A (OTA) in wine. Talanta 2025; 284:127238. [PMID: 39566157 DOI: 10.1016/j.talanta.2024.127238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was specifically designed for OTA detection, employing a portable LSPR spectroscopy sensing system for efficient on-site and cost-effective analysis. This biosensor is comprised of monoclonal anti-OTA antibodies immobilized on the surface of sputtered Au-Ag nanoparticles embedded in a TiO2 matrix. Under optimized conditions, the LSPR-based biosensor demonstrated a linear dynamic response from 0.05 to 2 ng mL-1, with an estimated limit of detection at 7 pg mL-1, using 55 μL of sample, outperforming commercial ELISA technique in relevant bioanalytical parameters. Sensitivity in OTA detection is crucial because it ensures the accurate identification of low concentrations, which is essential for preventing health risks associated to cumulative ingestion of contaminated food products. The robustness and feasibility of the presented LSPR-based biosensing was tested using spiked white wine, exhibiting a satisfactory recovery of 93 %-113 %, confirming its efficacy in a complex matrix.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Ana I Barbosa
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Rui L Reis
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Vitor M Correlo
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
2
|
Bartnik K, Martychowiec A, Kwietniewski N, Musolf P, Niedziolka-Jonsson J, Koba M, Smietana M. Thin-Film-Based Optical Fiber Interferometric Sensor on the Fiber Tip for Endovascular Surgical Procedures. IEEE Trans Biomed Eng 2025; 72:930-939. [PMID: 39405137 DOI: 10.1109/tbme.2024.3479910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OBJECTIVE Endovascular surgery requires accurate measurement of parameters such as pressure, temperature, and biomarkers within vessels for real-time tissue response monitoring and ensuring targeted therapeutic interventions. However, the availability of small tip-based sensors capable of precise application, for example, navigating an aneurysm's lumen, is limited. With their capabilities for real-time analysis, flexibility, and biocompatibility, optical fiber sensors (OFS) hold promise in addressing this need. This proof-of-concept study investigates the feasibility of OFS in endovascular surgery scenarios. METHODS The sensor is based on a single-mode silica fiber with an interferometric forward-facing thin-film tip. The thin-film materials may be tailored for detecting various physical parameters and, when functionalized, also specific analytes. Materials applied in this sensor are thin metal oxides deposited using magnetron sputtering. A full-scale 3D-printed vascular model was employed to simulate endovascular setup. RESULTS The experiments showed the high mechanical robustness of the approach, i.e., the sensor maintained functionality while being maneuvered through the endovascular model. The forward-facing tip remained intact and worked adequately, ensuring consistent and stable readouts. Moreover, the fiber showed sufficient flexibility, with no significant bending loss observed during simulations. Finally, the performance of the OFS in bovine serum samples was assessed. The sensor performed well in serum, and the results suggest that low-concentration serum may be used to reduce nonspecific surface interactions. CONCLUSION Overall, this OFS system offers a promising solution for endovascular surgery and other biomedical applications, allowing for precise and on-the-spot analysis. SIGNIFICANCE Our study pioneers the feasibility of thin-film interferometric label-free OFS with a forward-facing sensitive area for sensing during endovascular procedures.
Collapse
|
3
|
Lisboa B, Soler M, Singh R, Castro-Esteban J, Peña D, Mugarza A, Lechuga LM, Moreno C. Nanoporous Graphene Integrated onto Bimodal Waveguide Biosensors for Detection of C-Reactive Protein. ACS APPLIED NANO MATERIALS 2025; 8:1640-1648. [PMID: 39882250 PMCID: PMC11773638 DOI: 10.1021/acsanm.4c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025]
Abstract
Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis. The limit of detection was determined at 3 ng/mL, which is well below the clinical cutoff levels required for the diagnostic detection of CRP in patient samples. This innovative approach holds promise for transforming diagnostics, environmental monitoring, and various fields requiring precise biomolecular detection.
Collapse
Affiliation(s)
- Bárbara Lisboa
- Nanobiosensors
and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
BIST and CIBER-BBN, Bellaterra, 08193 Barcelona, Spain
- Atomic
Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC
and BIST, Bellaterra, 08193 Barcelona, Spain
| | - Maria Soler
- Nanobiosensors
and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
BIST and CIBER-BBN, Bellaterra, 08193 Barcelona, Spain
| | - Rukmani Singh
- Nanobiosensors
and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
BIST and CIBER-BBN, Bellaterra, 08193 Barcelona, Spain
| | - Jesús Castro-Esteban
- Centro
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Diego Peña
- Centro
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| | - Aitor Mugarza
- Atomic
Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC
and BIST, Bellaterra, 08193 Barcelona, Spain
- ICREA
− Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors
and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
BIST and CIBER-BBN, Bellaterra, 08193 Barcelona, Spain
| | - César Moreno
- Atomic
Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC
and BIST, Bellaterra, 08193 Barcelona, Spain
- Departamento
de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
4
|
Santa C, Park S, Gejt A, Clark HA, Hengerer B, Sergelen K. Real-time monitoring of vancomycin using a split-aptamer surface plasmon resonance biosensor. Analyst 2024; 150:131-141. [PMID: 39584594 DOI: 10.1039/d4an01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Real-time monitoring of therapeutic drugs is crucial for treatment management and pharmacokinetic studies. We present the optimization and affinity tuning of split-aptamer sandwich assay for real-time monitoring of the narrow therapeutic window drug vancomycin, using surface plasmon resonance (SPR). To achieve reversible, label-free sensing of small molecules by SPR, we adapted a vancomycin binding aptamer in a sandwich assay format through the split-aptamer approach. By evaluating multiple split sites within the secondary structure of the original aptamer, we identified position 27 (P27) as optimal for preserving target affinity, ensuring reversibility, and maximizing sensitivity. The assay demonstrated robust performance under physiologically relevant ranges of pH and divalent cations, and the specific ternary complex formation of the aptamer split segments with the analyte was confirmed by circular dichroism spectroscopy. Subsequently, we engineered a series of split-aptamer pairs with increasing complementarity in the stem regions, improving both the affinity and limit of detection up to 10-fold, as compared to the primary P27 pair. The kinetics of the engineered split-aptamer pairs were evaluated, revealing fast association and dissociation rates, confirming improved affinity and detection limits across variants. Most importantly, the reversibility of the assay, essential for real-time monitoring, was maintained in all pairs. Finally, the assay was further validated in complex biological matrices, including the cerebrospinal fluid from dogs and diluted plasma from rats, demonstrating functionality in biological environments and stability exceeding 9 hours. Our study paves the way for applications of split-aptamers in real-time monitoring of small molecules, with potential implications for in vivo therapeutic drug monitoring and pharmacokinetic studies.
Collapse
Affiliation(s)
| | | | - Artur Gejt
- BioMed X Institute, Heidelberg, Germany.
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Germany
| | - Heather A Clark
- School of Biological and Health Systems Engineering, Arizona State University, USA
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research, Germany
| | | |
Collapse
|
5
|
Bernardo AL, Parra A, Cebrián V, Ahumada Ó, Oddi S, Dainese E. Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol. BIOSENSORS 2024; 14:551. [PMID: 39590010 PMCID: PMC11592131 DOI: 10.3390/bios14110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Plasmonic-based biosensors have gained prominence as potent optical biosensing platforms in both scientific and medical research, attributable to their enhanced sensitivity and precision in detecting biomolecular and chemical interactions. However, the detection of low molecular weight analytes with high sensitivity and specificity remains a complex and unresolved issue, posing significant limitations for the advancement of clinical diagnostic tools and medical device technologies. Notably, abnormal cholesterol levels are a well-established indicator of various pathological conditions; yet, the quantitative detection of the free form of cholesterol is complicated by its small molecular size, pronounced hydrophobicity, and the necessity for mediator molecules to achieve efficient sensing. In the present study, a novel strategy for cholesterol quantification was developed, leveraging a plasmonic optical readout in conjunction with a highly specific cholesterol-binding peptide (C-pept) as a biorecognition element, anchored on a functionalized silica substrate. The resulting biosensor exhibited an exceptionally low detection limit of 21.95 µM and demonstrated a linear response in the 10-200 µM range. This peptide-integrated plasmonic sensor introduces a novel one-step competitive method for cholesterol quantification, positioning itself as a highly sensitive biosensing modality for implementation within the AVAC platform, which operates using reflective dark-field microscopy.
Collapse
Affiliation(s)
- Ana Lia Bernardo
- Biochemistry and Molecular Biology Unit, Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus “Aurelio Saliceti” Via Renato Balzarini n. 1, 64100 Teramo, Italy;
| | - Anne Parra
- Mecwins S.A., Ronda de Poniente, 15, 2°D, Tres Cantos, 28760 Madrid, Spain; (A.P.); (V.C.); (Ó.A.)
| | - Virginia Cebrián
- Mecwins S.A., Ronda de Poniente, 15, 2°D, Tres Cantos, 28760 Madrid, Spain; (A.P.); (V.C.); (Ó.A.)
| | - Óscar Ahumada
- Mecwins S.A., Ronda de Poniente, 15, 2°D, Tres Cantos, 28760 Madrid, Spain; (A.P.); (V.C.); (Ó.A.)
| | - Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini n. 1, 64100 Teramo, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Enrico Dainese
- Biochemistry and Molecular Biology Unit, Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus “Aurelio Saliceti” Via Renato Balzarini n. 1, 64100 Teramo, Italy;
| |
Collapse
|
6
|
López Marzo AM. Techniques for characterizing biofunctionalized surfaces for bioanalysis purposes. Biosens Bioelectron 2024; 263:116599. [PMID: 39111251 DOI: 10.1016/j.bios.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Surface biofunctionalization is an essential stage in the preparation of any bioassay affecting its analytical performance. However, a complete characterization of the biofunctionalized surface, considering studies of coverage density, distribution and orientation of biomolecules, layer thickness, and target biorecognition efficiency, is not met most of the time. This review is a critical overview of the main techniques and strategies used for characterizing biofunctionalized surfaces and the process in between. Emphasis is given to scanning force microscopies as the most versatile and suitable tools to evaluate the quality of the biofunctionalized surfaces in real-time dynamic experiments, highlighting the helpful of atomic force microscopy, Kelvin probe force microscopy, electrochemical atomic force microscopy and photo-induced force microscopy. Other techniques such as optical and electronic microscopies, quartz crystal microbalance, X-ray photoelectron spectroscopy, contact angle, and electrochemical techniques, are also discussed regarding their advantages and disadvantages in addressing the whole characterization of the biomodified surface. Scarce reviews point out the importance of practicing an entire characterization of the biofunctionalized surfaces. This is the first review that embraces this topic discussing a wide variety of characterization tools applied in any bioanalysis platform developed to detect both clinical and environmental analytes. This survey provides information to the analysts on the applications, strengths, and weaknesses of the techniques discussed here to extract fruitful insights from them. The aim is to prompt and help the analysts to accomplish an entire assessment of the biofunctionalized surface, and profit from the information obtained to enhance the bioanalysis output.
Collapse
Affiliation(s)
- Adaris M López Marzo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Spain; Universitat Autònoma de Barcelona (UAB), Carrer dels Til·lers s/n, Campus de la UAB, 08193, Bellaterra, Spain.
| |
Collapse
|
7
|
Tan WS, de Jong AM, Prins MWJ. Revealing Spatial Molecular Heterogeneity of High-Density Biofunctionalized Surfaces Using DNA-PAINT. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58191-58202. [PMID: 39432375 PMCID: PMC11533166 DOI: 10.1021/acsami.4c10310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
The quantification and control of molecular densities and distributions on biofunctionalized surfaces are key for enabling reproducible functions in biosciences. Here, we describe an analysis methodology for quantifying the density and spatial distribution of high-density biofunctionalized surfaces, with densities in the order of 102-105 biomolecules per μm2 area, in a short measurement time. The methodology is based on single-molecule DNA-PAINT imaging combined with simulation models that compensate for lifetime and spatial undersampling effects, resulting in three distinct molecule counting methods and a statistical test for spatial distribution. The analysis methodology is exemplified for a surface with ssDNA affinity binder molecules coupled to a PLL-g-PEG antifouling coating. The results provide insights into the biofunctionalization efficiency, yield, and homogeneity. Furthermore, the data reveal that heterogeneity is inherent to the biofunctionalization process and shed light on the underlying molecular mechanisms. We envision that DNA-PAINT imaging with the developed analysis framework will become a versatile tool to study spatial heterogeneity of densely biofunctionalized surfaces for a wide range of applications.
Collapse
Affiliation(s)
- Wei Shan Tan
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Arthur M. de Jong
- Institute
for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Department
of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Department
of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
| |
Collapse
|
8
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Karaca Acari I, Kurul F, Avci MB, Yasar SD, Topkaya SN, Açarı C, Ünsal E, Makay B, Köytepe S, Ateş B, Yilmaz İ, Seçkin T, Cetin AE. A plasmonic biosensor pre-diagnostic tool for Familial Mediterranean Fever. Nat Commun 2024; 15:8515. [PMID: 39353949 PMCID: PMC11445562 DOI: 10.1038/s41467-024-52961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive genetic disorder, primarily observed in populations around the Mediterranean Sea, linked to MEFV gene mutations. These mutations disrupt inflammatory responses, increasing pyrin-protein production. Traditional diagnosis relies on clinical symptoms, family history, acute phase reactants, and excluding similar syndromes with MEFV testing, which is expensive and often inconclusive due to heterozygous mutations. Here, we present a biosensor platform that detects differences in pyrin-protein levels between healthy and affected individuals, offering a cost-effective alternative to genetic testing. Our platform uses gold nanoparticle-based plasmonic chips enhanced with anti-pyrin antibodies, achieving a detection limit of 0.24 ng/mL with high specificity. The system integrates an optofluidic system and visible light spectroscopy for real-time analysis, with signal stability maintained for up to six months. Our technology will enhance FMF diagnosis accuracy, enabling early treatment initiation and providing a cost-effective alternative to genetic testing, thus improving patient care.
Collapse
Affiliation(s)
- Idil Karaca Acari
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Yesilyurt, Malatya, Turkey
| | - Fatma Kurul
- Izmir Biomedicine and Genome Center, Balcova, Izmir, Turkey
| | | | - S Deniz Yasar
- Izmir Biomedicine and Genome Center, Balcova, Izmir, Turkey
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey
| | - Ceyhun Açarı
- Department of Pediatrics, Faculty of Medicine, Inonu University, Battalgazi, Malatya, Turkey
| | - Erbil Ünsal
- Division of Pediatric Rheumatology, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Balahan Makay
- Division of Pediatric Rheumatology, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Battalgazi, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Battalgazi, Malatya, Turkey
| | - İsmet Yilmaz
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Battalgazi, Malatya, Turkey
| | - Turgay Seçkin
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Battalgazi, Malatya, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova, Izmir, Turkey.
| |
Collapse
|
10
|
Giarola JF, Santos J, Estevez MC, Ventura S, Pallarès I, Lechuga LM. An α-helical peptide-based plasmonic biosensor for highly specific detection of α-synuclein toxic oligomers. Anal Chim Acta 2024; 1304:342559. [PMID: 38637056 DOI: 10.1016/j.aca.2024.342559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND α-Synuclein (αS) aggregation is the main neurological hallmark of a group of neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. αS oligomers are elevated in the cerebrospinal fluid (CSF) of PD patients, standing as a biomarker for disease diagnosis. However, methods for early PD detection are still lacking. We have recently identified the amphipathic 22-residue peptide PSMα3 as a high-affinity binder of αS toxic oligomers. PSMα3 displayed excellent selectivity and reproducibility, binding to αS toxic oligomers with affinities in the low nanomolar range and without detectable cross-reactivity with functional monomeric αS. RESULTS In this work, we leveraged these PSMα3 unique properties to design a plasmonic-based biosensor for the direct detection of toxic oligomers under label-free conditions. SIGNIFICANCE AND NOVELTY We describe the integration of the peptide in a lab-on-a-chip plasmonic platform suitable for point-of-care measurements of αS toxic oligomers in CSF samples in real-time and at an affordable cost, providing an innovative biosensor for PD early diagnosis in the clinic.
Collapse
Affiliation(s)
- Juliana Fátima Giarola
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - M-Carmen Estevez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
11
|
Valerio TL, Anastácio R, da Silva SS, de Oliveira CC, Vidotti M. An overview of electrochemical biosensors used for COVID-19 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2164-2176. [PMID: 38536084 DOI: 10.1039/d3ay02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.
Collapse
Affiliation(s)
- Tatiana Lima Valerio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Raquel Anastácio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Stella Schuster da Silva
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Gajos K, Orzech A, Sanocka K, Petrou P, Budkowski A. Covalent and Non-covalent In-Flow Biofunctionalization for Capture Assays on Silicon Chips: White Light Reflectance Spectroscopy Immunosensor Combined with TOF-SIMS Resolves Immobilization Stability and Binding Stoichiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37437262 PMCID: PMC10373486 DOI: 10.1021/acs.langmuir.3c01181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Immunosensors that combine planar transducers with microfluidics to achieve in-flow biofunctionalization and assay were analyzed here regarding surface binding capacity, immobilization stability, binding stoichiometry, and amount and orientation of surface-bound IgG antibodies. Two IgG immobilization schemes, by physical adsorption [3-aminopropyltriethoxysilane (APTES)] and glutaraldehyde covalent coupling (APTES/GA), followed by blocking with bovine serum albumin (BSA) and streptavidin (STR) capture, are monitored with white light reflectance spectroscopy (WLRS) sensors as thickness dΓ of the adlayer formed on top of aminosilanized silicon chips. Multi-protein surface composition (IgG, BSA, and STR) is determined by time of flight secondary ion mass spectrometry (TOF-SIMS) combined with principal component analysis (applying barycentric coordinates to the score plot). In-flow immobilization shows at least 1.7 times higher surface binding capacity than static adsorption. In contrast to physical immobilization, which is unstable during blocking with BSA, chemisorbed antibodies desorb (reducing dΓ) only when the bilayer is formed. Also, TOF-SIMS data show that IgG molecules are partially exchanged with BSA on APTES but not on APTES/GA modified chips. This is confirmed by the WLRS data that show different binding stoichiometry between the two immobilization schemes for the direct binding IgG/anti-IgG assay. The identical binding stoichiometry for STR capture results from partial replacement with BSA of vertically aligned antibodies on APTES, with fraction of exposed Fab domains higher than on APTES/GA.
Collapse
Affiliation(s)
- Katarzyna Gajos
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Alicja Orzech
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Karolina Sanocka
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Panagiota Petrou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos Street, Aghia Paraskevi, Athens 15341, Greece
| | - Andrzej Budkowski
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| |
Collapse
|
13
|
Lehmann S, Kraft FA, Gerken M. Spatially Resolved Protein Binding Kinetics Analysis in Microfluidic Photonic Crystal Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5637. [PMID: 37420803 DOI: 10.3390/s23125637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Organ-on-a-Chip systems are emerging as an important in vitro analysis method for drug screening and medical research. For continuous biomolecular monitoring of the cell culture response, label-free detection within the microfluidic system or in the drainage tube is promising. We study photonic crystal slabs integrated with a microfluidic chip as an optical transducer for label-free biomarker detection with a non-contact readout of binding kinetics. This work analyzes the capability of same-channel reference for protein binding measurements by using a spectrometer and 1D spatially resolved data evaluation with a spatial resolution of 1.2 μm. A cross-correlation-based data-analysis procedure is implemented. First, an ethanol-water dilution series is used to obtain the limit of detection (LOD). The median of all row LODs is (2.3±0.4)×10-4 RIU with 10 s exposure time per image and (1.3±0.24)×10-4 RIU with 30 s exposure time. Next, we used a streptavidin-biotin binding process as a test system for binding kinetics. Time series of optical spectra were recorded while constantly injecting streptavidin in DPBS at concentrations of 1.6 nM, 3.3 nM, 16.6 nM and 33.3 nM into one channel half as well as the whole channel. The results show that localized binding within a microfluidic channel is achieved under laminar flow. Furthermore, binding kinetics are fading out at the microfluidic channel edge due to the velocity profile.
Collapse
Affiliation(s)
- Stefanie Lehmann
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Fabio Aldo Kraft
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
14
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
15
|
Topor CV, Puiu M, Bala C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. BIOSENSORS 2023; 13:bios13040465. [PMID: 37185540 PMCID: PMC10136606 DOI: 10.3390/bios13040465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Surface plasmon resonance (SPR) comprises several surface-sensitive techniques that enable the trace and ultra-trace detection of various analytes through affinity pairing. Although enabling label-free, sensitive detection and real-time monitoring, several issues remain to be addressed, such as poor stability, non-specific adsorption and the loss of operational activity of biomolecules. In this review, the progress over sensor modification, immobilization techniques and novel 2D nanomaterials, gold nanostructures and magnetic nanoparticles for signal amplification is discussed. The advantages and disadvantages of each design strategy will be provided together with some of the recent achievements.
Collapse
Affiliation(s)
- Cristina-Virginia Topor
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Mihaela Puiu
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
16
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
17
|
Andersson J, Järlebark J, KK S, Schaefer A, Hailes R, Palasingh C, Santoso B, Vu VT, Huang CJ, Westerlund F, Dahlin A. Polymer Brushes on Silica Nanostructures Prepared by Aminopropylsilatrane Click Chemistry: Superior Antifouling and Biofunctionality. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10228-10239. [PMID: 36765467 PMCID: PMC9951205 DOI: 10.1021/acsami.2c21168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In nanobiotechnology, the importance of controlling interactions between biological molecules and surfaces is paramount. In recent years, many devices based on nanostructured silicon materials have been presented, such as nanopores and nanochannels. However, there is still a clear lack of simple, reliable, and efficient protocols for preventing and controlling biomolecule adsorption in such structures. In this work, we show a simple method for passivation or selective biofunctionalization of silica, without the need for polymerization reactions or vapor-phase deposition. The surface is simply exposed stepwise to three different chemicals over the course of ∼1 h. First, the use of aminopropylsilatrane is used to create a monolayer of amines, yielding more uniform layers than conventional silanization protocols. Second, a cross-linker layer and click chemistry are used to make the surface reactive toward thiols. In the third step, thick and dense poly(ethylene glycol) brushes are prepared by a grafting-to approach. The modified surfaces are shown to be superior to existing options for silica modification, exhibiting ultralow fouling (a few ng/cm2) after exposure to crude serum. In addition, by including a fraction of biotinylated polymer end groups, the surface can be functionalized further. We show that avidin can be detected label-free from a serum solution with a selectivity (compared to nonspecific binding) of more than 98% without the need for a reference channel. Furthermore, we show that our method can passivate the interior of 150 nm × 100 nm nanochannels in silica, showing complete elimination of adsorption of a sticky fluorescent protein. Additionally, our method is shown to be compatible with modifications of solid-state nanopores in 20 nm thin silicon nitride membranes and reduces the noise in the ion current. We consider these findings highly important for the broad field of nanobiotechnology, and we believe that our method will be very useful for a great variety of surface-based sensors and analytical devices.
Collapse
Affiliation(s)
- John Andersson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Julia Järlebark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Sriram KK
- Department
of Life Sciences, Chalmers University of
Technology, 41296 Gothenburg, Sweden
| | - Andreas Schaefer
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Rebekah Hailes
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Bagus Santoso
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Van-Truc Vu
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32023, Taiwan
| | - Chun-Jun Huang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32023, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, Taoyuan 32023, Taiwan
- NCU-Covestro
Research Center, National Central University, Jhong-Li, Taoyuan 32023, Taiwan
| | - Fredrik Westerlund
- Department
of Life Sciences, Chalmers University of
Technology, 41296 Gothenburg, Sweden
| | - Andreas Dahlin
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
18
|
Ugarte-Orozco MJ, López-Muñoz GA, Antonio-Pérez A, Esquivel-Ortiz KM, Ramón-Azcón J. High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
19
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|