1
|
Sanmartín G, Prieto JA, Morard M, Estruch F, Blasco-García J, Randez-Gil F. The Effects of Sourdough Fermentation on the Biochemical Properties, Aroma Profile and Leavening Capacity of Carob Flour. Foods 2025; 14:1677. [PMID: 40428456 PMCID: PMC12111545 DOI: 10.3390/foods14101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Roasted carob flour is a sustainable ingredient rich in dietary fiber, polyphenols, and pinitol, offering potential for both food and pharmaceutical applications. However, its high sugar content and the presence of undesirable compounds such as furans present challenges for its use in bread making. This study evaluated the effects of prolonged sourdough fermentation on roasted carob flour, with a focus on microbial dynamics and its functional and technological properties. Carob and carob-wheat sourdoughs were prepared using a mixed starter culture comprising three lactic acid bacteria (Lactiplantibacillus plantarum, Fructilactobacillus sanfranciscensis, and Lactobacillus helveticus) and three yeast species (Saccharomyces cerevisiae, Kazachstania humilis, and Torulaspora delbrueckii). The sourdoughs underwent six consecutive refreshment cycles and were analyzed to determine their pH, microbial and biochemical composition, gassing power, and volatile organic compounds (VOCs). The carob-wheat sourdough exhibited faster acidification and higher lactic acid bacteria (LAB) activity, resulting in a 90-98% reduction in the sugar content, compared to 60% in the carob sourdough. Microbial sequencing revealed that L. plantarum was the dominant species in all samples, while K. humilis and S. cerevisiae were enriched in carob and carob-wheat sourdough, respectively. Both types of sourdough demonstrated effective leavening in bread dough without the addition of commercial yeast. Fermentation also modified the VOC profiles, increasing esters and alcohols while reducing acids, aldehydes, ketones, and furans. While the antioxidant activity showed a slight decline, the pinitol content remained unchanged. These findings suggest that extended sourdough fermentation, supported by multiple refreshments, enhances the baking suitability of roasted carob flour and supports its application as a functional, sustainable ingredient.
Collapse
Affiliation(s)
- Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; (G.S.); (J.A.P.); (M.M.); (J.B.-G.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; (G.S.); (J.A.P.); (M.M.); (J.B.-G.)
| | - Miguel Morard
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; (G.S.); (J.A.P.); (M.M.); (J.B.-G.)
| | - Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Josep Blasco-García
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; (G.S.); (J.A.P.); (M.M.); (J.B.-G.)
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; (G.S.); (J.A.P.); (M.M.); (J.B.-G.)
| |
Collapse
|
2
|
Vicens-Sans A, Marín S, Sanchis V, Ramos AJ, Molino F. Transfer of deoxynivalenol and fumonisins B 1 and B 2 from maize flour to maize/wheat-based bread. Int J Food Microbiol 2025; 432:111092. [PMID: 39922037 DOI: 10.1016/j.ijfoodmicro.2025.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Deoxynivalenol (DON) and fumonisins B-type (FBs), mycotoxins synthesized by Fusarium spp., cause serious health problems after their intake. These compounds are frequently found in maize and wheat, the most consumed cereals worldwide and main hosts of Fusarium, making them a food safety problem. This work studies the effect of the maize/wheat-based breadmaking process on the concentrations of DON and FBs. Breads were made using contaminated maize flour (40 %) mixed with uncontaminated wheat flour (60 %). Three factors were analyzed: mycotoxin contamination level (DON: 1.20 or 0.8 mg/kg; FBs: 1.28 or 0.61 mg/kg), sourdough use (absence, artisan or commercial) and fermentation time (2 or 12 h). Doughs were baked at 200 °C for 40 min. DON and FBs were determined by HPLC-DAD and HPLC-FLD, respectively. Additionally, sourdough microbiota was identified. The only isolated yeast was Saccharomyces cerevisiae, while lactic acid bacteria showed great variability, being Lactobacillus plantarum the most common. FBs concentration remained stable during fermentation; while for DON, the highest change was observed in the loaves with an initial concentration of 1.20 mg/kg, commercial sourdough use and 12 h fermented, showing a 28 % increase in its concentration. After baking, mycotoxin reduction was observed under all conditions, except in the aforementioned one that still showed a 16 % of DON increase. Results indicate that the reduction of DON during breadmaking may not be enough to ensure food safety from borderline contaminated flour to meet legal limits. However, bread with FBs levels below the maximum limits can be produced, even when using contaminated flour.
Collapse
Affiliation(s)
- Alexandre Vicens-Sans
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Francisco Molino
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
3
|
Aydın F, Özer G, Alkan M, Çakır İ. Start Codon Targeted (SCoT) markers for the assessment of genetic diversity in yeast isolated from Turkish sourdough. Food Microbiol 2022; 107:104081. [DOI: 10.1016/j.fm.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
|
4
|
Zhang K, Zhang C, Gao L, Liu Y. Microbial diversity in laomian and yeast dough and its influence on volatiles in Chinese steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Can Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Lingling Gao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Yue Liu
- Henan University of Technology 450008 Zhengzhou Henan China
| |
Collapse
|
5
|
The Effect of Incubation Temperature, Substrate and Initial pH Value on Plantaricin Activity and the Relative Transcription of pln Genes of Six Sourdough Derived Lactiplantibacillus plantarum Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to assess the effect of sourdough related parameters on the growth and plantaricin activity of six Lactiplantibacillus plantarum strains against a mixture of 5 Listeria monocytogenes strains and to analyze the transcriptomic response of their pln genes. Parameters included 3 substrates (MRS broth, mMRS broth, WFE), 3 temperatures (20, 30, 37 °C), 2 initial pH values (5.0, 6.0), 2 NaCl concentrations (0.0, 1.8%) and 12 time points (ranging from 0 to 33 h). The transcriptomic response of the plantaricin genes to the aforementioned parameters was assessed after 21 h of growth. In general, plantaricin activity was strain dependent with that of Lp. plantarum strains LQC 2422, 2441, 2485 and 2516, harboring four pln genes, namely, pln423 (plαA), plαΒ, plαC and plαD, reaching 2560 AU/mL. However, strains LQC 2320 and 2520, in which 18 pln genes were detected, namely, plNC8a, plNC8b, plNC8c, plnL, plnR, plnJ, plnK, plnE, plnF, plnH, plnS, plnY, plNC8-IF, plNC8-HK, plnD, plnI, plnM and plnG, exhibited plantaricin activity barely reaching 160 AU/mL. Substrate, temperature, initial pH value and strains significantly affected plantaricin activity, while NaCl had only a marginal effect. Similarly, growth substrate and temperature had a more pronounced effect than initial pH value on gene transcription. A strong correlation between the transcription of the genes belonging to the same locus was observed; however, only a weak correlation, if any, was observed between plantaricin activity and the transcription of the genes assessed.
Collapse
|
6
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
7
|
Calvert MD, Madden AA, Nichols LM, Haddad NM, Lahne J, Dunn RR, McKenney EA. A review of sourdough starters: ecology, practices, and sensory quality with applications for baking and recommendations for future research. PeerJ 2021; 9:e11389. [PMID: 34026358 PMCID: PMC8117929 DOI: 10.7717/peerj.11389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
The practice of sourdough bread-making is an ancient science that involves the development, maintenance, and use of a diverse and complex starter culture. The sourdough starter culture comes in many different forms and is used in bread-making at both artisanal and commercial scales, in countries all over the world. While there is ample scientific research related to sourdough, there is no standardized approach to using sourdough starters in science or the bread industry; and there are few recommendations on future directions for sourdough research. Our review highlights what is currently known about the microbial ecosystem of sourdough (including microbial succession within the starter culture), methods of maintaining sourdough (analogous to land management) on the path to bread production, and factors that influence the sensory qualities of the final baked product. We present new hypotheses for the successful management of sourdough starters and propose future directions for sourdough research and application to better support and engage the sourdough baking community.
Collapse
Affiliation(s)
- Martha D Calvert
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Nick M Haddad
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, United States of America
| | - Jacob Lahne
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
8
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alba Martín-Garcia
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Montserrat Riu-Aumatell
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Elvira López-Tamames
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| |
Collapse
|
9
|
Syrokou MK, Tziompra S, Psychogiou EE, Mpisti SD, Paramithiotis S, Bosnea L, Mataragas M, Skandamis PN, Drosinos EH. Technological and Safety Attributes of Lactic Acid Bacteria and Yeasts Isolated from Spontaneously Fermented Greek Wheat Sourdoughs. Microorganisms 2021; 9:microorganisms9040671. [PMID: 33805132 PMCID: PMC8064081 DOI: 10.3390/microorganisms9040671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to assess the technological and safety potential of 207 lactic acid bacteria (LAB) and 195 yeast strains isolated from spontaneously fermented Greek wheat sourdoughs. More accurately, the amylolytic, proteolytic, lipolytic, phytase and amino acid decarboxylase activities, along with the production of exopolysaccharides and antimicrobial compounds by the LAB and yeast isolates, were assessed. A well diffusion assay revealed seven proteolytic LAB and eight yeast strains; hydrolysis of tributyrin was evident only in 11 LAB strains. A further Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) indicated partial hydrolysis of gluten. Lipolysis kinetics over 21 days was applied, exhibiting that lipolytic activity ranged from 6.25 to 65.50 AU/mL. Thirteen LAB inhibited Penicillium olsonii and Aspergillus niger growth and 12 yeast strains inhibited Pe. chrysogenum growth. Twenty-one Lactiplantibacillus plantarum strains exhibited inhibitory activity against Listeria monocytogenes, as well as several sourdough-associated isolates. The structural gene encoding plantaricin 423 was detected in 19 Lcb. plantarum strains, while the structural genes encoding plantaricins NC8, PlnE/F, PlnJ/K, and S were detected in two Lcb. plantarum strains. None of the microbial strains tested exhibited exopolysaccharide (EPS) production, amino acid decarboxylase, amylolytic or phytase activity. The technological and safety potential of the Lcb. plantarum and Wickerhamomyces anomalus strains was highlighted, since some of them exhibited proteolytic, lipolytic, antibacterial and antimould activities.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Sofia Tziompra
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Eleni-Efthymia Psychogiou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Sofia-Despoina Mpisti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 45221 Ioannina, Greece; (L.B.); (M.M.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 45221 Ioannina, Greece; (L.B.); (M.M.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| |
Collapse
|
10
|
Comasio A, Van Kerrebroeck S, De Vuyst L. Lemon juice and apple juice used as source of citrate and malate, respectively, enhance the formation of buttery aroma compounds and/or organic acids during Type 2 and Type 3 sourdough productions performed with Companilactobacillus crustorum LMG 23699. Int J Food Microbiol 2020; 339:109020. [PMID: 33360296 DOI: 10.1016/j.ijfoodmicro.2020.109020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Extra ingredients are often used in traditional sourdough production recipes by artisan bakeries. These ingredients may be the source of microorganisms or stimulate the growth and/or the metabolic activities of the microorganisms added to or naturally present in the flour-water mixture. The present study examined the influence of the addition of lemon juice or apple juice as source of citrate or malate, respectively, on the growth and activity of the citrate- and malate-positive Companilactobacillus crustorum LMG 23699 strain (formerly known as Lactobacillus crustorum LMG 23699), used to initiate firm (dough yield of 200) wheat sourdough productions, and on the flavour of the baked goods produced. Three fermentation strategies were applied, namely one-step long fermentation sourdough production processes with the addition of juice at the start (Type 2) and backslopped fermentations with the addition of juice either only at the start of the sourdough productions or at the start of the sourdough productions and at the beginning of each subsequent refreshment step during the whole backslopping process (both Type 3). It turned out that the starter culture strain used prevailed during all sourdough productions performed. Yeasts were particularly present in Type 3 sourdough productions, although lemon juice retarded their growth. Due to high yeast activity, high concentrations of ethanol and glycerol were produced toward the end of the sourdough productions. Addition of lemon juice stimulated the production of lactic acid, acetic acid, and the buttery flavour compounds acetoin and diacetyl, because of citrate conversion, during the Type 2 and Type 3 sourdough productions. In Type 3 sourdough productions, these compounds were found in higher concentrations only when lemon juice was added at each backslopping step. Alternatively, the addition of apple juice led to high concentrations of lactic acid because of malolactic fermentation in both Type 2 and Type 3 sourdough productions. Moreover, the addition of apple juice increased the initial concentrations of the carbohydrates (fructose, glucose, and sucrose) and sugar alcohols (mannitol and sorbitol), which were exhausted upon backslopping or accumulated in the sourdough matrix, respectively. Baked goods produced using sourdoughs obtained from the Type 2 and Type 3 sourdough productions with the addition of juice at each backslopping step were significantly different in flavour from doughs supplemented with the respective juices and lactic acid and/or Type 3 sourdough productions with the addition of juice only at the start.
Collapse
Affiliation(s)
- Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
11
|
Syrokou MK, Themeli C, Paramithiotis S, Mataragas M, Bosnea L, Argyri AA, Chorianopoulos NG, Skandamis PN, Drosinos EH. Microbial Ecology of Greek Wheat Sourdoughs, Identified by a Culture-Dependent and a Culture-Independent Approach. Foods 2020; 9:foods9111603. [PMID: 33158141 PMCID: PMC7694216 DOI: 10.3390/foods9111603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the microecosystem of 13 homemade spontaneously fermented wheat sourdoughs from different regions of Greece, through the combined use of culture-dependent (classical approach; clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and identification by PCR species-specific for Lactiplantibacillus plantarum, and sequencing of the 16S-rRNA and 26S-rRNA gene, for Lactic Acid Bacteria (LAB) and yeasts, respectively) and independent approaches [DNA- and RNA-based PCR-Denaturing Gradient Gel Electrophoresis (DGGE)]. The pH and Total Titratable Acidity (TTA) values ranged from 3.64–5.05 and from 0.50–1.59% lactic acid, respectively. Yeast and lactic acid bacteria populations ranged within 4.60–6.32 and 6.28–9.20 log CFU/g, respectively. The yeast: LAB ratio varied from 1:23–1:10,000. A total of 207 bacterial and 195 yeast isolates were obtained and a culture-dependent assessment of their taxonomic affiliation revealed dominance of Lb. plantarum in three sourdoughs, Levilactobacillus brevis in four sourdoughs and co-dominance of these species in two sourdoughs. In addition, Companilactobacillusparalimentarius dominated in two sourdoughs and Fructilactobacillussanfranciscensis and Latilactobacillus sakei in one sourdough each. Lactococcus lactis, Lb. curvatus, Leuconostoc citreum, Ln. mesenteroides and Lb. zymae were also recovered from some samples. Regarding the yeast microbiota, it was dominated by Saccharomyces cerevisiae in 11 sourdoughs and Pichia membranifaciens and P. fermentans in one sourdough each. Wickerhamomyces anomalus and Kazachstania humilis were also recovered from one sample. RNA-based PCR-DGGE provided with nearly identical results with DNA-based one; in only one sample the latter provided an additional band. In general, the limitations of this approach, namely co-migration of amplicons from different species to the same electrophoretic position and multiband profile of specific isolates, greatly reduced resolution capacity, which resulted in only partial verification of the microbial ecology detected by culture-dependent approach in the majority of sourdough samples. Our knowledge regarding the microecosystem of spontaneously fermented Greek wheat-based sourdoughs was expanded, through the study of sourdoughs originating from regions of Greece that were not previously assessed.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Christina Themeli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| |
Collapse
|
12
|
Microbial Profile Antibacterial Properties and Chemical Composition of Raw Donkey Milk. Animals (Basel) 2020; 10:ani10112001. [PMID: 33143191 PMCID: PMC7694164 DOI: 10.3390/ani10112001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
The human interest in donkey milk is growing due to its nutritional, functional properties and excellent microbiological quality according to published reports. However, more research needs to be conducted to assess the above variables from various breeds. In the present study, milk samples were collected from 17 Cypriot and six Arcadian healthy Greek donkeys. The microbiological quality, somatic cell counts (SCC), chemical composition analysis, and antimicrobial activity of the samples was assessed. In addition, clustering and identification of the bacterial composition was performed by RAPD-PCR and 16S rDNA sequencing, respectively. The good microbiological quality of the samples as estimated by the total aerobic mesophilic and psychrotrophic counts, which ranged from 2.18 to 2.71 log CFU/mL and from 1.48 to 2.37 log CFU/mL, respectively, was also verified. SCC were below 4.4 log CFU/mL. However, potential pathogenic species of Staphylococcus aureus, Bacillus cereus, and Clostridium spp. were enumerated in the milk of both breeds. The gross chemical composition showed mean values for fat, protein, and lactose from 0.82% to 1.24%, 1.22% to 1.87%, and 6.01% to 6.78%, respectively. All milk samples exhibited an antimicrobial activity against St. haemolyticus and Listeria monocytogenes, although quality control measures should be taken for health and safety prior to human consumption.
Collapse
|
13
|
Yue Q, Liu C, Li L, Zheng X, Bian K. Effects of fermentation on the rheological characteristics of dough and the quality of steamed bread. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qinghua Yue
- School of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Chong Liu
- School of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Limin Li
- School of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Xueling Zheng
- School of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Ke Bian
- School of Food Science and Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
14
|
Nami Y, Gharekhani M, Aalami M, Hejazi MA. Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. Journal of Food Science and Technology 2019; 56:4057-4067. [PMID: 31477977 DOI: 10.1007/s13197-019-03874-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The study investigated the effect of sourdough made from combinations of four Lactobacillus spp. on the physicochemical properties, consumer acceptability, and shelf life of bread made from pearl millet flour. Fermentation based on both single and multiple species reduced the pH of the dough and increased its titratable acidity and H2O2 content. The addition of sourdough increased the elasticity and reduced the stiffness of the pearl millet dough. Sourdough fermented with L. brevis had the greatest effect on loaf height, specific volume, porosity, and moisture content. During storage, the moisture content of the bread crumb decreased, but that of their crust increased. Sourdough-based loaves retained their moisture better than conventional loaves and the sourdough suppressed the development of mold for a longer period. An organoleptic assessment showed that the sourdough-based bread was more palatable than either conventional or chemically acidified ones. The tissue softness, chewiness, and flavor of the pearl millet bread decreased during storage. The use of sourdough based on either L. brevis, L. paralimentarius, or L. brevis + L. paralimentarius is recommended to produce high-quality pearl millet-based bread.
Collapse
Affiliation(s)
- Yousef Nami
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mehdi Gharekhani
- 2Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehran Aalami
- 3Department of Food Science and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Amin Hejazi
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
15
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
16
|
Paramithiotis S, Papadelli M, Pardali E, Mataragas M, Drosinos EH. Evaluation of Plantaricin Genes Expression During Fermentation of Raphanus sativus Roots with a Plantaricin-Producing Lactobacillus plantarum Starter. Curr Microbiol 2019; 76:909-916. [PMID: 31119361 DOI: 10.1007/s00284-019-01708-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to assess the transcription of the plnE/F, plnN, plnG, plnD and plnI genes during lactic acid fermentation of radish (Raphanus sativus) roots by Lactobacillus plantarum strain LQC 740 at 20 and 30 °C. At both temperatures, this strain dominated the fermentation process, as indicated by (GTG)5 analysis. A total of five pln genes were detected in the genome of this strain, namely plnE/F, plnN, plnG, plnD and plnI. Regarding plantaricin genes expression, no regulation was observed in the majority of the samples at both temperatures, therefore, the transcription of the pln genes was not affected by the experimental conditions, i.e. radish fermentation vs. growth in MRS broth. Although transcription of the pln genes was similar between the two conditions, bacteriocin activity was different. The maximum plantaricin activity was 87.5 AU/mL during radish fermentation and 700 AU/mL during growth in MRS broth. Thus, no apparent correlation between bacteriocin activity and transcription level of the five pln genes could be established.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Marina Papadelli
- Department of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleni Pardali
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Ethnikis Antistaseos 3, 45221, Ioannina, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
17
|
Evolution of microbial community and chemical properties of a sourdough during the production of Colomba, an Italian sweet leavened baked product. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
19
|
Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 2016; 239:26-34. [DOI: 10.1016/j.ijfoodmicro.2016.07.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
|
20
|
Gobbetti M, Minervini F, Pontonio E, Di Cagno R, De Angelis M. Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. Int J Food Microbiol 2016; 239:3-18. [DOI: 10.1016/j.ijfoodmicro.2016.05.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
21
|
Effect of sulfur dioxide addition in wild yeast population dynamics and polyphenolic composition during spontaneous red wine fermentation from Vitis vinifera cultivar Agiorgitiko. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2303-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Aplevicz KS, da Silva T, Fritzen-Freire CB, Amboni RDMC, Barreto PLM, Sant’Anna ES. Effect of the Incorporation of Different Freeze-Dried Cultures on the Properties of Sourdough Bread. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2014. [DOI: 10.1080/15428052.2014.904837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Paramithiotis S, Kouretas K, Drosinos EH. Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1600-1606. [PMID: 24284907 DOI: 10.1002/jsfa.6464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Spontaneous fermentation of plant-derived material is mainly performed on a small scale, with the exception of fermented olives, cucumbers, sauerkraut and kimchi, which have met worldwide commercial significance. RESULTS This study of spontaneous fermentation of green tomatoes at different stages of ripening revealed a significant effect on the growth kinetics of lactic acid bacteria and the final pH value. Leuconostoc mesenteroides dominated spontaneous fermentation when the initial pH value ranged from 3.8 to 4.8 whereas at higher pH values (4.9-5.4) it co-dominated with Leu. citreum and Lactobacillus casei. Application of RAPD-PCR and rep-PCR allowed differentiation at sub-species level, suggesting a microbial succession at that level accompanying the respective at species level. CONCLUSION Ripening stage affected the development of the micro-ecosystem through the growth of lactic acid bacteria and concomitant pH value reduction; however, the outcome of the fermentation was only marginally different.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, GR-118 55, Athens, Greece
| | | | | |
Collapse
|
24
|
Aplevicz KS, Mazo JZ, Ilha EC, Dinon AZ, Sant´Anna ES. Isolation and characterization of lactic acid bacteria and yeasts from the Brazilian grape sourdough. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000200011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sourdough is a mixture of flour and water fermented by lactic acid bacteria and yeast, with a large use in bakery products. This study was developed with Brazilian grape (Niagara rosada) sourdough obtained from spontaneous fermentation. The aim of this work was to characterize genotypic and phenotypically lactic acid bacteria and yeasts isolated from sourdough. The phenotypic identification for bacteria and yeasts was performed by using the kit API50CHL and 20CAUX and the genotypic characterization was performed by sequencing method. A total of four isolated strains were analyzed in this study. Two of these strains were phenotypically and genotypic identified as Lactobacillus paracasei and one as Saccharomyces cerevisiae. Another sample phenotypically identified as Candida pelliculosa did not show the same identity by sequencing. It shows the need to use phenotypic and genotypic characterization associated for the correct microorganism identification.
Collapse
|
25
|
Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol 2013; 37:11-29. [PMID: 24230469 DOI: 10.1016/j.fm.2013.06.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 01/16/2023]
Abstract
Sourdough is a specific and stressful ecosystem inhabited by yeasts and lactic acid bacteria (LAB), mainly heterofermentative lactobacilli. On the basis of their inocula, three types of sourdough fermentation processes can be distinguished, namely backslopped ones, those initiated with starter cultures, and those initiated with a starter culture followed by backslopping. Typical sourdough LAB species are Lactobacillus fermentum, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus sanfranciscensis. Typical sourdough yeast species are Candida humilis, Kazachstania exigua, and Saccharomyces cerevisiae. Whereas region specificity is claimed in the case of artisan backslopped sourdoughs, no clear-cut relationship between a typical sourdough and its associated microbiota can be found, as this is dependent on the sampling, isolation, and identification procedures. Both simple and very complex consortia may occur. Moreover, a series of intrinsic and extrinsic factors may influence the composition of the sourdough microbiota. For instance, an influence of the flour (type, quality status, etc.) and the process parameters (temperature, pH, dough yield, backslopping practices, etc.) occurs. In this way, the presence of Lb. sanfranciscensis during sourdough fermentation depends on specific environmental and technological factors. Also, Triticum durum seems to select for obligately heterofermentative LAB species. Finally, there are indications that the sourdough LAB are of intestinal origin.
Collapse
|
26
|
Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Appl Environ Microbiol 2012; 78:5328-40. [PMID: 22635989 DOI: 10.1128/aem.00572-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Seven mature type I sourdoughs were comparatively back-slopped (80 days) at artisan bakery and laboratory levels under constant technology parameters. The cell density of presumptive lactic acid bacteria and related biochemical features were not affected by the environment of propagation. On the contrary, the number of yeasts markedly decreased from artisan bakery to laboratory propagation. During late laboratory propagation, denaturing gradient gel electrophoresis (DGGE) showed that the DNA band corresponding to Saccharomyces cerevisiae was no longer detectable in several sourdoughs. Twelve species of lactic acid bacteria were variously identified through a culture-dependent approach. All sourdoughs harbored a certain number of species and strains, which were dominant throughout time and, in several cases, varied depending on the environment of propagation. As shown by statistical permutation analysis, the lactic acid bacterium populations differed among sourdoughs propagated at artisan bakery and laboratory levels. Lactobacillus plantarum, Lactobacillus sakei, and Weissella cibaria dominated in only some sourdoughs back-slopped at artisan bakeries, and Leuconostoc citreum seemed to be more persistent under laboratory conditions. Strains of Lactobacillus sanfranciscensis were indifferently found in some sourdoughs. Together with the other stable species and strains, other lactic acid bacteria temporarily contaminated the sourdoughs and largely differed between artisan bakery and laboratory levels. The environment of propagation has an undoubted influence on the composition of sourdough yeast and lactic acid bacterium microbiotas.
Collapse
|
27
|
Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas GJE, Zeng AP, Papanikolaou S. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 2011. [DOI: 10.1002/elsc.201100058] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Kapetanakou AE, Kollias JN, Drosinos EH, Skandamis PN. Inhibition of A. carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. Int J Food Microbiol 2011; 152:91-9. [PMID: 22075525 DOI: 10.1016/j.ijfoodmicro.2011.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 02/05/2023]
Abstract
Five composites of yeast and six of bacterial isolates from fermented products were studied, in order to assess their ability to inhibit Aspergillus carbonarius growth and reduce OTA concentration in culture media and beverages. The antagonistic effect of the above composites against A. carbonarius growth was studied in synthetic grape medium of pH 3.5 and a(w) 0.98, 0.95, 0.92 after incubation at 25°C. Different combinations of initial inocula of bacteria or yeast composites and fungi were used (10(2)cfu/mL vs 10(5)spores/mL; 10(5)cfu/mL vs 10(2)spores/mL; and 10(5)cfu/mL vs 10(5)spores/mL). Regarding the OTA reduction experiment, 10(3) and 10(7)cfu/mL of the bacteria and yeast composites were inoculated in liquid media of different pH (3.0, 4.0, 5.0, and 6.1 or 6.5) and initial OTA concentration (50 and 100μg/L) and incubated at 30°C. Moreover, grape juice, red wine, and beer were supplemented with 100μg/L of OTA and inoculated with composites of 16 yeasts (16YM) and 29 bacterial (29BM) strains (10(7)cfu/mL) to estimate the kinetics of OTA reduction at 25°C for 5days. Fungal inhibition and OTA reduction were calculated in comparison to control samples. None of the bacterial composites inhibited A. carbonarius growth. The high inoculum of yeast composites (10(5) cfu/mL) showed more efficient fungal inhibition compared to cell density of 10(2) cfu/mL. All yeast composites showed higher OTA reduction (up to 65%) compared to bacteria (2-25%), at all studied assays. The maximum OTA reduction was obtained at pH 3.0 by almost all yeast composites. For all studied beverages the decrease in OTA concentration was higher by yeasts (16YM) compared to bacteria (29BM). The highest OTA reduction was observed in grape juice (ca 32%) followed by wine (ca 22%), and beer (ca 12%). The present findings may assist in the control of A. carbonarius growth and OTA production in fermented foodstuffs by the use of proper strains of technological importance.
Collapse
Affiliation(s)
- A E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science & Technology, Agricultural University of Athens, Greece
| | | | | | | |
Collapse
|