1
|
Esteras-Saz J, de la Iglesia Ó, Kumakiri I, Peña C, Escudero A, Téllez C, Coronas J. Pervaporation of the low ethanol content extracting stream generated from the dealcoholization of red wine by membrane osmotic distillation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Sam FE, Ma T, Liang Y, Qiang W, Atuna RA, Amagloh FK, Morata A, Han S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. MEMBRANES 2021; 11:membranes11120957. [PMID: 34940458 PMCID: PMC8708490 DOI: 10.3390/membranes11120957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022]
Abstract
Over the last few years, the dealcoholization of wine has piqued the interest of winemakers and researchers. Physical dealcoholization methods are increasingly used in the dealcoholization of wines because they can partially or completely reduce the alcohol content of wines. This study aimed to compare the chemical parameters, volatile composition and sensory quality of white, rosé and red wines dealcoholized by two physical dealcoholization methods: reverse osmosis (RO) and vacuum distillation (VD) at 0.7% v/v ethanol. RO and VD effectively reduced the ethanol concentration in all wines to the required 0.7% v/v, but also significantly affected most chemical parameters. The pH, free sulfur dioxide, total sulfur dioxide, and volatile acidity decreased significantly due to dealcoholization by RO and VD, while reducing sugars and total acidity increased significantly. VD resulted in higher color intensity, which was perceptible in dealcoholized rosé and red wines, while RO caused notable color differences in dealcoholized white and red wine fractions. RO were richer in esters (more ethyl esters and isoamyl acetate), higher alcohols, organic acids, terpenics and C13-norisoprenoids, and carbonyl compounds, while wines dealcoholized with VD had lower levels of these volatile compounds, which may reflect both the loss of esters into the distillate during evaporation and condensation (in the case of VD) and a shift in the chemical equilibrium responsible for ester formation and hydrolysis after ethanol removal. β-damascenone exhibited the highest OAV in all wines, however, losses equal to 35.54–61.98% in RO dealcoholized fractions and 93.62% to 97.39% in VD dealcoholized fractions were observed compared to the control wines. The predominant aroma series in the original and dealcoholized wines were fruity and floral but were greatly affected by VD. Sensory evaluation and PCA showed that dealcoholization by RO improved the fruity and floral notes (in rosé and red wines), color intensity, sweetness, viscosity, and aroma intensity better than dealcoholization by VD, while VD mainly enhanced the color of the dealcoholized wines. Both methods increased the acidity of the respective dealcoholized wines. Nevertheless, RO dealcoholized wines achieved higher acceptance by the panelists than VD dealcoholized wines. Therefore, RO may be a better method for producing dealcoholized (0.7% v/v) wines with minimal impact on aroma and sensory quality.
Collapse
Affiliation(s)
- Faisal Eudes Sam
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Tengzhen Ma
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Yuhua Liang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Wenle Qiang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Richard Atinpoore Atuna
- Department of Food Science and Technology, University for Development Studies, Nyankpala Campus, P.O. Box TL1882, Tamale 34983, Ghana; (R.A.A.); (F.K.A.)
| | - Francis Kweku Amagloh
- Department of Food Science and Technology, University for Development Studies, Nyankpala Campus, P.O. Box TL1882, Tamale 34983, Ghana; (R.A.A.); (F.K.A.)
| | - Antonio Morata
- Food Technology Department, Technical College of Agricultural Engineers, Technical University of Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Shunyu Han
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
- Correspondence: ; Tel.: +86-138-9313-2658
| |
Collapse
|
3
|
Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods 2021; 10:foods10102498. [PMID: 34681547 PMCID: PMC8535880 DOI: 10.3390/foods10102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The attention of some winemakers and researchers over the past years has been drawn towards the partial or total dealcoholization of wines and alcoholic beverages due to trends in wine styles, and the effect of climate change on wine alcohol content. To achieve this, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production. However, the removal of alcohol by these techniques can cause changes in color and losses of desirable volatile aroma compounds, which can subsequently affect the sensory quality and acceptability of the wine by consumers. Aside from the removal of ethanol, other factors such as the ethanol concentration, the kind of alcohol removal technique, the retention properties of the wine non-volatile matrix, and the chemical-physical properties of the aroma compounds can influence changes in the wine sensory quality during dealcoholization. This review highlights and summarizes some of the techniques for wine dealcoholization and their impact on wine quality to help winemakers in choosing the best technique to limit adverse effects in dealcoholized wines and to help meet the needs and acceptance among different targeted consumers such as younger people, pregnant women, drivers, and teetotalers.
Collapse
|
4
|
Errichiello F, Picariello L, Guerriero A, Moio L, Forino M, Gambuti A. The Management of Dissolved Oxygen by a Polypropylene Hollow Fiber Membrane Contactor Affects Wine Aging. Molecules 2021; 26:molecules26123593. [PMID: 34208342 PMCID: PMC8231238 DOI: 10.3390/molecules26123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Numerous oenological practices can cause an excess of dissolved oxygen in wine, thus determining sensory and chromatic defects in the short- to long-term. Hence, it is necessary to manage the excess of oxygen before bottling. METHODS In this study, the management of the dissolved oxygen content by a polypropylene hollow fiber membrane contactor apparatus was performed in two wines from different grape varieties (Aglianico and Falanghina). The wines were analyzed after an 11-month aging. Anthocyanins and acetaldehyde content were evaluated by HPLC. In addition, other phenolic compounds and chromatic characteristics were analyzed by spectrophotometric methods. NMR and HR ESIMS analyses were conducted to evaluate the amount of pyranoanthocyanins and polymeric pigments. RESULTS After 11 months of aging, in both wines a decrease of free and total SO2 with respect to initial values was detected. In the wines with the highest dissolved oxygen levels, a more remarkable loss was observed. No significant differences in terms of color parameters were detected. In red wine with the highest oxygen content, a massive formation of polymeric pigments and BSA reactive tannins was observed, as opposed to wines with lower oxygen levels. CONCLUSION The study demonstrated that the membrane contactor can prove a successful tool to manage dissolved oxygen in wines as to prevent their oxidative spoilage.
Collapse
|
5
|
López R, Portu J, González-Arenzana L, Garijo P, Gutiérrez AR, Santamaría P. Ethephon foliar application: Impact on the phenolic and technological Tempranillo grapes maturity. J Food Sci 2021; 86:803-812. [PMID: 33590528 DOI: 10.1111/1750-3841.15570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
In recent years, there has been increasing concern about the impact of climate change on viticulture, in particular regarding its influence on grape maturity and quality. Extensive research has shown that the rise of temperatures during grape ripening accelerates the accumulation of sugars while reducing the synthesis of phenolic and aromatic compounds. The aim of this study was to investigate whether the foliar application of the plant growth regulator ethephon might delay technological grape maturity and increase grape phenolic content, improving wine quality. For this, different concentrations of ethephon were applied during two vintages to the Tempranillo grape variety at the onset of veraison. Results showed that grape sugar accumulation was delayed in one of the two vintages, whereas the treatment favored the accumulation of phenolic compounds in both vintages. In conclusion, the application of ethephon at the onset of veraison to Tempranillo grapevines helped to couple grape phenolic and technological maturity, leading to more balanced wines, either by delaying sugar accumulation or by enhancing the synthesis of anthocyanins and phenolic compounds. PRACTICAL APPLICATION: Due to the current climate change, phenolic maturity of grapes does not match with their technological maturity, which means that harvested grapes are usually very sweet but without enough color and aroma. The foliar application of the plant growth regulator-ethephon-delays technological grape maturity and increases grape phenolic content, improving wine quality and creating wines that are more balanced.
Collapse
Affiliation(s)
- Rosa López
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Javier Portu
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Lucía González-Arenzana
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Patrocinio Garijo
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Ana Rosa Gutiérrez
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Pilar Santamaría
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| |
Collapse
|
6
|
Preliminary Study of the Effects of Pulsed Electric Field (PEF) Treatments in Wines Obtained from Early-Harvested Sangiovese Grapes. BEVERAGES 2020. [DOI: 10.3390/beverages6020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this experiment, the effect of pulsed electric field (PEF) technology on the extractability of anthocyanins and polyphenols in early-harvested Sangiovese red grapes (16.9°Bx sugar, 3.26 pH, and 10.4 g/L titratable acidity) from Emilia Romagna (Italy) was investigated. Electric field strengths were in the range of 0.9–3 kV/cm, generated by the application of short, high-voltage pulses, and the grapes were subjected to specific energies from 10.4 to 32.5 kJ/kg immediately after crushing and destemming to produce a pre-fermentative pulsed electric field treatment on a pilot scale. Grape musts and wines were analyzed for color components and polyphenols content from pressing of juices up to 3 months from the end of the fermentation of wines. Furthermore, the freshly-fermented wines were subjected to accelerated aging conditions (i.e., warming under 40 °C for 32 days) to simulate the evolution of color parameters with time. The color intensity was generally higher in treated musts and wines compared to the control, further increased by raising the intensity of the electric field. Results suggested the potentialities of pulsed electric fields (PEFs) as a mild pre-fermentative process to assist maceration and to increase the polyphenolic content of musts obtained by early-harvested Sangiovese grapes.
Collapse
|
7
|
Horácio PS, Veiga BA, Luz LF, Levek CA, de Souza AR, Scheer AP. Simulation of vacuum distillation to produce alcohol-free beer. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Priscila S. Horácio
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| | - Bruno A. Veiga
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| | - Luiz F. Luz
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| | - Caio A. Levek
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| | - Ariádine R. de Souza
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| | - Agnes P. Scheer
- Rua Francisco Heráclito dos Santos Jardim das Américas; Universidade Federal do Parana - Campus Centro Politecnico - Chemical Engineering and Graduate Program of Food Engineering; Curitiba PR 81531-900 Brazil
| |
Collapse
|
8
|
Babin A, Bougie F, Rodrigue D, Iliuta MC. A closer look on the development and commercialization of membrane contactors for mass transfer and separation processes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Impact of dealcoholization on quality properties in white wine at various alcohol content levels. Journal of Food Science and Technology 2019; 56:3707-3720. [PMID: 31413398 DOI: 10.1007/s13197-019-03839-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
The reduction of alcohol content in wines has two main objectives, the former is decreasing the wines' strength and the latter is producing new low alcohol beverages. To accomplish the latter, in this study, we focused on the dealcoholization of a white wine (cv Falanghina, 12.5 vol%) obtained from an ancient Italian grape variety that has recently aroused a renewed interest. It was dealcoholized at various alcohol content levels ranging from 9.8 to 0.3 vol% through the osmotic distillation process, and the main quality parameters of the obtained dealcoholized samples were evaluated. No significant differences (p < 0.05) in total phenols, flavonoids, organic acids and total acidity were observed among the wine samples at different alcohol content levels. On the contrary, the volatile compounds content decreased with increasing alcohol removal. Specifically, almost 50% of higher alcohols with acids and lactones were preserved in dealcoholized wine at 9.8 vol% alcohol content, but this percentage reduced to 30% in the sample at 6.8 vol%, and was even lower in the dealcoholized wine with lower alcohol content. It was argued that the transport of volatile compounds through the membrane, beside the membrane selectivity, is highly correlated with the Henry constant (R2 > 0.8021 for 9.8 vol% of dealcoholized wine). Moreover, results of the sensory evaluation indicated a significant change in terms of acidity, odour, sweetness and body taste in dealcoholized wine (0.3 vol%), giving an overall perceived imbalance and unacceptable taste with respect to the original wine. Therefore, in order to balance acid sensation and enhance body and aftertaste, an attempt was made to formulate an alcohol-free wine-based beverage with enhanced odour and sweetness, by adding some floral wine flavours, up to the amount present in the original wine.
Collapse
|
10
|
Pham DT, Stockdale VJ, Wollan D, Jeffery DW, Wilkinson KL. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019; 24:molecules24071404. [PMID: 30974766 PMCID: PMC6480466 DOI: 10.3390/molecules24071404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
This study investigated compositional changes in red wines resulting from wine alcohol removal by reverse osmosis-vaporative perstraction (RO-EP) and provides insight into the physical and chemical changes in reduced alcohol wine (RAW). Trial 1 involved RO-EP treatment of three wines that were analyzed pre-treatment, post-treatment, and post-treatment with alcohol adjustment (i.e., addition of ethanol to achieve the original alcohol content). Trial 2 involved partial dealcoholization of two wines and analysis of samples collected during RO-EP treatment, i.e., wine in, wine out, retentate, permeate (pre- and post-EP treatment) and strip water. Wine color was analyzed by spectrophotometric methods, while other compositional changes were determined by WineScan, high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC–MS) analyses. In general, RAWs were slightly more concentrated than pre-treatment wines, which resulted in greater color intensity and increased phenolics and organic acids. However, partial dealcoholization resulted in lower concentrations of some fermentation volatiles, particularly ethyl esters, which may reflect ester hydrolysis following ethanol removal.
Collapse
Affiliation(s)
- Duc-Truc Pham
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Vanessa J Stockdale
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
- Treasury Wine Estates, 97 Sturt Highway, Nuriootpa, SA 5352, Australia.
| | - David Wollan
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
- VA Filtration, PO Box 794, Nuriootpa, SA 5355, Australia.
| | - David W Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Kerry L Wilkinson
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
11
|
Piccardo D, Favre G, Pascual O, Canals J, Zamora F, González-Neves G. Reducción del contenido de alcohol y pH de vinos tintos Pinot noir y Tannat empleando uvas con diferentes niveles de maduración. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
El objetivo de esta investigación fue determinar la efectividad de la mezcla de mostos de uvas con diferente grado de maduración para la obtención de vinos Pinot noir y Tannat con menor contenido de alcohol y pH. En envero, se extrajo mosto de uvas inmaduras que se conservó a 4 ∘C hasta su uso. En madurez tecnológica, las uvas cosechadas fueron despalilladas, estrujadas y distribuidas en seis recipientes. Tres fueron vinificados de forma tradicional, mientras que en los otros tres se realizó una sustitución de 3 L del mosto de uva madura por 3 L del mosto de uvas inmaduras. Ambos tratamientos realizaron una maceración fermentativa de 7 días. Se determinó la composición básica del vino, color, concentración de fenoles totales, antocianos, catequinas y proantocianidinas a los dos meses del descube. La sustitución de mosto permitió elaborar vinos Pinot noir y Tannat con menor contenido de alcohol y pH, sin reducir las concentraciones de polifenoles totales, catequinas o antocianos. El efecto sobre la concentración de proantocianidinas fue variable de acuerdo con el cultivar y año de vendimia. Los vinos Tannat reducidos en alcohol presentaron mayor intensidad de color, menor tono e igual cromaticidad que los vinos testigos.
Collapse
|
12
|
Longo R, Blackman JW, Antalick G, Torley PJ, Rogiers SY, Schmidtke LM. A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chem 2018; 261:21-29. [PMID: 29739584 DOI: 10.1016/j.foodchem.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/03/2017] [Accepted: 04/06/2018] [Indexed: 11/27/2022]
Abstract
Two Verdelho and Petit Verdot wines were produced from sequential harvests of grapes. The alcohol concentration of early harvest (EH) and late harvest (LH) wines were respectively 9% and 13.5% v/v for Verdelho, and 10.5% and 13% v/v for Petit Verdot. LH wines were dealcoholised to match the same alcohol level of EH samples using a combined reverse osmosis-evaporative perstraction process. In dealcoholised wines, there was a decrease in volatile compounds (esters particularly) compared to LH treatments. For both varieties, the sensory attribute ratings for overall aroma intensity and alcohol mouthfeel also decreased following dealcoholisation. Dealcoholised wines were distinctively different from both LH and EH wines even though these wines had similar alcohol level to EH wines. When dealcoholisation is considered for high-alcohol wines, it is important to consider that membrane effects can significantly change depending on the wine non-volatile matrix composition and the level of alcohol reduction required.
Collapse
Affiliation(s)
- Rocco Longo
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ARC-Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - John W Blackman
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Guillaume Antalick
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Peter J Torley
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ARC-Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia; NSW Department of Primary Industries, Wagga Wagga, NSW 2678, Australia
| | - Leigh M Schmidtke
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ARC-Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
13
|
|
14
|
Müller M, Bellut K, Tippmann J, Becker T. Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201700010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Magdalena Müller
- Technische Universität München; Institute of Brewing and Beverage Technology; Weihenstephaner Steig 20 85354 Freising Deutschland
| | - Konstantin Bellut
- Technische Universität München; Institute of Brewing and Beverage Technology; Weihenstephaner Steig 20 85354 Freising Deutschland
| | - Johannes Tippmann
- Technische Universität München; Institute of Brewing and Beverage Technology; Weihenstephaner Steig 20 85354 Freising Deutschland
| | - Thomas Becker
- Technische Universität München; Institute of Brewing and Beverage Technology; Weihenstephaner Steig 20 85354 Freising Deutschland
| |
Collapse
|
15
|
Fortification and Elevated Alcohol Concentration Affect the Concentration of Rotundone and Volatiles in Vitis vinifera cv. Shiraz Wine. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Comparison of the physicochemical and volatile composition of wine fractions obtained by two different dealcoholization techniques. Food Chem 2017; 221:1-10. [DOI: 10.1016/j.foodchem.2016.10.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/21/2022]
|
17
|
Abstract
Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry.
Collapse
Affiliation(s)
- Youssef El Rayess
- a Faculty of Agricultural and Food Sciences, Holy Spirit University (USEK) , Jounieh , Lebanon.,b Université de Toulouse, INPT, UPS, Laboratoire de Genie Chimique , Castanet-Tolosan , France.,c Centre de Viticulture et d'Œnologie de Midi-Pyrénées, Castanet-Tolosan-France
| | - Martine Mietton-Peuchot
- d Université de Bordeaux, ISVV, EA 4577, Unité de Recherche OENOLOGIE , Villenave d'Ornon , France.,e INRA, ISVV, USC OENOLOGIE , Villenave d'Ornon , France
| |
Collapse
|
18
|
Ballester-Tomás L, Prieto JA, Gil JV, Baeza M, Randez-Gil F. The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. Int J Food Microbiol 2017; 245:59-65. [PMID: 28131961 DOI: 10.1016/j.ijfoodmicro.2017.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/15/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022]
Abstract
Current winemaking trends include low-temperature fermentations and using non-Saccharomyces yeasts as the most promising tools to produce lower alcohol and increased aromatic complexity wines. Here we explored the oenological attributes of a C. sake strain, H14Cs, isolated in the sub-Antarctic region. As expected, the cold sea water yeast strain showed greater cold growth, Na+-toxicity resistance and freeze tolerance than the S. cerevisiae QA23 strain, which we used as a commercial wine yeast control. C. sake H14Cs was found to be more sensitive to ethanol. The fermentation trials of low-sugar content must demonstrated that C. sake H14Cs allowed the cold-induced lag phase of growth to be eliminated and also notably reduced the ethanol (-30%) and glycerol (-50%) content in wine. Instead C. sake produced sorbitol as a compatible osmolyte. Finally, the inspection of the main wine volatile compounds revealed that C. sake produced more higher alcohols than S. cerevisiae. In conclusion, our work evidences that using the Antarctic C. sake H14Cs yeast improves low-temperature must fermentations and has the potential to provide a wine with less ethanol and also particular attributes.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Jose V Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; Food Technology Area, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
19
|
Longo R, Blackman JW, Torley PJ, Rogiers SY, Schmidtke LM. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:8-16. [PMID: 27098726 DOI: 10.1002/jsfa.7757] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
A desirable sensory profile is a major consumer driver for wine acceptability and should be considered during the production of reduced-alcohol wines. Although various viticultural practices and microbiological approaches show promising results, separation technologies such as membrane filtration, in particular reverse osmosis and evaporative perstraction, in addition to vacuum distillation, represent the most common commercial methods used to produce reduced-alcohol wine. However, ethanol removal from wine can result in a significant loss of volatile compounds such as esters (ethyl octanoate, ethyl acetate, isoamyl acetate) that contribute positively to the overall perceived aroma. These losses can potentially reduce the acceptability of the wine to consumers and decrease their willingness to purchase wines that have had their alcohol level reduced. The change in aroma as a result of the ethanol removal processes is influenced by a number of factors: the type of alcohol reduction process; the chemical-physical properties (volatility, hydrophobicity, steric hindrance) of the aroma compounds; the retention properties of the wine non-volatile matrix; and the ethanol level. This review identifies and summarises possible deleterious influences of the dealcoholisation process and describes best practice strategies to maintain the original wine composition. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocco Longo
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - John W Blackman
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Peter J Torley
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia
- NSW Department of Primary Industries, Wagga Wagga, NSW 2678, Australia
| | - Leigh M Schmidtke
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
20
|
Müller M, Bellut K, Tippmann J, Becker T. Physikalische Verfahren zur Entalkoholisierung verschiedener Getränkematrizes und deren Einfluss auf qualitätsrelevante Merkmale. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R. Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Front Microbiol 2016; 7:642. [PMID: 27199967 PMCID: PMC4854890 DOI: 10.3389/fmicb.2016.00642] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.
Collapse
Affiliation(s)
- Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - José A Curiel
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Lucia Oro
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Alda J Rodrigues
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| |
Collapse
|
22
|
Banvolgyi S, Savaş Bahçeci K, Vatai G, Bekassy S, Bekassy-Molnar E. Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels. FOOD SCI TECHNOL INT 2016; 22:677-687. [PMID: 27056596 DOI: 10.1177/1082013216642331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/08/2016] [Indexed: 11/15/2022]
Abstract
The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10-20 bar) and temperature (20-40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5-3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products - obtained by using various forms of reconstitution of the concentrated wine - had low alcohol content (4-6 % by volume) and their sensory attributes were similar to those of the original wine.
Collapse
Affiliation(s)
- Szilvia Banvolgyi
- Department of Food Engineering, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - K Savaş Bahçeci
- Department of Food Engineering, Faculty of Engineering, Hitit University, Çorum, Turkey
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - Sandor Bekassy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Erika Bekassy-Molnar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Budapest, Hungary
| |
Collapse
|
23
|
Rinaldi A, Iturmendi N, Gambuti A, Jourdes M, Teissedre PL, Moio L. Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva. Electrophoresis 2015; 35:1735-41. [PMID: 25025096 DOI: 10.1002/elps.201300622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Saliva is a biological fluid with a multifunctional role that makes it interesting in terms of research and diagnostic possibilities. In food research, human saliva represented a useful tool by which we measure the tactile sensation elicited by polyphenol-rich beverages called astringency. A method based on SDS-PAGE analysis of saliva before and after the binding reaction with wine polyphenols has been successfully used in previous studies for measuring wine astringency by means of the saliva precipitation index. In this work, chip electrophoresis was used alternatively to SDS-PAGE and results were compared. Chip electrophoresis provides a very good reproducibility for wine and grape astringency. Moreover, this approach is much faster than the conventional SDS-PAGE method requiring several hours for an analysis. Another advantage over traditional gel is lower sample and reagent volume requirements, as well as the lower and less toxic wastes, contributing benefits to health and environment. The application of this novel method allowed, using the principal component analysis, to distinguish grapes and wines according to the saliva precipitation index and structural characteristics determined by the phoroglucinolysis analysis.
Collapse
|
24
|
Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol 2014; 181:85-91. [PMID: 24831930 DOI: 10.1016/j.ijfoodmicro.2014.04.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/29/2014] [Accepted: 04/21/2014] [Indexed: 11/21/2022]
Abstract
Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable.
Collapse
|
25
|
Diban N, Arruti A, Barceló A, Puxeu M, Urtiaga A, Ortiz I. Membrane dealcoholization of different wine varieties reducing aroma losses. Modeling and experimental validation. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2013.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gil M, Estévez S, Kontoudakis N, Fort F, Canals JM, Zamora F. Influence of partial dealcoholization by reverse osmosis on red wine composition and sensory characteristics. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2018-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Stable Isotope Ratios and Aroma Profile Changes Induced Due to Innovative Wine Dealcoholisation Approaches. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1068-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Partial Dealcoholization of Red Wines by Membrane Contactor Technique: Effect on Sensory Characteristics and Volatile Composition. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0942-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|