1
|
Zhu Y, Gu M, Yu W, Liao L, Gao S, Wang S, Lin H, Gui W, Zhou Y, Chen Z, Zeng J, Ye N. Multi-omics analysis of the mechanisms of abundant theacrine and EGCG3"Me in tea (Camellia sinensis). BMC PLANT BIOLOGY 2025; 25:663. [PMID: 40389844 PMCID: PMC12087082 DOI: 10.1186/s12870-025-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
Theacrine and epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) are notable secondary metabolites in tea (Camellia sinensis), celebrated for their unique flavors and significant health effects. Theacrine has a mild effect on nerve stimulation, while EGCG3"Me exhibits better stability, higher oral bioavailability and stronger biological activity. However, tea plant varieties naturally rich in both theacrine and EGCG3"Me are rare. This study unveils a unique tea variety 'Anxi kucha', which is abundant in both theacrine and EGCG3"Me. Through integrated transcriptome-proteome-metabolome analysis, SAMS3, APRT1, IMPDH, and TCS1 were identified as critical enzymes for theacrine synthesis; while CHI1, CHI2, FLS2 and LAR1 were key for EGCG3"Me synthesis. Additionally, transcription factor analysis revealed that MYB4 and bHLH74 were positively correlated with the contents of theacrine and EGCG3"Me. This study provides valuable materials for further exploring theacrine and EGCG3"Me in tea plants, and establishes a theoretical basis for their biosynthesis.
Collapse
Affiliation(s)
- Yanyu Zhu
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mengya Gu
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wentao Yu
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District PR China, Fuzhou, 350001, Fujian, China.
| | - Longhua Liao
- Fujian Yongganhua Tea Industry Co., Ltd, Fuzhou, 350011, Fujian, China
| | - Shuilian Gao
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shuyan Wang
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenjing Gui
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youliang Zhou
- Fujian Guoxin Green Valley Agricultural Development Co., Ltd, Anxi, 362400, Fujian, China
| | - Zhiming Chen
- Anxi Tea Industry Development Center, Anxi, 362400, Fujian, China
| | - Jingde Zeng
- Anxi Tea Industry Development Center, Anxi, 362400, Fujian, China
| | - Naixing Ye
- College of Horticulture-Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Sun Z, Zeng W, Qiu Y, Hu Y, Zhou Q, Hu C, Wang Y, Xue W. Anti-TMV activity based flavonol derivatives containing piperazine sulfonyl: Design, synthesis and mechanism study. Mol Divers 2025:10.1007/s11030-025-11109-6. [PMID: 39841318 DOI: 10.1007/s11030-025-11109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC50 values of S15 and S19 curative activity were 174.5 and 110.4 μg/mL, respectively, which were better than 253.7 μg/mL of Ningnanmycin (NNM). The EC50 values of S4 and S19 protection activity were 140.3 and 116.1 μg/mL, respectively, better than that of NNM (247.1 μg/mL). Microscale thermophoresis (MST) and molecular docking experiments showed that S19 had a good molecular binding force with TMV. Transmission electron microscopy (TEM) results show that S19 can fracture TMV particles and affect self-assembly. S19 treatment had almost no effect on the growth of seeds and seedlings, and can change the content of chlorophyll malondialdehyde (MDA) and superoxide dismutase (SOD) in tobacco to a certain extent, and improve the disease resistance of tobacco.
Collapse
Affiliation(s)
- Zhiling Sun
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuhong Wang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Yang L, Teng Y, Bu S, Ma B, Guo S, Liang M, Huang L. Effect of SlSAHH2 on metabolites in over-expressed and wild-type tomato fruit. PeerJ 2024; 12:e17466. [PMID: 38827284 PMCID: PMC11143970 DOI: 10.7717/peerj.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Background Tomato (Solanum lycopersicum) is an annual or perennial herb that occupies an important position in daily agricultural production. It is an essential food crop for humans and its ripening process is regulated by a number of genes. S-adenosyl-l-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) is widespread in organisms and plays an important role in regulating biological methylation reactions. Previous studies have revealed that transgenic tomato that over-express SlSAHH2 ripen earlier than the wild-type (WT). However, the differences in metabolites and the mechanisms driving how these differences affect the ripening cycle are unclear. Objective To investigate the effects of SlSAHH2 on metabolites in over-expressed tomato and WT tomato. Methods SlSAHH2 over-expressed tomato fruit (OE-5# and OE-6#) and WT tomato fruit at the breaker stage (Br) were selected for non-targeted metabolome analysis. Results A total of 733 metabolites were identified by mass spectrometry using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the Human Metabolome database (HMDB). The metabolites were divided into 12 categories based on the superclass results and a comparison with the HMDB. The differences between the two databases were analyzed by PLS-DA. Based on a variable important in projection value >1 and P < 0.05, 103 differential metabolites were found between tomato variety OE-5# and WT and 63 differential metabolites were found between OE-6# and WT. These included dehydrotomatine, L-serine, and gallic acid amongst others. Many metabolites are associated with fruit ripening and eight common metabolites were found between the OE-5# vs. WT and OE-6# vs. WT comparison groups. The low L-tryptophan expression in OE-5# and OE-6# is consistent with previous reports that its content decreases with fruit ripening. A KEGG pathway enrichment analysis of the significantly different metabolites revealed that in the OE-5# and WT groups, up-regulated metabolites were enriched in 23 metabolic pathways and down-regulated metabolites were enriched in 11 metabolic pathways. In the OE-6# and WT groups, up-regulated metabolites were enriched in 29 pathways and down-regulated metabolites were enriched in six metabolic pathways. In addition, the differential metabolite changes in the L-serine to flavonoid transformation metabolic pathway also provide evidence that there is a phenotypic explanation for the changes in transgenic tomato. Discussion The metabolomic mechanism controlling SlSAHH2 promotion of tomato fruit ripening has been further elucidated.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yue Teng
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Sijia Bu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ben Ma
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shijia Guo
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Mengxiao Liang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lifen Huang
- Majorbio Bio-PharmTechnology Co. Ltd., Shanghai, China
| |
Collapse
|
4
|
Huang X, Wu Y, Zhang S, Yang H, Wu W, Lyu L, Li W. Overexpression of RuFLS2 Enhances Flavonol-Related Substance Contents and Gene Expression Levels. Int J Mol Sci 2022; 23:ijms232214230. [PMID: 36430708 PMCID: PMC9699159 DOI: 10.3390/ijms232214230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this research group, two blackberry flavonol synthase genes were identified in this study, and the encoded proteins were subjected to bioinformatics analysis. RuFLS1 and RuFLS2 are both hydrophobic acidic proteins belonging to the 2OG-Fe(II) dioxygenase superfamily. RuFLS2 was expressed at 27.93-fold higher levels than RuFLS1 in red-purple fruit by RNA-seq analysis. Therefore, RuFLS2-overexpressing tobacco was selected for functional exploration. The identification of metabolites from transgenic tobacco showed significantly increased contents of flavonoids, such as apigenin 7-glucoside, kaempferol 3-O-rutinoside, astragalin, and quercitrin. The high expression of RuFLS2 also upregulated the expression levels of NtF3H and NtFLS in transgenic tobacco. The results indicate that RuFLS2 is an important functional gene regulating flavonoid biosynthesis and provides an important reference for revealing the molecular mechanism of flavonoid accumulation in blackberry fruit.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| | - Shanshan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| |
Collapse
|
5
|
Transcriptome and proteome associated analysis of flavonoid metabolism in haploid Ginkgo biloba. Int J Biol Macromol 2022; 224:306-318. [DOI: 10.1016/j.ijbiomac.2022.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
6
|
Yuan Y, Zuo J, Zhang H, Zu M, Liu S. Analysis of the different growth years accumulation of flavonoids in Dendrobium moniliforme (L.) Sw. by the integration of metabolomic and transcriptomic approaches. Front Nutr 2022; 9:928074. [PMID: 36225877 PMCID: PMC9549206 DOI: 10.3389/fnut.2022.928074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dendrobium moniliforme (L.) Sw. is a valuable herbal crop, and flavonoids are primarily distributed as active ingredients in the stem, but the composition and synthesis mechanisms of flavonoids in different growth years are not clear. The accumulation of flavonoids in D. moniliforme from four different years was investigated, using a combined metabolomics and transcriptomics approach in this study. The phenylpropanoid and flavonoid biosynthetic pathways were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). The widely targeted metabolomics technique revealed a total of 173 kinds of flavonoid metabolites. The metabolomics data confirmed the trend of total flavonoids (TF) content in stems of D. moniliforme, with chalcone, naringenin, eriodictyol, dihydroquercetin, and other flavonoids considerably up-accumulating in the third year. Twenty DEGs were detected that regulate flavonoid synthesis and the expression of these genes in different growth years was verified using real-time quantitative PCR (qRT-PCR). Furthermore, a comprehensive regulatory network was built for flavonoid biosynthesis and it was discovered that there is one FLS gene, one CCR gene and two MYB transcription factors (TFs) with a high connection with flavonoid biosynthesis by weighted gene co-expression network analysis (WGCNA). In this study, the correlation between genes involved in flavonoid biosynthesis and metabolites was revealed, and a new regulatory mechanism related to flavonoid biosynthesis in D. moniliforme was proposed. These results provide an important reference for the farmers involved in the cultivation of D. moniliforme.
Collapse
|
7
|
Unterlander N, Mats L, McGary LC, Gordon HOW, Bozzo GG. Kaempferol rhamnoside catabolism in rosette leaves of senescing Arabidopsis and postharvest stored radish. PLANTA 2022; 256:36. [PMID: 35816223 DOI: 10.1007/s00425-022-03949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Flavonol rhamnosides including kaempferitrin (i.e., kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside) occur throughout the plant kingdom. Mechanisms governing flavonol rhamnoside biosynthesis are established, whereas degradative processes occurring in plants are relatively unknown. Here, we investigated the catabolic events affecting kaempferitrin status in the rosette leaves of Arabidopsis thaliana L. Heynh. (Arabidopsis) and Raphanus sativus L. (radish), respectively, in response to developmental senescence and postharvest handling. On a per plant basis, losses of several kaempferol rhamnosides including kaempferitrin were apparent in senescing leaves of Arabidopsis during development and postharvest radish stored at 5 °C. Conversely, small pools of kaempferol 7-O-α-rhamnoside (K7R), kaempferol 3-O-α-rhamnoside (K3R), and kaempferol built up in senescing leaves of both species. Evidence is provided for ⍺-rhamnosidase activities targeting the 7-O-α-rhamnoside of kaempferitrin and K7R in rosette leaves of both species. An HPLC analysis of in vitro assays of clarified leaf extracts prepared from developing Arabidopsis and postharvest radish determined that these metabolic shifts were coincident with respective 237% and 645% increases in kaempferitrin 7-O-⍺-rhamnosidase activity. Lower activity rates were apparent when these ⍺-rhamnosidase assays were performed with K7R. A radish ⍺-rhamnosidase containing peak eluting from a DEAE-Sepharose Fast Flow column hydrolyzed various 7-O-rhamnosylated flavonols, as well as kaempferol 3-O-β-glucoside. Together it is apparent that the catabolism of 7-O-α-rhamnosylated kaempferol metabolites in senescing plant leaves is associated with a flavonol 7-O-α-rhamnoside-utilizing α-rhamnosidase.
Collapse
Affiliation(s)
- Nicole Unterlander
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lili Mats
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Laura C McGary
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Harley O W Gordon
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gale G Bozzo
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Yuan Y, Zuo J, Zhang H, Li R, Yu M, Liu S. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:850090. [PMID: 35360302 PMCID: PMC8964182 DOI: 10.3389/fpls.2022.850090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium huoshanense is both a traditional herbal medicine and a plant of high ornamental and medicinal value. We used transcriptomics and metabolomics to investigate the effects of growth year on the secondary metabolites of D. huoshanense stems obtained from four different years of cultivation. In this study, a total of 428 differentially accumulated metabolites (DAMs) and 1802 differentially expressed genes (DEGs) were identified. The KEGG enrichment analysis of DEGs and DAMs revealed significant differences in "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis" and "Flavone and flavonol biosynthesis". We summarize the biosynthesis pathway of flavonoids in D. huoshanense, providing new insights into the biosynthesis and regulation mechanisms of flavonoids in D. huoshanense. Additionally, we identified two candidate genes, FLS (LOC110107557) and F3'H (LOC110095936), which are highly involved in flavonoid biosynthesis pathway, by WGCNA analysis. The aim of this study is to investigate the effects of growth year on secondarily metabolites in the plant and provide a theoretical basis for determining a reasonable harvesting period for D. huoshanense.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Yingdan Yuan,
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Runze Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu’an, China
- Maoyun Yu,
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Bozzo GG, Unterlander N. In through the out door: Biochemical mechanisms affecting flavonoid glycoside catabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110904. [PMID: 34034864 DOI: 10.1016/j.plantsci.2021.110904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are the sole source of flavonoids, a chemical category that includes flavonols. For the most part, flavonols occur as glycosides with numerous postulated biological roles in plants, including photoprotection, modulation of hormone translocation, and sequestration of reactive oxygen species. Flavonol glycosides are often considered as dead-end metabolites because related flavonoids (i.e., anthocyanins) occur in terminal tissues such as flowers and fruit, but recent evidence points to their turnover in planta, including developing photosynthetic tissues. Although microbial degradation pathways for flavonol glycosides of plant origin are well described, plant catabolic pathways are little studied by comparison. This review will address our current understanding of biochemical processes leading to the loss of flavonol glycosides in plants, with a specific emphasis on the evidence for flavonol-specific β-glucosidases. Complete elucidation of these catabolic pathways is dependent on the identification of regiospecific modifying steps, including enzymes associated with the hydrolysis of rhamnosylated flavonols, as well as flavonol peroxidation and their encoding genes. Herein, we highlight challenges for the identification of hypothetical plant α-rhamnosidases and peroxidases involved in flavonol glycoside degradation, and the potential biological role of this catabolism in mitigating oxidative stress in developing and postharvest plant tissues.
Collapse
Affiliation(s)
- Gale G Bozzo
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E., Guelph, ON, N1G 2W1, Canada.
| | - Nicole Unterlander
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E., Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
10
|
Luo Y, Dong J, Shi X, Wang W, Li Z, Sun J. Quantitative detection of soluble solids content, pH, and total phenol in Cabernet Sauvignon grapes based on near infrared spectroscopy. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Determination of Cabernet Sauvignon grapes quality plays an important role in commercial processing. In this research, a rapid approach based on near infrared spectroscopy was proposed to the determination of soluble solids content (SSC), pH, and total phenol content (TPC) in entire bunches of Cabernet Sauvignon grapes. Standardized normal variate (SNV) and competitive adaptive weighted sampling (CARS), genetic algorithm (GA), and synergy interval partial least squares (si-PLS) were used to optimize the spectral data. With optimal combination input, the prediction accuracy of partial least squares regression (PLSR) and support vector regression (SVR) models was compared. The results showed that these models based on variable optimization method could predict well the SSC, pH, and TPC of Cabernet Sauvignon grapes. The correlation coefficient of prediction for SSC, pH, and TPC had reached more than 0.85. This work provides an alternative to analyze the chemical parameters in whole bunch of Cabernet Sauvignon grape.
Collapse
Affiliation(s)
- Yijia Luo
- School of Food Science and Technology, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| | - Xuewei Shi
- School of Food Science and Technology, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| | - Wenxia Wang
- College of Mechanical and Electrical Engineering, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| | - Zhuoman Li
- School of Food Science and Technology, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University , Shihezi 832000 , Xinjiang Uygur Autonomous Region , P. R. China
| |
Collapse
|
11
|
Gu H, Wang Y, Xie H, Qiu C, Zhang S, Xiao J, Li H, Chen L, Li X, Ding Z. Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Sci Rep 2020; 10:15504. [PMID: 32968186 PMCID: PMC7511325 DOI: 10.1038/s41598-020-72596-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Drought stress triggers a series of physiological and biochemical changes in tea plants. It is well known that flavonoids, lignin and long-chain fatty acids play important roles in drought resistance. However, changes in proteins related to these three metabolic pathways in tea plants under drought stress have not been reported. We analysed the proteomic profiles of tea plants by tandem mass tag and liquid chromatography-tandem mass spectrometry. A total of 4789 proteins were identified, of which 11 and 100 showed up- and downregulation, respectively. The proteins related to the biosynthesis of lignin, flavonoids and long-chain fatty acids, including phenylalanine ammonia lyase, cinnamoyl-CoA reductase, peroxidase, chalcone synthase, flavanone 3-hydroxylase, flavonol synthase, acetyl-CoA carboxylase 1,3-ketoacyl-CoA synthase 6 and 3-ketoacyl-CoA reductase 1, were downregulated. However, the contents of soluble proteins, malondialdehyde, total phenols, lignin and flavonoids in the tea plants increased. These results showed that tea plants might improve drought resistance by inhibiting the accumulation of synthases related to lignin, flavonoids and long-chain fatty acids. The proteomic spectrum of tea plants provides a scientific basis for studying the pathways related to lignin, flavonoid and long-chain fatty acid metabolism in response to drought stress.
Collapse
Affiliation(s)
- Honglian Gu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hui Xie
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Jun Xiao
- School of Biological Science and Winery Engineering, Taishan University, Taian, 271000, Shandong, China
| | - Hongyan Li
- Haiyang Fruit Technology Promotion Station, Yantai, 265100, Shandong, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
12
|
Leng F, Cao J, Ge Z, Wang Y, Zhao C, Wang S, Li X, Zhang Y, Sun C. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9090-9099. [PMID: 32806110 DOI: 10.1021/acs.jafc.0c02488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, the effects of root restriction (RR) on the main phenolic metabolites and the related gene expression at different developmental stages were studied at the transcriptomic and metabolomic levels in "Summer Black" grape berries (Vitis vinifera × Vitis labrusca). The results were as follows: seven phenolic acid compounds, three stilbene compounds, nine flavonol compounds, 10 anthocyanin compounds, and 24 proanthocyanidin compounds were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry. RR treatment significantly promoted the biosynthesis of phenolic acid, trans-resveratrol, flavonol, and anthocyanin and also affected the proanthocyanidin content, which was elevated in the early developmental stages and then reduced in the late developmental stages. The functional genes for phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyl transferase, chalcone synthase, chalcone isomerase, stilbene synthase, flavonoid 3',5'-hydroxylase, anthocyanidin 3-O-glucosyltransferase, and the transcription factors MYBA1, MYBA2, MYBA3, and MYBA22 were inferred to play critical roles in the changes regulated by RR treatment.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Yanli Zhang
- Yangzhou Ruiyang Ecological Horticulture Co., Ltd, Yangzhou 225009, P. R. China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| |
Collapse
|
13
|
Molero de Ávila ME, Alarcón MV, Uriarte D, Mancha LA, Moreno D, Francisco-Morcillo J. Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L. PROTOPLASMA 2019; 256:25-38. [PMID: 29926200 DOI: 10.1007/s00709-018-1278-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Phenolics are involved in many of plants' biological functions. In particular, they play important roles in determining the quality of grape berries and the wine made from them, and can also act as antioxidants with beneficial effects for human health. Several enzymes are involved in the synthesis of phenolic compounds. Among them, stilbene synthase (STS) is a key to the biosynthesis of stilbenes, which are considered to be important secondary metabolites in plants. Other enzymes, such as polyphenol oxidase (PPO) and peroxidase (POD), are involved in the degradation of phenolics, and become activated during late stages of berry ripening. In the present study, Vitis vinifera L. berries were sampled at eight stages of development, from 10 days after anthesis to late harvest. The PPO and POD enzymatic activities were determined at each stage. The presence of STS, PPO, and POD proteins in the grape exocarp and mesocarp was detected immunohistochemically and histochemically. The amount and intensity of the immunohistochemical and histochemical signals correlate with the variations in enzyme activities throughout fruit development. Strong STS immunoreactivity was detected until the onset of ripening. Labeled tissue increased gradually from mesocarp to exocarp, showing an intense signal in epidermis. At subcellular level, STS was mainly detected in cytoplasm grains and cell walls. The amount of PPO immunoreactivity increased progressively until the end of ripening. The PPO signal was detected in hypodermal layers and, to a lesser extent, in mesocarp parenchyma cells, especially in cytoplasm grains and cell walls. Finally, POD activity was stronger at the onset of ripening, and the POD histochemical signal was mainly detected in the cell walls of both exocarp and mesocarp tissue.
Collapse
Affiliation(s)
- María Eugenia Molero de Ávila
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain
| | - María Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - David Uriarte
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - Luis Alberto Mancha
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - Daniel Moreno
- Departamento de Enología, INTAEX, CICYTEX, Junta de Extremadura, 06071, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
14
|
Wu LY, Fang ZT, Lin JK, Sun Y, Du ZZ, Guo YL, Liu JH, Liang YR, Ye JH. Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis. J Proteome Res 2018; 18:252-264. [PMID: 30427694 DOI: 10.1021/acs.jproteome.8b00578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quality of tea is highly related with the maturity of the fresh tea leaves at harvest. The present study investigated the proteomic and transcriptomic profiles of tea leaves with different maturity, using iTRAQ and RNA-seq technologies. A total of 4455 proteins and 27 930 unigenes were identified, with functional enrichment analyses of GO categorization and KEGG annotation. The compositions of flavonoids (catechins and flavonols) in tea leaves were determined. The total content of flavonoids decreased with leaf maturity, in accordance with the protein regulation patterns of shikimate, phenylpropanoid, and flavonoid pathways. The abundance of ANR had a positive correlation with epi-catechin content, while LAR abundance was positively related with catechin content ( P < 0.05). The biosynthetic network of flavonoid biosynthesis was discussed in combination with photosynthesis, primary metabolism, and transcription factors. Bud had the lowest activities of photosynthesis and carbon fixation but the highest flavonoid biosynthesis ability in opposite to mature leaf. SUS-INV switch might be an important joint for carbon flow shifting into the follow-up biochemical syntheses. This work provided a comprehensive overview on the functional protein profile changes of tea leaves at different growing stages and also proposed a research direction regarding the correlations between primary metabolism and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Liang-Yu Wu
- College of Horticulture , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China
| | - Zhou-Tao Fang
- Tea Research Institute , Zhejiang University , Hangzhou 310013 , China
| | - Jin-Ke Lin
- Anxi College of Tea Science , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China
| | - Yun Sun
- College of Horticulture , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China.,Key Laboratory of Tea Science in Universities of Fujian Province , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Zhi-Zheng Du
- College of Horticulture , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China
| | - Ya-Ling Guo
- College of Horticulture , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China.,Key Laboratory of Tea Science in Universities of Fujian Province , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Jiang-Hong Liu
- College of Horticulture , Fujian Agriculture and Forestry University , 15 Shangxiadian Road , Fuzhou 350002 , China
| | - Yue-Rong Liang
- Tea Research Institute , Zhejiang University , Hangzhou 310013 , China
| | - Jian-Hui Ye
- Tea Research Institute , Zhejiang University , Hangzhou 310013 , China
| |
Collapse
|
15
|
Senica M, Bavec M, Stampar F, Mikulic-Petkovsek M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3333-3342. [PMID: 29240233 DOI: 10.1002/jsfa.8837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Interest in organic blue honeysuckle berries has increased in recent years. They are rich in various health-promoting compounds which are sensitive to different environmental factors and are modified during the growing season. RESULTS Honeysuckle berries from different locations differed significantly in their contents of primary and secondary metabolites. The location Ogulin, with the highest altitude and consequently high UV radiation, had the highest phenolic content (259.85 mg per 100 g). Additionally, Vukovski Vrh, with the lowest temperature, had the highest ascorbic acid content (36.83 mg per 100 g), while Šmartno pri Litiji and Višnja Gora, with the highest precipitation, had the highest organic acid contents (885.85 and 850.01 mg per 100 g respectively). A combination of stressful environmental conditions of temperature, water source and light intensity led to the highest saponin content in Višnja Gora (695 mg per 100 g), the highest tannin content in Dolnje Impolje (134 mg per 100 g) and the highest sugar content (2585.45 mg per 100 g) in Vučetinac. CONCLUSION The contents of bioactive substances were influenced by various environmental factors such as temperature, UV radiation, altitude, light intensity and fruit ripening stage. Different compounds respond distinctly to different environmental factors. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mateja Senica
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Bavec
- Chair for Organic Farming, Field Crops, Vegetables and Ornamentals, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Maribor, Slovenia
| | - Franci Stampar
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Wang L, Sun X, Weiszmann J, Weckwerth W. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism. FRONTIERS IN PLANT SCIENCE 2017; 8:1066. [PMID: 28713396 PMCID: PMC5491621 DOI: 10.3389/fpls.2017.01066] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism.
Collapse
Affiliation(s)
- Lei Wang
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Xiaoliang Sun
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
17
|
Salicylic acid treatment enhances expression of chalcone isomerase gene and accumulation of corresponding flavonoids during fruit maturation of Lycium chinense. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2282-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|