1
|
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, Garg M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotechnol 2023; 361:12-29. [PMID: 36414125 DOI: 10.1016/j.jbiotec.2022.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.
Collapse
Affiliation(s)
- Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Era Chaudhary
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Avula B, Katragunta K, Osman AG, Ali Z, John Adams S, Chittiboyina AG, Khan IA. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000-2022. Molecules 2023; 28:560. [PMID: 36677615 PMCID: PMC9865467 DOI: 10.3390/molecules28020560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Anthocyanins are reported to exhibit a wide variety of remedial qualities against many human disorders, including antioxidative stress, anti-inflammatory activity, amelioration of cardiovascular diseases, improvement of cognitive decline, and are touted to protect against neurodegenerative disorders. Anthocyanins are water soluble naturally occurring polyphenols containing sugar moiety and are found abundantly in colored fruits/berries. Various chromatographic (HPLC/HPTLC) and spectroscopic (IR, NMR) techniques as standalone or in hyphenated forms such as LC-MS/LC-NMR are routinely used to gauge the chemical composition and ensure the overall quality of anthocyanins in berries, fruits, and finished products. The major emphasis of the current review is to compile and disseminate various analytical methodologies on characterization, quantification, and chemical profiling of the whole array of anthocyanins in berries, and fruits within the last two decades. In addition, the factors affecting the stability of anthocyanins, including pH, light exposure, solvents, metal ions, and the presence of other substances, such as enzymes and proteins, were addressed. Several sources of anthocyanins, including berries and fruit with their botanical identity and respective yields of anthocyanins, were covered. In addition to chemical characterization, economically motivated adulteration of anthocyanin-rich fruits and berries due to increasing consumer demand will also be the subject of discussion. Finally, the health benefits and the medicinal utilities of anthocyanins were briefly discussed. A literature search was performed using electronic databases from PubMed, Science Direct, SciFinder, and Google Scholar, and the search was conducted covering the period from January 2000 to November 2022.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, University, MS 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, University, MS 38677, USA
| | - Ahmed G. Osman
- National Center for Natural Products Research, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University, MS 38677, USA
| | | | | | - Ikhlas A. Khan
- National Center for Natural Products Research, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
Manzoor MF, Hussain A, Naumovski N, Ranjha MMAN, Ahmad N, Karrar E, Xu B, Ibrahim SA. A Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products. Front Nutr 2022; 9:901342. [PMID: 35928834 PMCID: PMC9343702 DOI: 10.3389/fnut.2022.901342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins (ACNs) are plant polyphenols that have received increased attention recently mainly due to their potential health benefits and applications as functional food ingredients. This has also created an interest in the development and validation of several non-destructive techniques of ACN assessments in several food samples. Non-destructive and conventional techniques play an important role in the assessment of ACNs in agricultural and food products. Although conventional methods appear to be more accurate and specific in their analysis, they are also associated with higher costs, the destruction of samples, time-consuming, and require specialized laboratory equipment. In this review article, we present the latest findings relating to the use of several spectroscopic techniques (fluorescence, Raman, Nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, and near-infrared spectroscopy), hyperspectral imaging, chemometric-based machine learning, and artificial intelligence applications for assessing the ACN content in agricultural and food products. Furthermore, we also propose technical and future advancements of the established techniques with the need for further developments and technique amalgamations.
Collapse
Affiliation(s)
| | - Abid Hussain
- Department of Agriculture and Food Technology, Faculty of Life Science, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Nenad Naumovski
- School of Rehabilitation and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT, Australia
| | | | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Bin Xu
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim
| |
Collapse
|
4
|
Thanasi V, Catarino S, Ricardo-da-Silva J. Fourier transform infrared spectroscopy in monitoring the wine production. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv2022370179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complexity of the wine matrix makes monitoring of the winemaking process from the grapes to the final product crucial for the wine industry. In this context, analytical methodologies that can combine good accuracy, robustness, high sample throughput, “green character”, and by preference real-time analysis, are on-demand to create high-quality vitivinicultural products. In the last years, Fourier-transform Infrared Spectroscopy (FTIR) combined with chemometric analysis has been evaluated in several studies as an effective analytical tool for the wine sector. Some applications of FTIR spectroscopy have been already accepted by the wine industry, mainly for the prediction of basic oenological parameters, using portable and non-portable instruments, but still many others are waiting to be thoroughly developed. This literature review aims to provide a critical synopsis of the most important studies assessing grape and wine quality and authenticity, and to identify possible gaps for further research, meeting the needs of the modern wine industry and the expectations of most demanding consumers. The FTIR studies were grouped according to the main sampling material used - 1) leaves, stems, and berries; 2) grape must and wine applications - along with a summary of the basic limitations and future perspectives of this analytical technique.
Collapse
|
5
|
Ye X, Doi T, Arakawa O, Zhang S. A novel spatially resolved interactance spectroscopy system to estimate degree of red coloration in red-fleshed apple. Sci Rep 2021; 11:21982. [PMID: 34754021 PMCID: PMC8578623 DOI: 10.1038/s41598-021-01468-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Reliable information about degree of red coloration in fruit flesh is essential for grading and sorting of red-fleshed apples. We propose a spatially resolved interactance spectroscopy approach as a new rapid and non-destructive technique to estimate degree of red coloration in the flesh of a red-fleshed apple cultivar 'Kurenainoyume'. A novel measurement system was developed to obtain spatially resolved interactance spectra (190-1070 nm) for apple fruits at eight different light source-detector separation (SDS) distances on fruit surface. Anthocyanins in apple were extracted using a solvent extraction technique, and their contents were quantified with a spectrophotometer. Partial least squares (PLS) regression analyses were performed to develop estimation models for anthocyanin content from spatially resolved interactance spectra. Results showed that the PLS models based on interactance spectra obtained at different SDS distances achieved different predictive accuracy. Further, the system demonstrated the possibility to detect the degree of red coloration in the flesh at specific depths by identifying an optimal SDS distance. This might contribute to provide a detailed profile of the red coloration (anthocyanins) that is unevenly distributed among different depths of the flesh. This new approach may be potentially applied to grading and sorting systems for red-fleshed apples in fruit industry.
Collapse
Affiliation(s)
- Xujun Ye
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan.
| | - Tamaki Doi
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| | - Osamu Arakawa
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| | - Shuhuai Zhang
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| |
Collapse
|
6
|
Ferrer-Gallego R, Rodríguez-Pulido FJ, Toci AT, García-Estevez I. Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1752231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Francisco J. Rodríguez-Pulido
- Food Colour & Quality Laboratory, Department Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Aline T. Toci
- Environmental and Food Interdisciplinary Studies Laboratory, Federal University of Latin American Integration (UNILA), Foz do Iguaçú, Brazil
| | - Ignacio García-Estevez
- Grupo de Investigación en Polifenoles, Departamento Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Geană EI, Ciucure CT, Apetrei C, Artem V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules 2019; 24:molecules24224166. [PMID: 31744212 PMCID: PMC6891476 DOI: 10.3390/molecules24224166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
One of the most important issues in the wine sector and prevention of adulterations of wines are discrimination of grape varieties, geographical origin of wine, and year of vintage. In this experimental research study, UV-Vis and FT-IR spectroscopic screening analytical approaches together with chemometric pattern recognition techniques were applied and compared in addressing two wine authentication problems: discrimination of (i) varietal and (ii) year of vintage of red wines produced in the same oenological region. UV-Vis and FT-IR spectra of red wines were registered for all the samples and the principal features related to chemical composition of the samples were identified. Furthermore, for the discrimination and classification of red wines a multivariate data analysis was developed. Spectral UV-Vis and FT-IR data were reduced to a small number of principal components (PCs) using principal component analysis (PCA) and then partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) were performed in order to develop qualitative classification and regression models. The first three PCs used to build the models explained 89% of the total variance in the case of UV-Vis data and 98% of the total variance for FR-IR data. PLS-DA results show that acceptable linear regression fits were observed for the varietal classification of wines based on FT-IR data. According to the obtained LDA classification rates, it can be affirmed that UV-Vis spectroscopy works better than FT-IR spectroscopy for the discrimination of red wines according to the grape variety, while classification of wines according to year of vintage was better for the LDA based FT-IR data model. A clear discrimination of aged wines (over six years) was observed. The proposed methodologies can be used as accessible tools for the wine identity assurance without the need for costly and laborious chemical analysis, which makes them more accessible to many laboratories.
Collapse
Affiliation(s)
- Elisabeta-Irina Geană
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT Rm. Valcea, 4th Uzinei Street, PO Raureni, Box 7, 240050 Rm. Valcea, Romania; (E.-I.G.); (C.T.C.)
| | - Corina Teodora Ciucure
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT Rm. Valcea, 4th Uzinei Street, PO Raureni, Box 7, 240050 Rm. Valcea, Romania; (E.-I.G.); (C.T.C.)
| | - Constantin Apetrei
- Physics and Environment, Department of Chemistry, Faculty of Science and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, RO-800008 Galati, Romania
- Correspondence: ; Tel.: +40-727-580-914
| | - Victoria Artem
- Research Station for Viticulture and Oenology Murfatlar, Calea Bucuresti str., no. 2, Murfatlar, 905100 Constanta, Romania;
| |
Collapse
|
8
|
Recent Progress in Rapid Analyses of Vitamins, Phenolic, and Volatile Compounds in Foods Using Vibrational Spectroscopy Combined with Chemometrics: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01573-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Basalekou M, Pappas C, Kotseridis Y, Tarantilis PA, Kontaxakis E, Kallithraka S. Red Wine Age Estimation by the Alteration of Its Color Parameters: Fourier Transform Infrared Spectroscopy as a Tool to Monitor Wine Maturation Time. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:5767613. [PMID: 29225994 PMCID: PMC5687142 DOI: 10.1155/2017/5767613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 06/02/2023]
Abstract
Color, phenolic content, and chemical age values of red wines made from Cretan grape varieties (Kotsifali, Mandilari) were evaluated over nine months of maturation in different containers for two vintages. The wines differed greatly on their anthocyanin profiles. Mid-IR spectra were also recorded with the use of a Fourier Transform Infrared Spectrophotometer in ZnSe disk mode. Analysis of Variance was used to explore the parameter's dependency on time. Determination models were developed for the chemical age indexes using Partial Least Squares (PLS) (TQ Analyst software) considering the spectral region 1830-1500 cm-1. The correlation coefficients (r) for chemical age index i were 0.86 for Kotsifali (Root Mean Square Error of Calibration (RMSEC) = 0.067, Root Mean Square Error of Prediction (RMSEP) = 0,115, and Root Mean Square Error of Validation (RMSECV) = 0.164) and 0.90 for Mandilari (RMSEC = 0.050, RMSEP = 0.040, and RMSECV = 0.089). For chemical age index ii the correlation coefficients (r) were 0.86 and 0.97 for Kotsifali (RMSEC 0.044, RMSEP = 0.087, and RMSECV = 0.214) and Mandilari (RMSEC = 0.024, RMSEP = 0.033, and RMSECV = 0.078), respectively. The proposed method is simpler, less time consuming, and more economical and does not require chemical reagents.
Collapse
Affiliation(s)
- M. Basalekou
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - C. Pappas
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Y. Kotseridis
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - P. A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - E. Kontaxakis
- Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete, Estavromenos, 71004 Heraklion, Greece
| | - S. Kallithraka
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
10
|
dos Santos CAT, Páscoa RN, Lopes JA. A review on the application of vibrational spectroscopy in the wine industry: From soil to bottle. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|