1
|
Peng L, Li H, Yang L, Liang Z, Zhang X. Exploring the Metabolic and Transcriptomic Profiles of Tetrastigma hemsleyanum for Tissue-Specific Compound Accumulation. FRONTIERS IN PLANT SCIENCE 2025; 16:1478061. [PMID: 40241824 PMCID: PMC12000079 DOI: 10.3389/fpls.2025.1478061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025]
Abstract
Introduction Tetrastigma hemsleyanum Diels et Gilg is a medicinal plant known for its diverse pharmacological effects, including anti-inflammatory, anti-tumor, anti-hepatocellular carcinoma, and antipyretic activities. To explore the medicinal components from different parts of the plant and to fully utilize T. hemsleyanum, this study investigated the mechanisms underlying the differential accumulation of metabolites in its tuberous roots, fibrous roots, and leaves. Methods This study employed a combination of metabolomics and transcriptomics to analyze the metabolic profiles of T. hemsleyanum. Using LC-MS/MS technology in positive ion mode, metabolites were identified and quantified in the tuberous roots, fibrous roots, and leaves. Key metabolic pathways were analyzed to understand the spatial distribution of bioactive compounds. Results A total of 65 metabolites were identified in the tuberous roots, 203 in the fibrous roots, and 235 in the leaves. The main compounds identified included flavonoids, alkaloids, terpenoids, glycosides, ketones, and amino acids and their derivatives. Flavonoids, glycosides, alkaloids, and terpenoids were strongly accumulated in the tuberous roots, while flavonoid alcohols, glycosides, alkaloids, and terpenoids were predominant in the leaves and fibrous roots. The phenylpropanoid biosynthesis pathway and isoflavonoid biosynthesis were found to play a major role in the pharmacological effects of T. hemsleyanum. The glucosinolate pathway and ABC transporters were also identified as key contributors to tissue-specific metabolic accumulation. Discussion These results elucidate the molecular mechanisms behind the differential accumulation of metabolites in different parts of T. hemsleyanum. The findings provide important insights into the spatial distribution of its bioactive components and their biosynthetic pathways, offering a foundation for further development and utilization of this medicinal plant.
Collapse
Affiliation(s)
- Lingxia Peng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongju Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lijun Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Michalczyk M. Methods of Modifying the Content of Glucosinolates and Their Derivatives in Sprouts and Microgreens During Their Cultivation and Postharvest Handling. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:2133668. [PMID: 39839498 PMCID: PMC11750299 DOI: 10.1155/ijfo/2133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions. The way in which sprouts are prepared for consumption affects the yield of glucosinolate hydrolysis. Genetic variation leading to different plant responses to the same factors (e.g., type of light) makes it necessary to conduct detailed studies involving species and variety diversity. Heat stress and the use of cold plasma appear to be fairly universal methods for increasing glucosinolate content. Studies on the use of light at different wavelengths do not provide unequivocal results. Despite experiments on the use of seed soaking solutions (e.g., sulfur and selenium compounds), there are no studies in the available literature on the effects of chemical and thermal seed disinfection methods on the glucosinolate content of the obtained sprouts and microgreens.
Collapse
Affiliation(s)
- Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
3
|
Yang Q, Luo M, Zhou Q, Zhao Y, Chen J, Ji S. Insights into the loss of glucoraphanin in post-harvested broccoli--Possible involvement of the declined supply capacity of sulfur donor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111580. [PMID: 36587585 DOI: 10.1016/j.plantsci.2022.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.
Collapse
Affiliation(s)
- Qingxi Yang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Yang Q, Luo M, Zhou Q, Zhou X, Zhao Y, Chen J, Ji S. Insights into Profiling of 24-Epibrassinolide Treatment Alleviating the Loss of Glucosinolates in Harvested Broccoli. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Renner IE, Gardner G, Fritz VA. Manipulation of Continuous and End-of-Day Red/Far-Red Light Ratios Affects Glucobrassicin and Gluconasturtiin Accumulation in Cabbage ( Brassica oleracea) and Watercress ( Nasturtium officinale), Respectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14126-14142. [PMID: 34787406 DOI: 10.1021/acs.jafc.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cabbage (Brassica oleracea) and watercress (Nasturtium officinale) produce glucobrassicin (GBS) and gluconasturtiin (GNST), precursors of chemopreventive compounds. Their accumulation is affected by environmental signals. We studied the impact of the red to far-red light (R/FR) ratio on GBS concentration in red ″Ruby Ball″ and green ″Tiara″ cabbage. Foliar shading, via weed surrogates that competed with cabbage plants for specific durations, induced R/FR variation among treatments. ″Ruby Ball″ GBS concentrations were the highest when R/FR within the canopy was the lowest. ″Tiara″ was unaffected by competition. The same trend was observed in a controlled environment using R and FR LEDs without weeds present. ″Ruby Ball″ subjected to an R/FR = 0.3 treatment had 2.5- and 1.4-fold greater GBS concentration compared to R/FR = 1.1 and 5.0 treatments combined. Watercress given end-of-day (EOD) R and/or FR pulses after the main photoperiod had the lowest GNST concentrations after an EOD FR pulse but the highest concentrations after an R followed by FR pulse.
Collapse
Affiliation(s)
- Ilse E Renner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Vincent A Fritz
- Southern Research and Outreach Center, University of Minnesota-Twin Cities, 35838 120th Street, Waseca, Minnesota 56093, United States
| |
Collapse
|
6
|
Li J, Lu Y, Chen H, Wang L, Wang S, Guo X, Cheng X. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem 2021; 358:129915. [PMID: 33933965 DOI: 10.1016/j.foodchem.2021.129915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 02/04/2023]
Abstract
Light affects the accumulation of vitamin E and carotenoids in many crops. This study investigated the impact of photoperiods on the metabolic regulation of vitamin E and carotenoids in mung bean sprouts considering their dietary health benefits. Mung beans were germinated under three different photoperiods: constant light, semilight and constant dark. Results revealed that the semilight photoperiod was optimum for vitamin E and carotenoid accumulation in mung bean sprouts. DXS was activated in the constant dark and was inhibited by constant light. GGPPS and HPT were sensitive to semilight photoperiod in the vitamin E biosynthetic pathway, playing dominant roles in vitamin E accumulation. The PSY, LCYE, LUT5, LUT1 and ZE genes, which are associated with carotenoid biosynthesis, were activated under semilight treatment and significantly regulated the accumulation of carotenoids. This knowledge improves knowledge on light-mediated regulation of vitamin E and carotenoids in mung bean sprouts.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yanyan Lu
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinbo Guo
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Bantis F, Dangitsis C, Koukounaras A. Influence of Light Spectra from LEDs and Scion × Rootstock Genotype Combinations on the Quality of Grafted Watermelon Seedlings. PLANTS 2021; 10:plants10020353. [PMID: 33673386 PMCID: PMC7918498 DOI: 10.3390/plants10020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/19/2023]
Abstract
Grafting is the main means of propagation for watermelon crops. The aim of the present study was to evaluate whether light quality during graft healing variably affects different scion × rootstock genotype combinations. Two watermelon hybrid scions (Sunny Florida F1 and Celine F1) and two interspecific squash rootstocks (Radik and TZ-148) were used, and four scion × rootstock genotype combinations derived. After grafting, we tested seven light-emitting diodes (LEDs), which provided narrow-band red (R) and blue (B); R-B with 36% (36B), 24% (24B), and 12% (12B) blue; 12B with additional far-red (12B+FR); and white (W), in a healing chamber. In three genotype combinations, shoot length, leaf area, and shoot biomass were mainly enhanced under red-blue LEDs, while stem diameter was greater under R. In contrast, dry weight of roots, Dickson’s quality index, and ratio of shoot dry weight/length were variably affected in each genotype combination. From the results, it is concluded that light treatments differentially affected each genotype combination, but some parameters involving biomass production show genotypic dependency.
Collapse
Affiliation(s)
- Filippos Bantis
- Department of Horticulture, Aristotle University, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-994123
| | | | | |
Collapse
|
8
|
Jia L, Wang J, Wang R, Duan M, Qiao C, Chen X, Ma G, Zhou X, Zhu M, Jing F, Zhang S, Qu C, Li J. Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus. PLANTA 2021; 253:8. [PMID: 33387047 PMCID: PMC7778631 DOI: 10.1007/s00425-020-03536-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/11/2020] [Indexed: 05/29/2023]
Abstract
The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar 'Zhongshuang 11' (ZS11) and the white-flowered inbred line 'White Petal' (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.
Collapse
Affiliation(s)
- Ledong Jia
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Rui Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mouzheng Duan
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Cailin Qiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xue Chen
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqiang Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xintong Zhou
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meichen Zhu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fuyu Jing
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shengsen Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Cunmin Qu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chem 2020; 330:127189. [DOI: 10.1016/j.foodchem.2020.127189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
|
11
|
Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules 2020; 25:molecules25092149. [PMID: 32375365 PMCID: PMC7248958 DOI: 10.3390/molecules25092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023] Open
Abstract
Rapeseed (Brassica napus L.) is rich in phenols, vitamins, carotenoids, and mineral elements, such as selenium. Additionally, it contains the active ingredients sulforaphane and indole-3-carbinol, which have been demonstrated to have pharmacological effects. In this study, sulforaphane and indole-3-carbinol were extracted and quantified from rapeseeds using quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with ultra high performance liquid chromarography tandem mass spectrometry (UHPLC-MS/MS). The major parameters for extraction and purification efficiency were optimized, including the hydrolysis reaction, extraction condition and type and amount of purification adsorbents. The limit of detection (LOD) and the limit of quantification (LOQ) for sulforaphane were 0.05 μg/kg and 0.15 μg/kg, and for indole-3-carbinol were 5 μg/kg and 15 μg/kg, respectively. The developed method was used to successfully analyze fifty rapeseed samples. The QuEChERS coupled with UHPLC-MS/MS simultaneously detect sulforaphane and indole-3-carbinol in vegetable matrix and evaluate the quality and nutrition of rapeseed samples.
Collapse
|
12
|
Zhang X, Bian Z, Yuan X, Chen X, Lu C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Xiang N, Li C, Li G, Yu Y, Hu J, Guo X. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn ( Zea mays L.) Seedlings under Temperature Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9772-9781. [PMID: 31398019 DOI: 10.1021/acs.jafc.9b04452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the response profiles of vitamin E and carotenoids on transcription and metabolic levels of sweet corn seedlings under temperature stress. The treated temperatures were set as 10 °C (low temperature, LT), 25 °C (control, CK), and 40 °C (high temperature, HT) for sweet corn seedlings. The gene expression profiles of vitamin E and carotenoids biosynthesis pathways were analyzed by real time quantitative polymerase chain reaction (RT-qPCR), and the composition profiles were analyzed by high performance liquid chromatography (HPLC). Results showed that vitamin E gradually accumulated in response to LT stress but was limited by HT stress. The increase of carotenoids was suppressed by LT stress whereas HT stress promoted it. The existing results elaborated the interactive and competitive relationships of vitamin E and carotenoids in sweet corn seedlings to respond to extreme temperature stress at transcriptional and metabolic levels. The present study would improve sweet corn temperature resilience with integrative knowledge in the future.
Collapse
Affiliation(s)
- Nan Xiang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| | - Chunyan Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Gaoke Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Yongtao Yu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Xinbo Guo
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
14
|
Groenbaek M, Kidmose U, Tybirk E, Kristensen HL. Glucosinolate Content and Sensory Evaluation of Baby Leaf Rapeseed from Annual and Biennial White- and Yellow-Flowering Cultivars with Repeated Harvesting in Two Seasons. J Food Sci 2019; 84:1888-1899. [PMID: 31237979 PMCID: PMC6773201 DOI: 10.1111/1750-3841.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
The chemical and sensory quality of field-grown vegetables may be influenced by cultivar choice and agronomic factors but knowledge is lacking on the new rapeseed vegetables. White- and yellow-flowering rapeseed cultivars were tested in two seasonally different field studies in Denmark at three different growing stages by early sowing the first year and late sowing the second year. Content of glucosinolates (GLSs) was analyzed, and the sensory quality of baby leaf samples was evaluated. The GLS content differed among cultivars across years in all growing stages, with biennial cultivars having the highest GLS content. In the second year, a higher content of all identified GLSs was found at two growing stages except for neoglucobrassicin and gluconasturtiin, compared to the first year. On the contrary, higher contents of all identified GLSs were found at a third stage in the first year except for progoitrin and 4-methoxy glucobrassicin. Sensory evaluation of bitterness revealed differences among cultivars, higher intensities of bitterness in biennial cultivars, and a relationship between bitterness and content of bitter-tasting and total GLSs. The effect of repeated harvesting on GLS content differed between the years and no general pattern was seen, except that the composition of individual GLSs was comparable for the biennial cultivars. We conclude that growing season and life cycle had a stronger influence on GLS content than stage at harvest. The link between bitter-tasting GLSs and bitterness revealed that life cycle and seasonal effects affected the sensory profile of baby leaf rapeseed thereby making a healthier product due to high content of health-beneficial GLSs.
Collapse
Affiliation(s)
- Marie Groenbaek
- Dept. of Food Science, Faculty of Science and Technology, Aarhus Univ., Kirstinebjergvej 10, Aarslev, DK-5792, Denmark
| | - Ulla Kidmose
- Dept. of Food Science, Faculty of Science and Technology, Aarhus Univ., Kirstinebjergvej 10, Aarslev, DK-5792, Denmark
| | - Erik Tybirk
- Knold & Top ApS, Fyrrevaenget 1, Odder, DK-8300, Denmark
| | - Hanne Lakkenborg Kristensen
- Dept. of Food Science, Faculty of Science and Technology, Aarhus Univ., Kirstinebjergvej 10, Aarslev, DK-5792, Denmark
| |
Collapse
|
15
|
Groenbaek M, Tybirk E, Neugart S, Sundekilde UK, Schreiner M, Kristensen HL. Flavonoid Glycosides and Hydroxycinnamic Acid Derivatives in Baby Leaf Rapeseed From White and Yellow Flowering Cultivars With Repeated Harvest in a 2-Years Field Study. FRONTIERS IN PLANT SCIENCE 2019; 10:355. [PMID: 31001295 PMCID: PMC6454053 DOI: 10.3389/fpls.2019.00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 05/09/2023]
Abstract
Recently, new annual and biennial cultivars of rapeseed with white flowers have been introduced to the baby leaf market. The white flower trait has been bred into modern cultivars of yellow flowering rapeseed. In baby leaf production, it is common practice to perform several cuts of the same plants, thereby harvesting regrown material. Seven white and yellow flowering annual and biennial rapeseed cultivars were harvested as baby leaves, baby leaf re-growths, and intact plants in order to investigate the content of flavonoid glycosides and hydroxycinnamic acid derivatives. The field experiment was conducted over two consecutive years to obtain seasonal differences. The yields and levels of flavonoid glycosides and hydroxycinnamic acids were higher in 2016 than 2017, due to higher temperatures and radiation. Within the growing stage, the effects of flower color, cultivar, and life cycle on flavonoid glycosides and hydroxycinnamic acids varied; however, in general, life cycle was the main influence that resulted in elevated levels of flavonoid glycosides and hydroxycinnamic acids in biennial cultivars, compared to annual cultivars. The effects of the growing stage differed between years, and were influenced by climatic conditions. In conclusion, the choice of life cycle (annual or biennial cultivars) and seasonal effects was of major influence, overruling the effect of developmental stage on the content of flavonoid glycosides and hydroxycinnamic acids.
Collapse
Affiliation(s)
- Marie Groenbaek
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | | | - Susanne Neugart
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | |
Collapse
|