1
|
Clausen AK, Junne S. Recent advances in yeast and bacteria co-cultivation for bioprocess applications. World J Microbiol Biotechnol 2025; 41:170. [PMID: 40341666 DOI: 10.1007/s11274-025-04385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Yeast and bacteria co-cultures can be found in nature and have multiple advantages that can be exploited, nowadays also in a controlled bioproduction environment. Various types of co-cultivation have been used for food applications such as production of flavor compounds in dairy products and alcoholic beverages. Co-cultures can broaden the substrate spectrum for microbial food and feed production, they can increase productivity and efficiency, and the nutritional value. Workflows have been developed from plate to bioreactor scale to increase reproducibility and optimize benefits of individual co-cultivation strategies. Nonetheless, certain limitations need to be overcome for industrial application. Many interactions of microbes, in particular in suspension cultures, are not sufficiently understood or even explored. While more possibilities arose from on-line monitoring of individual populations or even single cells, off-line measurement techniques are still typically applied in order to assess growth and product formation. Promising advances have been achieved, however, by methods for single-cell at-line and on-line analysis in co-cultures which are accounted for to emphasize the current opportunities and challenges in monitoring and controlling co-cultures. This review aims to summarize the recent advances with a particular focus on cultivation procedures and process analysis in bacteria, yeast and bacteria-yeast co-cultures. The implementation of suitable monitoring methods to enable (remote) control and contribute to quality assurance will accelerate the development and optimization of industrial co-culture bioprocesses. This will support transferability and process standardization across world regions adding to the advancement of bioproduction. The applicability of some relevant technology is, however, in its infancy.
Collapse
Affiliation(s)
- Anne Kathrine Clausen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark
| | - Stefan Junne
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark.
| |
Collapse
|
2
|
Chen ZP, Cao Q, Meng TT, Shi W, Zhang XJ, Chai LJ, Shi JS, Chen FW, Wang ST, Zhang SY, Shen CH, Lu ZM, Xu ZH. Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function. Food Res Int 2025; 200:115466. [PMID: 39779106 DOI: 10.1016/j.foodres.2024.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.05 % of yeast ASV sourced from the fermentation environment. Fourteen yeast genera were identified, with Wickerhamomyces (29.6 %), Saccharomycopsis (25.0 %), and Torulaspora (14.9 %) being the predominant genera. These genera showed distinct spatial distributions throughout the fermentation stack. Spearman correlation analysis indicated positive correlations between the three genera and multiple volatiles in fermented grains alcohols and esters. After solid-state fermentation in pure culture, T. delbrueckii ME22, S. fibuligera ME8, and W. anomalus ME57 produced distinct floral, fruity, and sweet flavor compounds, such as phenylethyl alcohol, isoamyl alcohol, ethyl acetate, phenethyl acetate, and isoamyl acetate. T. delbrueckii ME22 demonstrated a great capacity for cellulose degradation, whereas S. fibuligera ME8 exhibited enhanced capabilities for protein and starch degradation. This study provides a theoretical reference for the application of yeast in the fermentation of sauce-flavor Baijiu.
Collapse
Affiliation(s)
- Zheng-Pei Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Qian Cao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Tian-Tian Meng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Shi
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fu-Wei Chen
- Guizhou Zhongjian Wine Industry Group Co. LTD, Zunyi 564500, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Mittermeier F, Bäumler M, Arulrajah P, García Lima JDJ, Hauke S, Stock A, Weuster‐Botz D. Artificial microbial consortia for bioproduction processes. Eng Life Sci 2023; 23:e2100152. [PMID: 36619879 PMCID: PMC9815086 DOI: 10.1002/elsc.202100152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Miriam Bäumler
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Prasika Arulrajah
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | | | - Sebastian Hauke
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna Stock
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
4
|
A Transcriptomic Analysis of Higher-Order Ecological Interactions in a Eukaryotic Model Microbial Ecosystem. mSphere 2022; 7:e0043622. [PMID: 36259715 PMCID: PMC9769528 DOI: 10.1128/msphere.00436-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonlinear ecological interactions within microbial ecosystems and their contribution to ecosystem functioning remain largely unexplored. Higher-order interactions, or interactions in systems comprised of more than two members that cannot be explained by cumulative pairwise interactions, are particularly understudied, especially in eukaryotic microorganisms. The wine fermentation ecosystem presents an ideal model to study yeast ecosystem establishment and functioning. Some pairwise ecological interactions between wine yeast species have been characterized, but very little is known about how more complex, multispecies systems function. Here, we evaluated nonlinear ecosystem properties by determining the transcriptomic response of Saccharomyces cerevisiae to pairwise versus tri-species culture. The transcriptome revealed that genes expressed during pairwise coculture were enriched in the tri-species data set but also that just under half of the data set comprised unique genes attributed to a higher-order response. Through interactive protein-association network visualizations, a holistic cell-wide view of the gene expression data was generated, which highlighted known stress response and metabolic adaptation mechanisms which were specifically activated during tri-species growth. Further, extracellular metabolite data corroborated that the observed differences were a result of a biotic stress response. This provides exciting new evidence showing the presence of higher-order interactions within a model microbial ecosystem. IMPORTANCE Higher-order interactions are one of the major blind spots in our understanding of microbial ecosystems. These systems remain largely unpredictable and are characterized by nonlinear dynamics, in particular when the system is comprised of more than two entities. By evaluating the transcriptomic response of S. cerevisiae to an increase in culture complexity from a single species to two- and three-species systems, we were able to confirm the presence of a unique response in the more complex setting that could not be explained by the responses observed at the pairwise level. This is the first data set that provides molecular targets for further analysis to explain unpredictable ecosystem dynamics in yeast.
Collapse
|
5
|
Roca-Mesa H, Delgado-Yuste E, Mas A, Torija MJ, Beltran G. Importance of micronutrients and organic nitrogen in fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. Int J Food Microbiol 2022; 381:109915. [PMID: 36084391 DOI: 10.1016/j.ijfoodmicro.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current use of non-Saccharomyces yeasts in mixed fermentations increases the relevance of the interactions between yeast species. In this work, the interactions between Saccharomyces cerevisiae and Torulaspora delbrueckii were analyzed. For this purpose, fermentations with and without contact between strains of those yeast species were performed in synthetic must. Fermentation kinetics, yeast growth and dynamics were measured over time. Additionally, the effects of nitrogen and other nutrient supplementations on the mixed fermentations were determined. Our results showed that S. cerevisiae did not always dominate the sequential fermentations, and experiments without yeast contact (in which T. delbrueckii cells were removed from the medium before inoculating S. cerevisiae at 48 h) resulted in stuck fermentations except when the inoculum size was increased (from 2 × 106 to 108 cells/mL) or there was a supplementation of thiamine, zinc and amino acids at the same concentration as initially found in the synthetic must. Our findings highlight the importance of inoculum size and ensuring the availability of enough micronutrients for all yeast species, especially in sequential fermentations.
Collapse
Affiliation(s)
- Helena Roca-Mesa
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Ester Delgado-Yuste
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - María-Jesús Torija
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain.
| | - Gemma Beltran
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
6
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Zilelidou EA, Nisiotou A. Understanding Wine through Yeast Interactions. Microorganisms 2021; 9:microorganisms9081620. [PMID: 34442699 PMCID: PMC8399628 DOI: 10.3390/microorganisms9081620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Wine is a product of microbial activities and microbe–microbe interactions. Yeasts are the principal microorganisms responsible for the evolution and fulfillment of alcoholic fermentation. Several species and strains coexist and interact with their environment and with each other during the fermentation course. Yeast–yeast interactions occur even from the early stages of fermentation, determining yeast community structure and dynamics during the process. Different types of microbial interactions (e.g., mutualism and commensalism or competition and amensalism) may exert positive or negative effects, respectively, on yeast populations. Interactions are intimately linked to yeast metabolic activities that influence the wine analytical profile and shape the wine character. In this context, much attention has been given during the last years to the interactions between Saccharomyces cerevisiae (SC) and non-Saccharomyces (NS) yeast species with respect to their metabolic contribution to wine quality. Yet, there is still a significant lack of knowledge on the interaction mechanisms modulating yeast behavior during mixed culture fermentation, while much less is known about the interactions between the various NS species or between SC and Saccharomyces non-cerevisiae (SNC) yeasts. There is still much to learn about their metabolic footprints and the genetic mechanisms that alter yeast community equilibrium in favor of one species or another. Gaining deeper insights on yeast interactions in the grape–wine ecosystem sets the grounds for understanding the rules underlying the function of the wine microbial system and provides means to better control and improve oenological practices.
Collapse
|
8
|
Mencher A, Morales P, Tronchoni J, Gonzalez R. Mechanisms Involved in Interspecific Communication between Wine Yeasts. Foods 2021; 10:foods10081734. [PMID: 34441512 PMCID: PMC8394882 DOI: 10.3390/foods10081734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
In parallel with the development of non-Saccharomyces starter cultures in oenology, a growing interest has developed around the interactions between the microorganisms involved in the transformation of grape must into wine. Nowadays, it is widely accepted that the outcome of a fermentation process involving two or more inoculated yeast species will be different from the weighted average of the corresponding individual cultures. Interspecific interactions between wine yeasts take place on several levels, including interference competition, exploitation competition, exchange of metabolic intermediates, and others. Some interactions could be a simple consequence of each yeast running its own metabolic programme in a context where metabolic intermediates and end products from other yeasts are present. However, there are clear indications, in some cases, of specific recognition between interacting yeasts. In this article we discuss the mechanisms that may be involved in the communication between wine yeasts during alcoholic fermentation.
Collapse
Affiliation(s)
- Ana Mencher
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
| | - Jordi Tronchoni
- Faculty of Health Sciences, Valencian International University (VIU), C/Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
- Correspondence: ; Tel.: +34-941-894-980
| |
Collapse
|
9
|
Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale. Appl Environ Microbiol 2021; 87:AEM.00036-21. [PMID: 33741633 PMCID: PMC8208162 DOI: 10.1128/aem.00036-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions. IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
Collapse
|
10
|
Reiter T, Montpetit R, Byer S, Frias I, Leon E, Viano R, Mcloughlin M, Halligan T, Hernandez D, Figueroa-Balderas R, Cantu D, Steenwerth K, Runnebaum R, Montpetit B. Transcriptomics Provides a Genetic Signature of Vineyard Site and Offers Insight into Vintage-Independent Inoculated Fermentation Outcomes. mSystems 2021; 6:e00033-21. [PMID: 33850038 PMCID: PMC8546962 DOI: 10.1128/msystems.00033-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.
Collapse
Affiliation(s)
- Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Shelby Byer
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Isadora Frias
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Esmeralda Leon
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Robert Viano
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Michael Mcloughlin
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Thomas Halligan
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Desmon Hernandez
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Kerri Steenwerth
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, USA
| | - Ron Runnebaum
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Ben Montpetit
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| |
Collapse
|
11
|
Schlembach I, Grünberger A, Rosenbaum MA, Regestein L. Measurement Techniques to Resolve and Control Population Dynamics of Mixed-Culture Processes. Trends Biotechnol 2021; 39:1093-1109. [PMID: 33573846 PMCID: PMC7612867 DOI: 10.1016/j.tibtech.2021.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Microbial mixed cultures are gaining increasing attention as biotechnological production systems, since they offer a large but untapped potential for future bioprocesses. Effects of secondary metabolite induction and advantages of labor division for the degradation of complex substrates offer new possibilities for process intensification. However, mixed cultures are highly complex, and, consequently, many biotic and abiotic parameters are required to be identified, characterized, and ideally controlled to establish a stable bioprocess. In this review, we discuss the advantages and disadvantages of existing measurement techniques for identifying, characterizing, monitoring, and controlling mixed cultures and highlight promising examples. Moreover, existing challenges and emerging technologies are discussed, which lay the foundation for novel analytical workflows to monitor mixed-culture bioprocesses.
Collapse
Affiliation(s)
- Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
| |
Collapse
|
12
|
Mencher A, Morales P, Curiel JA, Gonzalez R, Tronchoni J. Metschnikowia pulcherrima represses aerobic respiration in Saccharomyces cerevisiae suggesting a direct response to co-cultivation. Food Microbiol 2020; 94:103670. [PMID: 33279092 DOI: 10.1016/j.fm.2020.103670] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The use of non-Saccharomyces species as starter cultures together with Saccharomyces cerevisiae is becoming a common practice in the oenological industry to produce wines that respond to new market demands. In this context, microbial interactions with these non-Saccharomyces species must be considered for a rational design of yeast starter combinations. Previously, transcriptional responses of S. cerevisiae to short-term co-cultivation with Torulaspora delbrueckii, Candida sake, or Hanseniaspora uvarum was compared. An activation of sugar consumption and glycolysis, membrane and cell wall biogenesis, and nitrogen utilization was observed, suggesting a metabolic boost of S. cerevisiae in response to competing yeasts. In the present study, the transcription profile of S. cerevisiae was analyzed after 3 h of cell contact with Metschnikowia pulcherrima. Results show an over-expression of the gluco-fermentative pathway much stronger than with the other species. Moreover, a great repression of the respiration pathway has been found in response to Metschnikowia. Our hypothesis is that there is a direct interaction stress response (DISR) between S. cerevisiae and the other yeast species that, under excess sugar conditions, induces transcription of the hexose transporters, triggering glucose flow to fermentation and inhibiting respiration, leading to an increase in both, metabolic flow and population dynamics.
Collapse
Affiliation(s)
- Ana Mencher
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - José A Curiel
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Granada, Andalucía, Spain
| | - Ramón Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Logroño, La Rioja, Spain; Universidad Internacional de Valencia, Valencia, Comunidad Valenciana, Spain.
| |
Collapse
|
13
|
Conacher CG, Rossouw D, Bauer FFB. Peer pressure: evolutionary responses to biotic pressures in wine yeasts. FEMS Yeast Res 2020; 19:5593956. [PMID: 31626300 DOI: 10.1093/femsyr/foz072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
In the macroscopic world, ecological interactions between multiple species of fauna and flora are recognised as major role-players in the evolution of any particular species. By comparison, research on ecological interactions as a driver of evolutionary adaptation in microbial ecosystems has been neglected. The evolutionary history of the budding yeast Saccharomyces cerevisiae has been extensively researched, providing an unmatched foundation for exploring adaptive evolution of microorganisms. However, in most studies, the habitat is only defined by physical and chemical parameters, and little attention is paid to the impact of cohabiting species. Such ecological interactions arguably provide a more relevant evolutionary framework. Within the genomic phylogenetic tree of S. cerevisiae strains, wine associated isolates form a distinct clade, also matched by phenotypic evidence. This domestication signature in genomes and phenomes suggests that the wine fermentation environment is of significant evolutionary relevance. Data also show that the microbiological composition of wine fermentation ecosystems is dominated by the same species globally, suggesting that these species have co-evolved within this ecosystem. This system therefore presents an excellent model for investigating the origins and mechanisms of interspecific yeast interactions. This review explores the role of biotic stress in the adaptive evolution of wine yeast.
Collapse
Affiliation(s)
- C G Conacher
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - D Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - F F B Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
14
|
Seguinot P, Ortiz-Julien A, Camarasa C. Impact of Nutrient Availability on the Fermentation and Production of Aroma Compounds Under Sequential Inoculation With M. pulcherrima and S. cerevisiae. Front Microbiol 2020; 11:305. [PMID: 32184771 PMCID: PMC7058555 DOI: 10.3389/fmicb.2020.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Non-Saccharomyces yeasts are currently widely used in winemaking to enhance aroma profile diversity among wines. The use of Metschnikowia pulcherrima in sequential inoculation with S. cerevisiae was compared to the inoculation of a pure culture of S. cerevisiae. Moreover, various concentrations of sugar, nitrogen and lipids were tested in synthetic must to assess their impact on fermentation and its outcomes using a Box-Behnken design. Due to its phenotypic specificities, early inoculation with M. pulcherrima led to important modifications, first altering the fermentation kinetics. This may relate, at least in part, to the depletion of some nitrogen sources by M. pulcherrima during the first part of fermentation. Beyond these negative interactions on fermentation performance, comparisons between pure cultures and sequentially inoculated cultures revealed changes in the distribution of carbon fluxes during fermentation in presence of M. pulcherrima, resulting in a positive impact on the production of central carbon metabolites and aromas. Furthermore, the expression of varietal thiols was strongly increased as a consequence of positive interactions between the two species. The mechanism of this release still needs to be investigated. Significant differences in the final concentrations of fermentative and varietal aromas depending on the initial must composition were obtained under both inoculation strategies. Interestingly, the response to changes in nutrient availability varied according to the inoculation modality. In particular, a greater incidence of lipids on the production of fatty acids and their ethyl esters derivatives was found during sequential fermentation compared with pure culture, to be viewed in combination with the metabolic characteristics of M. pulcherrima regarding the production of volatile compounds from acetyl-CoA. Overall, the importance of managing nutrient availability under M. pulcherrima/S. cerevisiae sequential inoculation in order to derive the maximum benefit from the potentialities of the non-Saccharomyces species while carrying out fermentation to dryness was highlighted.
Collapse
Affiliation(s)
- Pauline Seguinot
- SPO, INRAE, Univ Montpellier, Montpellier SupAgro, Montpellier, France.,Lallemand S.A.S, Blagnac, France
| | | | - Carole Camarasa
- SPO, INRAE, Univ Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
15
|
Geinitz B, Rehmann L, Büchs J, Regestein L. Noninvasive tool for optical online monitoring of individual biomass concentrations in a defined coculture. Biotechnol Bioeng 2020; 117:999-1011. [DOI: 10.1002/bit.27256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Bertram Geinitz
- AVT ‐ Biochemical Engineering RWTH Aachen University Aachen Germany
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering The University of Western Ontario London Ontario Canada
| | - Jochen Büchs
- AVT ‐ Biochemical Engineering RWTH Aachen University Aachen Germany
| | - Lars Regestein
- AVT ‐ Biochemical Engineering RWTH Aachen University Aachen Germany
- Leibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute Jena Germany
| |
Collapse
|