1
|
Ceylan F, Adrar N, Günal-Köroğlu D, Gültekin Subaşı B, Capanoglu E. Combined Neutrase-Alcalase Protein Hydrolysates from Hazelnut Meal, a Potential Functional Food Ingredient. ACS OMEGA 2023; 8:1618-1631. [PMID: 36643436 PMCID: PMC9835803 DOI: 10.1021/acsomega.2c07157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Consumers' interest in functional foods has significantly increased in the past few years. Hazelnut meal, the main valuable byproduct of the hazelnut oil industry, is a rich source of proteins and bioactive peptides and thus has great potential to become a valuable functional ingredient. In this study, hazelnut protein hydrolysates obtained by a single or combined hydrolysis by Alcalase and Neutrase were mainly characterized for their physicochemical properties (SDS-PAGE, particle size distribution, Fourier-transform infrared (FTIR) spectroscopy, molecular weight distribution, etc.) and potential antiobesity effect (Free fatty acid (FFA) release inhibition), antioxidant activity (DPPH and ABTS methods), and emulsifying properties. The impact of a microfluidization pretreatment was also investigated. The combination of Alcalase with Neutrase permitted the highest degree of hydrolysis (DH; 15.57 ± 0.0%) of hazelnut protein isolate, which resulted in hydrolysates with the highest amount of low-molecular-weight peptides, as indicated by size exclusion chromatography (SEC) and SDS-PAGE. There was a positive correlation between the DH and the inhibition of FFA release by pancreatic lipase (PL), with a significant positive effect of microfluidization when followed by Alcalase hydrolysis. Microfluidization enhanced the emulsifying activity index (EAI) of protein isolates and hydrolysates. Low hydrolysis by Neutrase had the best effect on the EAI (84.32 ± 1.43 (NH) and 88.04 ± 2.22 m2/g (MFNH)), while a negative correlation between the emulsifying stability index (ESI) and the DH was observed. Again, the combined Alcalase-Neutrase hydrolysates displayed the highest radical scavenging activities (96.63 ± 1.06% DPPH and 98.31 ± 0.46% ABTS). FTIR results showed that the application of microfluidization caused the unfolding of the protein structure. The individual or combined application of the Alcalase and Neutrase enzymes caused a switch from the β-sheet organization of the proteins to α-helix structures. In conclusion, hazelnut meal may be a good source of bioactive and functional peptides. The control of its enzymatic hydrolysis, together with an appropriate pretreatment such as microfluidization, may be crucial to achieve the best suitable activity.
Collapse
Affiliation(s)
- Fatma
Duygu Ceylan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469Istanbul, Turkey
| | - Nabil Adrar
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469Istanbul, Turkey
| | - Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Biology
and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96Gothenburg, Sweden
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469Istanbul, Turkey
| |
Collapse
|
3
|
Novak J, Butorac K, Leboš Pavunc A, Banić M, Butorac A, Lepur A, Oršolić N, Tonković K, Bendelja K, Čuljak N, Lovrić M, Šušković J, Kos B. A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese. Molecules 2021; 27:160. [PMID: 35011392 PMCID: PMC8746304 DOI: 10.3390/molecules27010160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to define a consortium of lactic acid bacteria (LAB) that will bring added value to dried fresh cheese through specific probiotic properties and the synthesis of bioactive peptides (biopeptides). The designed LAB consortium consisted of three Lactobacillus strains: S-layer carrying Levilactobacillus brevis D6, exopolysaccharides producing Limosilactobacillus fermentum D12 and plantaricin expressing Lactiplantibacillus plantarum D13, and one Enterococcus strain, Enterococcus faecium ZGZA7-10. Chosen autochthonous LAB strains exhibited efficient adherence to the Caco-2 cell line and impacted faecal microbiota biodiversity. The cheese produced by the LAB consortium showed better physicochemical, textural and sensory properties than the cheese produced by a commercial starter culture. Liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (LC-MALDI-TOF/TOF) showed the presence of 18 specific biopeptides in dried fresh cheeses. Their identification and relative quantification was confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM). The results also showed that their synthesis resulted mainly from β-casein and also α-S1 casein degradation by proteolytic activities of the LAB consortium. The designed LAB consortium enhanced the functional value of the final product through impact on biopeptide concentrations and specific probiotic properties.
Collapse
Affiliation(s)
- Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Ana Butorac
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (A.L.); (M.L.)
| | - Adriana Lepur
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (A.L.); (M.L.)
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia;
| | | | - Krešo Bendelja
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia;
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Marija Lovrić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (A.L.); (M.L.)
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (J.N.); (K.B.); (A.L.P.); (M.B.); (N.Č.); (J.Š.)
| |
Collapse
|
4
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
5
|
Ewert J, Schlierenkamp F, Nesensohn L, Fischer L, Stressler T. Improving the colloidal and sensory properties of a caseinate hydrolysate using particular exopeptidases. Food Funct 2019; 9:5989-5998. [PMID: 30379169 DOI: 10.1039/c8fo01749b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis with endopeptidases can be used to modify the colloidal properties of food proteins. In this study, sodium caseinate was hydrolyzed with Sternzym BP 25201, containing a thermolysin-like endopeptidase from Geobacillus stearothermophilus as the only peptidase, to a DH of 2.3 ± 1%. The hydrolysate (pre-hydrolysate) obtained was increased in its foam (+35%) and emulsion stability (+200%) compared to untreated sodium caseinate but showed a bitter taste. This hydrolysate was further treated with the exopeptidases PepN, PepX or PepA, acting on the N-terminus of peptides. Depending on the specificity of the exopeptidase used, changes regarding the hydrolysate properties (hydrophobicity, size), colloidal behavior (emulsions, foams) and taste were observed. No changes regarding the bitterness but further improvements regarding the colloidal stability (foam: +69%, emulsion: +29%) were determined after the application of PepA, which is specific for the hydrophilic amino acids Asp, Glu and Ser. By contrast, treatment with the general aminopeptidase PepN resulted in a non-bitter product, with no significant changes regarding the colloidal properties compared to the pre-hydrolysate (p < 0.05). Similar results to those for PepN (reduced bitterness compared to the pre-hydrolysate, enhanced colloidal stability compared to sodium caseinate) were also obtained using commercial Flavourzyme, which was reduced in its endopeptidase activity (exo-flavourzyme). In conclusion, the modifications obtained with the applied exopeptidases offer a potent tool for researchers and the industry to produce non-bitter protein hydrolysates with increased colloidal properties.
Collapse
Affiliation(s)
- Jacob Ewert
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|