1
|
Pirrone A, Naselli V, Prestianni R, Gugino IM, Viola E, Amato F, Porrello A, Todaro A, Maggio A, Bruno M, Settanni L, Radici C, Guzzon R, Schicchi R, Moschetti G, Francesca N, Alfonzo A. Exploring the diversity of native Lachancea thermotolerans strains isolated by sugary extracts from manna ash to modulate the flavour of sour beers. Food Res Int 2025; 199:115328. [PMID: 39658188 DOI: 10.1016/j.foodres.2024.115328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
The craft beer industry is becoming increasingly interested in the production of innovative beers. A novel approach, designated as "primary souring," employs diverse yeast species, including Lachancea thermotolerans, to produce sour beers. Furthermore, there is a growing interest in utilising unconventional yeasts to produce beers with distinctive flavours. For the first time, yeast strains of L. thermotolerans, isolated from sugar extracts of manna ash, were evaluated for their ability to produce and improve the sensory properties of sour beers. In particular, five strains exhibited notable resistance to ethanol, sugar and hops, as well as comparable lactic acid production (ranging from 0.33 to 0.45 g/L). Experimental beers produced using MNF105 (T1) were perceived as the most "fruity". This is the first study to examine the impact of this novel indigenous strain, derived from unconventional matrixes such as manna, on the organoleptic quality of craft sour beers. Consequently, elevated levels of ethyl decanoate, ethyl hexanoate, ethyl octanoate and ethyl nonanoate were found in T1 beer, exceeding the perception threshold. The ability of this strain to perform light bio-acidification is a valuable feature for the development of new brewing techniques, particularly for the creation of sour beers with balanced acidity and innovative flavours. The yeast L. thermotolerans MNF105, which is related to manna, has excellent technological properties and is a promising starter for beer production with the ability to light bio-acidify and modulate flavour.
Collapse
Affiliation(s)
- Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Filippo Amato
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Carmelo Radici
- Birra Epica, Area Artigianale, C/da Filippello 98069, SINAGRA (ME), Sicily, Italy
| | - Raffaele Guzzon
- Fondazione Edmund Mach, Via Mach 1, TN, San Michele all'Adige 38010, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy.
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| |
Collapse
|
2
|
Liu J, Guan W, Sun Z, Ni Y, He L, Tian F, Cai L. Application of Cyclocarya paliurus-Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine. Molecules 2023; 29:32. [PMID: 38202614 PMCID: PMC10780096 DOI: 10.3390/molecules29010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
A new fermentation method for kiwi wine was explored by developing the well-known medicinal and edible plant Cyclocarya paliurus (C. paliurus) to create more value with undersized kiwifruits. In this study, the changes in bioactive substances during the C. paliurus-kiwi winemaking process were analyzed on the basis of response surface optimization results, and the antioxidant capacity, aromatic compounds, and sensory quality of the C. paliurus-kiwi composite wine with kiwi wine and two commercial kiwi wines were compared. The results showed that DPPH radical, OH- radical, and ABTS+ scavenging rates remained at over 60.0%, 90.0%, and 70.0% in C. paliurus-kiwi wine, respectively. The total flavonoid content (TFC) and total polyphenol content (TPC) of C. paliurus-kiwi wine were significantly higher than those of the other three kiwi wines. C. paliurus-kiwi wine received the highest score and detected 43 volatile compounds. Ethyl hexanoate, which showed stronger fruity and sweet aromas, was one of the main aroma components of C. paliurus-kiwi wine and different from commercial wines. This wine has a good flavor with a natural and quality feeling of C. paliurus-kiwifruit extract, low-cost processing, and great market potential.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Weiliang Guan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Zhidong Sun
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
| | - Yunfan Ni
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Long He
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Luyun Cai
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
3
|
LIU J, LIU M, LIU Y, HE C, HUANG J, ZHANG S, ZHOU R, ZHOU J, CAI L. Split batch and coculture fermentation to regulate the organic acids and flavor profile of fruit wine-a case study of Prunus mume Sieb. et Zucc (greengage) wine. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian LIU
- Sichuan University, China; Chinese Academy of Agricultural Sciences, China
| | - Miao LIU
- Luzhoulaojiao Company Limited, China
| | | | - Cheng HE
- Luzhoulaojiao Company Limited, China
| | | | | | - Rongqing ZHOU
- Sichuan University, China; National Engineering Research Centre of Solid-state Brewing, China; Sichuan University, China
| | - Jun ZHOU
- Luzhoulaojiao Company Limited, China
| | - Liang CAI
- Luzhoulaojiao Company Limited, China
| |
Collapse
|
4
|
Lan T, Wang J, Yuan Q, Lei Y, Peng W, Zhang M, Li X, Sun X, Ma T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem X 2022; 15:100427. [PMID: 36211771 PMCID: PMC9532800 DOI: 10.1016/j.fochx.2022.100427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 10/24/2022] Open
|
5
|
Effect of sequential fermentation with four non-Saccharomyces and Saccharomyces cerevisiae on nutritional characteristics and flavor profiles of kiwi wines. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Characterization of different non-Saccharomyces yeasts via mono-fermentation to produce polyphenol-enriched and fragrant kiwi wine. Food Microbiol 2022; 103:103867. [DOI: 10.1016/j.fm.2021.103867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
|
7
|
Liu J, Liu M, Ye P, He C, Liu Y, Zhang S, Huang J, Zhou J, Zhou R, Cai L. Ethyl esters enhancement of Jinchuan pear wine studied by coculturing Saccharomyces bayanus with Torulaspora delbrueckii and their community and interaction characteristics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sun N, Gao Z, Li S, Chen X, Guo J. Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:175-184. [PMID: 34061382 DOI: 10.1002/jsfa.11344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND To improve the aroma of kiwi wine through the utilization of Wickerhamomyces anomalus, kiwi juice was fermented using a selected W. anomalus strain in pure culture and mixed fermentations with Saccharomyces cerevisiae, which was inoculated simultaneously and sequentially. The physicochemical indices, volatile compounds and aroma properties of the kiwi wines were assessed. RESULTS The study suggested that the ethanol, color indices and organic acids of the wines were closely related to the method of inoculation. Compared with the pure S. cerevisiae fermentation, the mixed fermentations produced more varieties and concentrations of volatiles. The sequential fermentations increased the concentrations of esters and terpenes, improving the flower and sweet fruit notes of the wines. The simultaneous inoculation enhanced the contents of esters and aldehydes, intensifying the flower, sweet and sour fruit of the wines. Partial least-squares regression analysis showed that esters and terpenes contributed greatly to the flower and sweet fruit aroma, whereas aldehydes were the major contributors to the sour note. CONCLUSION Based on our results, the mixed fermentations not only enriched the types and concentrations of volatiles, but also had better sensory properties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhiyi Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Wang S, Lu Y, Fu X, Wang M, Wang W, Wang J, Wang H, Liu Y. Sequential Fermentation with
Torulapora delbrueckii
and selected Saccharomyces cerevisiae for aroma enhancement of Longyan dry white Wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suwen Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Yao Lu
- College of Food science and nutritional engineering China Agricultural University Beijing 100083 China
| | - Xiaofang Fu
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Meiqi Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Wenxiu Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Jie Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Huanxiang Wang
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Yaqiong Liu
- Hebei Agricultural University Baoding Hebei 071001 China
| |
Collapse
|
10
|
He H, Yan Y, Dong D, Bao Y, Luo T, Chen Q, Wang J. Effect of Issatchenkia terricola WJL-G4 on Deacidification Characteristics and Antioxidant Activities of Red Raspberry Wine Processing. J Fungi (Basel) 2021; 8:17. [PMID: 35049959 PMCID: PMC8780789 DOI: 10.3390/jof8010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study isolated a novel Issatchenkia terricola WJL-G4, which exhibited a potent capability of reducing citric acid. In the current study, I. terricola WJL-G4 was applied to decrease the content of citric acid in red raspberry juice, followed by the red raspberry wine preparation by Saccharomyces cerevisiae fermentation, aiming to investigate the influence of I. terricola WJL-G4 on the physicochemical properties, organic acids, phenolic compounds and antioxidant activities during red raspberry wine processing. The results showed that after being treated with I. terricola WJL-G4, the citric acid contents in red raspberry juice decreased from 19.14 ± 0.09 to 6.62 ± 0.14 g/L, which was further declined to 5.59 ± 0.22 g/L after S. cerevisiae fermentation. Parameters related to CIELab color space, including L*, a*, b*, h°, and ∆E* exhibited the highest levels in samples after I. terricola WJL-G4 fermentation. Compared to the red raspberry wine pretreated without deacidification (RJO-SC), wine pretreated by I. terricola WJL-G4 (RJIT-SC) exhibited significantly decreased contents of gallic acid, cryptochlorogenic acid, and arbutin, while significantly increased contents of caffeic acid, sinapic acid, raspberry ketone, quercitrin, quercetin, baicalein, and rutin. Furthermore, the antioxidant activities including DPPH· and ABTS+· radical scavenging were enhanced in RJIT-SC group as compared to RJO-SC. This work revealed that I. terricola WJL-G4 had a great potential in red raspberry wine fermentation.
Collapse
Affiliation(s)
- Hongying He
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Yuchen Yan
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Dan Dong
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 999, Xuefu St., Nanchang 330047, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| |
Collapse
|
11
|
Ni Z, Ye P, Liu J, Huang J, Zhou R. Research on improving the flavor of greengage wine based on co-cultivation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Liu J, Liu M, Ye P, He C, Liu Y, Zhang S, Huang J, Zhou J, Zhou R, Cai L. Characterisation of the metabolite profile and microbial community of repeated batch and coculture-fermented greengage wine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
|
14
|
Authentication Using Volatile Composition: A Proof-of-Concept Study on the Volatile Profiles of Fourteen Queensland Ciders. BEVERAGES 2021. [DOI: 10.3390/beverages7020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although relatively small, the Australian cider industry has experienced significant growth in recent years. One of the current challenges in the industry is the lack of research specific to Australian ciders. Establishing baseline volatile organic compound (VOC) profiles of Australian cider is paramount to developing a better understanding of the industry. This understanding may ultimately be utilized for both the categorization and authentication of existing ciders, and the targeted modification of cider volatiles for the development and improvement of cider quality. This study utilized gas chromatography, coupled with mass spectrometry, to identify key VOCs present in 14 ciders sourced from four different manufacturers in Queensland, Australia. A total of 40 VOCs were identified across the ciders, with significant variation depending on the flavor and manufacturer. Principal component analysis indicated that the ciders were well-separated based on the manufacturer, supporting the prospect of using the volatile composition to discriminate between cider manufacturers. Furthermore, hierarchical cluster analysis highlighted the commonalities and differences in cider composition between different manufacturers, which may be indicative of the varying ingredients and manufacturing processes used to create the ciders. Future studies profiling the volatile composition of larger numbers of Australian ciders are recommended to support the use of this analytical technique for authentication purposes. Likewise, exploration of the relationship between specific processes and VOCs is recommended to fortify an understanding of how to optimize cider production to improve consumer satisfaction.
Collapse
|
15
|
Misery B, Legendre P, Rue O, Bouchart V, Guichard H, Laplace JM, Cretenet M. Diversity and dynamics of bacterial and fungal communities in cider for distillation. Int J Food Microbiol 2020; 339:108987. [PMID: 33321431 DOI: 10.1016/j.ijfoodmicro.2020.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Bacterial and fungal population dynamics in cider for distillation have so far been explored by culture-dependant methods. Cider for distillation can be produced by the spontaneous fermentation of apples that do not undergo any intervention during the process. In this study, cider microbiomes extracted from six tanks containing ciders for distillation from four producers in Normandy were characterized at three main stages of the fermentation process: fermentation Initiation (I), end of the alcoholic Fermentation (F) and end of the Maturation period (M). Cider samples were subjected to Illumina MiSeq sequencing (rRNA 16S V1-V3 and ITS1 region targeting) to determine bacterial and fungal communities. Yeasts (YGC), Zymomonas (mZPP) and lactic acid bacteria selective media (mMRS, mMLO, mPSM) were also used to collect 807 isolates. Alcoholic levels, glycerol, sugar content (glucose, fructose and sucrose), pH, total and volatile acidity, nitrogen, malic and lactic acid contents were determined at all sampling points. Alpha diversity indexes show significant differences (p < 0.05) in microbial populations between I, F and M. Fungal communities were characterized by microorganisms from the environment and phytopathogens at I followed by the association of yearsts with alcoholic fermentation like Saccharomyces and non-Saccharomyces yeasts (Hanseniaspora, Candida). A maturation period for cider leads to an increase of the Dekkera/Brettanomyces population, which is responsible for off-flavors in cider for all producers. Among bacterial communities, the genera community associated to malolactic fermentation (Lactobacillus sp., Leuconostoc sp., Oenococcus sp.) was the most abundant at F and M. Acetic acid bacteria such as Acetobacter sp., Komagataeibacter sp. and Gluconobacter sp. were also detected during the process. Significant differences (p < 0.05) were found in fungal and bacterial populations between the four producers and during the fermentation process. The development of microorganisms associated with cider spoilage such as Zymomonas mobilis, Lactobacillus collinoides or Brettanomyces/Dekkera sp. was anticipated by a metagenomic approach. The monitoring of microbial diversity via high throughput sequencing combined with physical-chemical analysis is an interesting approach to improve the fermentation performance of cider for distillation and therefore, the quality of Calvados.
Collapse
Affiliation(s)
- B Misery
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - P Legendre
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - O Rue
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - V Bouchart
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - H Guichard
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, 35653 Le Rheu, France
| | - J M Laplace
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - M Cretenet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
| |
Collapse
|