1
|
Shan Q, Wan Y, Liang J, He W, Zeng J, Liang W, Xiong S, Zhang M, Wang B, Zou X, Xiong C, Liu F. HS-SPME combined with GC-MS and GC-O for characterization of key aroma-active compounds in fruity and grassy peppers ( Capsicum chinense Jacq.). Food Chem X 2024; 24:101944. [PMID: 39582655 PMCID: PMC11585830 DOI: 10.1016/j.fochx.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pepper (Capsicum spp.) is highly popular due to its unique flavor. However, there was limited research on the primary volatiles that influence the different flavors of fresh peppers. In this study, peppers with three aroma compound types denoted as "grassy," "fruity," and "no special aroma" (control) were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Altogether, 393 volatiles were identified by GC-MS, and the main volatiles in peppers (C. chinense Jacq.) were esters and terpenoids. GC-O and relative odor activity value analysis revealed that 2-isobutyl-3-methoxypyrazine had a highly bitter, spicy aroma intensity in all peppers. Hexanal and trans-2-hexenal were the main aroma-active compounds in grassy peppers. In addition, citronellal was determined to be a crucial aroma-active compound in fruity peppers. This study offers a theoretical foundation for guiding the growth of the pepper processing industry and breeding.
Collapse
Affiliation(s)
- Qingyun Shan
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yu Wan
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jude Liang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wanjuan He
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zeng
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wenhui Liang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Siwei Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Meiling Zhang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Bing Wang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xuexiao Zou
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feng Liu
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Munné-Bosch S, Bermejo NF. Fruit quality in organic and conventional farming: advantages and limitations. TRENDS IN PLANT SCIENCE 2024; 29:878-894. [PMID: 38402015 DOI: 10.1016/j.tplants.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Fruit quality is essential for nutrition and human health and needs urgent attention in current agricultural practices. Organic farming is not as productive as conventional agriculture, but it can provide higher quality in some fruit crops, thanks to the absence of synthetic fertilizers and pesticides, enhanced pollination, and the reduction of protection treatments, hence boosting antioxidant compound production. Although organic farming does not always provide healthier food than conventional farming, some lessons from organic farming can be extrapolated to new sustainable production models. Exploiting natural resources and an adequate knowledge transfer will undoubtedly help improve the quality of climacteric and nonclimacteric fruits in new agricultural systems.
Collapse
Affiliation(s)
- Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| | - Núria F Bermejo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Çakmakçı S, Çakmakçı R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods 2023; 12:foods12020351. [PMID: 36673443 PMCID: PMC9857782 DOI: 10.3390/foods12020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Organic farming is a production system that avoids or largely excludes the use of synthetic agricultural inputs such as pesticides, growth regulators, highly soluble mineral fertilisers, supplements, preservatives, flavouring, aromatic substances and genetically modified organisms, and their products. This system aims to maintain and increase soil fertility and quality, and relies on systems such as crop rotation, polyculture, intercropping, ecosystem management, covering crops, legumes, organic and bio-fertilisers, mechanical cultivation and biological control methods. The present review summarises and evaluates research comparing the quality of traditionally, organically and conventionally produced foods. In some cases, although the results of the studies contradict each other, organically grown in vegetables, especially berries and fruits are slightly higher dry matter, minerals such as P, Ca, Mg, Fe and Zn, vitamin C, sugars, carotenoids, antioxidant activity, phenolic and flavonoid compounds. In addition, their sensory properties are more pleasant. The nutritional content, quality and safety of organic foods are acceptable if the recent trends are reviewed, tested and verified. Therefore, the aim of this review is to compile, describe and update scientific evidence and data on the quality, safety, bioactive compounds and nutritional and phytochemical quality of foods in traditional and organic fruit, vegetable and cereal production systems.
Collapse
Affiliation(s)
- Songül Çakmakçı
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey
- Correspondence: ; Tel.: +90-442-2312491
| | - Ramazan Çakmakçı
- Department of Field Crops, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
4
|
Guijarro-Real C, Adalid-Martínez AM, Pires CK, Ribes-Moya AM, Fita A, Rodríguez-Burruezo A. The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020231. [PMID: 36678946 PMCID: PMC9863480 DOI: 10.3390/plants12020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/10/2023]
Abstract
Peppers (Capsicum sp.) are used both as vegetables and/or spice and their fruits are used in a plethora of recipes, contributing to their flavor and aroma. Among flavor-related traits, pungency (capsaicinoids) and lately volatiles have been considered the most important factors. However, the knowledge of sugars is low, probably due to the fact peppers were historically considered tasteless. Here, using HPLC, we studied the content and profile of major sugars and capsaicinoids in a comprehensive collection of varietal types (genotype, G), grown under different growing systems (environment, E) in two years (Y) and considered the two main ripening stages (R). We found a major contribution to the ripening stage and the genotype in total and individual sugars and capsaicinoids. The year was also significant in most cases, as well as the G × E and G × Y interactions, while the growing system was low or nil. Ripening increased considerably in sugars (from 19.6 to 36.1 g kg-1 on average) and capsaicinoids (from 97 to 142 mg kg-1 on average), with remarkable differences among varieties. Moreover, sugars in fully ripe fruits ranged between 7.5 and 38.5 g kg-1 in glucose and between 5.2 and 34.3 g kg-1 in fructose, and several accessions reached total sugars between 40 and 70 g kg-1, similar to tomatoes. The results reveal the importance of the genotype and the ripening for these traits, particularly sugars, which should be considered key for the improvement of taste and flavor in peppers.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana M. Adalid-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Cherrine K. Pires
- Centro Multidisciplinar, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé 27930-560, Brazil
| | - Ana M. Ribes-Moya
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Influence of year, genotype and cultivation system on nutritional values and bioactive compounds in tomato (Solanum lycopersicum L.). Food Chem 2022; 389:133090. [DOI: 10.1016/j.foodchem.2022.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
6
|
Convection Drying Influence on Thermo-Physical Properties, Bioactive Substances, Color and Texture Profile of Red Pepper ( Capsicum Spp). ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
This work aimed to study the effect of convection drying on bioactive substances and on the texture profile of red pepper. Four mathematical models were used to model the drying kinetics, as a function of the temperature and the thickness of slices. These models are largely in agreement with experimental data. Effective diffusivity, Arrhenius constant, activation energy and thermal properties changed with temperature of dry process. The two varieties of pepper used in this work demonstrated a very high degree of spiciness (144799.37-160899.37 SU). This property is related to the high contents of capsaicin (39.60-44.01 mg/g) and dihydrocapsaicin (32.33-35.95 mg/g). Our results revealed that brittleness, hardness 1 and 2, firmness, chewiness, gumminess appearance and Young’s modulus are very important attributes in determining the textural profile of dried red pepper. Also, drying causes a strong degradation of natural pigments of red pepper and consequently decreases attractiveness of the texture profile. To avoid that, red pepper should be pretreated before the application of hot air drying.
Collapse
|
7
|
Tripodi P, Francese G, Sanajà VO, Di Cesare C, Festa G, D’Alessandro A, Mennella G. A multi-methodological approach to study genomic footprints and environmental influence on agronomic and metabolic profiles in a panel of Italian traditional sweet pepper varieties. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Quality assessment of dried organic bell peppers through composition and sensory analysis. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Rosa-Martínez E, García-Martínez MD, Adalid-Martínez AM, Pereira-Dias L, Casanova C, Soler E, Figàs MR, Raigón MD, Plazas M, Soler S, Prohens J. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Food Res Int 2021; 147:110531. [PMID: 34399509 DOI: 10.1016/j.foodres.2021.110531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
The study of the diversity within and between major Solanaceae crops (pepper, tomato, eggplant) is of interest for the selection and development of balanced diets. We have measured thirty-six major fruit composition traits, encompassing sugars, organic acids, antioxidants and minerals, in a set of 10 accessions per crop for pepper, tomato and eggplant, grown under the same cultivation conditions. The aim was to evaluate the diversity within species and to provide an accurate comparison of fruit composition among species by reducing to a minimum the environmental effect. Pepper, tomato and eggplant had a clearly distinct composition profile. Pepper showed the highest average content in total sugars and organic acids. Fructose and glucose were the major sugar compounds in the three species, although in pepper and tomato sucrose was present only in trace amounts. Citric acid was the major organic acid in pepper and tomato, while in eggplant it was malic acid. Pepper and eggplant had the highest total antioxidant activity. Vitamin C content was much higher in pepper than in tomato and eggplant, while eggplant accumulated high concentrations of chlorogenic acid. Furthermore, eggplant was the species with higher content in most minerals, particularly for K, Mg and Cu, while pepper was the richest in Fe. Due to their complementary nutritional profiles, a combined regular consumption of the three vegetables would supply more than 20% of the Dietary Reference Intake of several of the analysed phytochemicals. The large diversity within each species is of interest for selecting varieties with better nutritional and organoleptic profiles, as well as for breeding new cultivars.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana María Adalid-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Cristina Casanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Rosario Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Dolores Raigón
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Mariola Plazas
- Meridiem Seeds S.L., Paraje Lo Soler 2, 30700, Torre-Pacheco, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|