1
|
Suppa A, Asci F, Kamble N, Chen KH, Sciacca G, Merchant SHI, Tijssen MAJ, Chen R, Hallett M, Pal PK. Neurophysiology of Atypical Parkinsonian Syndromes: A Study Group Position Paper. Mov Disord 2025. [PMID: 40356334 DOI: 10.1002/mds.30225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Atypical parkinsonian syndromes (APs) are characterized by parkinsonian features combined with additional motor and non-motor signs and symptoms. Neurophysiological studies have contributed to clarifying differences and similarities between APs and idiopathic Parkinson's disease (PD) and to unravel specific pathophysiological features of APs. A comprehensive and updated evaluation of the potential clinical utility of the available neurophysiological tools in APs is, however, currently needed. The Neurophysiology Study Group of the International Parkinson and Movement Disorder Society reviewed previously published neurophysiological studies including those based on electromyography, electroencephalography, and evoked potentials, transcranial magnetic stimulation and kinematics, in most relevant APs, including progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome, Lewy body dementia, fronto-temporal dementia, vascular parkinsonism, normal pressure hydrocephalus, and drug-induced parkinsonism. Following a critical narrative review of all the available information for each AP, the study group examined the most relevant pathophysiological advances achieved in the field owing to the application of specific neurophysiological tools. Furthermore, the review includes statements regarding the potential role in a research context (ie, pathophysiological investigation) as well as in the clinical setting (ie, clinical utility) of each neurophysiological technique, through an estimation of the corresponding levels of evidence, based on the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. Finally, an example of a possible stepwise approach based on the sequential application of specific neurophysiological techniques for better supporting the clinical differential diagnosis of PD and APs is proposed. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Francesco Asci
- Neurology Unit, Department of Neurosciences and Sensory Organs, AO San Giovanni - Addolorata, Rome, Italy
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kai-Hsiang Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Giorgia Sciacca
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Shabbir Hussain I Merchant
- Division of Movement Disorders, Department of Neurology, Harvard Medical School Beth Israel Deaconess Medical Center Boston Massachusetts, Boston, Massachusetts, USA
| | - Marina A J Tijssen
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
2
|
Wen P, Zhu H, Liu Z, Chang A, Chen X. Attenuated afferent inhibition correlated with impaired gait performance in Parkinson's disease patients with freezing of gait. Front Aging Neurosci 2024; 16:1458005. [PMID: 39759396 PMCID: PMC11696980 DOI: 10.3389/fnagi.2024.1458005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Background The neural mechanisms underlying freezing of gait (FOG) in Parkinson's disease (PD) have not been completely comprehended. Sensory-motor integration dysfunction was proposed as one of the contributing factors. Here, we investigated short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), and analyzed their association with gait performance in FOG PD patients, to further validate the role of sensorimotor integration in the occurrence of FOG in PD. Methods Twenty-five levodopa responsive-FOG PD patients (LR-FOG), fifteen levodopa unresponsive-FOG PD patients (LUR-FOG), twenty-eight PD patients without FOG (NO-FOG PD) and twenty-two healthy controls (HC) were included in the study. Clinical features such as PD motor symptoms, FOG severity and cognitive abilities were evaluated using clinical scales in subjects with PD. All participants underwent paired associative stimulation (PAS) to evaluate SAI and LAI in addition to regular input-output curve by transcranial magnetic stimulation. The performances of gait were assessed using a portable gait analyzing system in 10-meter timed Up and Go task. The correlations between the gait spatiotemporal parameters or the scores of FOG scale and the magnitudes of SAI or LAI were analyzed. Results Compared to HC and NO-FOG PD patients, SAI was decreased in FOG PD subgroups. LAI was also reduced in both LR-FOG PD and LUR-FOG PD in relative to HC; however, only LUR-FOG PD showed significant reduction of LAI in comparison to NO-FOG PD group. FOG PD patients showed poorer gait performance compared to HC and NO-FOG PD group. The reduction of SAI and LAI were correlated with the impaired gait spatiotemporal parameters or scores of FOG scale in PD with FOG. Conclusion The SAI and LAI were attenuated in PD patients with FOG, and the reduction of SAI or LAI were correlated to disturbed gait performance, indicating that sensory-motor integration dysfunction played a role in the development of FOG in PD.
Collapse
Affiliation(s)
- Puyuan Wen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaichao Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Amin Chang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Mimura Y, Tobari Y, Nakajima S, Takano M, Wada M, Honda S, Bun S, Tabuchi H, Ito D, Matsui M, Uchida H, Mimura M, Noda Y. Decreased short-latency afferent inhibition in individuals with mild cognitive impairment: A TMS-EEG study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110967. [PMID: 38354899 DOI: 10.1016/j.pnpbp.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/03/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
TMS combined with EEG (TMS-EEG) is a tool to characterize the neurophysiological dynamics of the cortex. Among the TMS paradigms, short-latency afferent inhibition (SAI) allows the investigation of inhibitory effects mediated by the cholinergic system. The aim of this study was to compare cholinergic function in the DLPFC between individuals with mild cognitive impairment (MCI) and healthy controls (HC) using TMS-EEG with the SAI paradigm. In this study, 30 MCI and 30 HC subjects were included. The SAI paradigm consisted of 80 single pulse TMS and 80 SAI stimulations applied to the left DLPFC. N100 components, global mean field power (GMFP) and total power were calculated. As a result, individuals with MCI showed reduced inhibitory effects on N100 components and GMFP at approximately 100 ms post-stimulation and on β-band activity at 200 ms post-stimulation compared to HC. Individuals with MCI showed reduced SAI, suggesting impaired cholinergic function in the DLPFC compared to the HC group. We conclude that these findings underscore the clinical applicability of the TMS-EEG method as a powerful tool for assessing cholinergic function in individuals with MCI.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; TEIJIN PHARMA LIMITED, Tokyo 100-8585, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- Department of Physiology/Memory Center, Keio University School of Medicine, Tokyo, Japan
| | - Mie Matsui
- Laboratory of Clinical Cognitive Neuroscience, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-0934, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Mimura Y, Tobari Y, Nakahara K, Nakajima S, Yoshida K, Mimura M, Noda Y. Transcranial magnetic stimulation neurophysiology in patients with non-Alzheimer's neurodegenerative diseases: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105451. [PMID: 37926239 DOI: 10.1016/j.neubiorev.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Non-Alzheimer's dementia (NAD) accounts for 30% of all neurodegenerative conditions and is characterized by cognitive decline beyond mere memory dysfunction. Diagnosing NAD remains challenging due to the lack of established biomarkers. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with NAD and healthy controls. Our meta-analyses indicated that TMS neurophysiological examinations revealed decreased glutamatergic function in patients with frontotemporal dementia (FTD) and decreased GABAergic function in patients with FTD, progressive supranuclear palsy, Huntington's disease, cortico-basal syndrome, and multiple system atrophy-parkinsonian type. In addition, decreased cholinergic function was found in dementia with Lewy body and vascular dementia. These results suggest the potential of TMS as an additional diagnostic tool to differentiate NAD.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuho Nakahara
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
6
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
7
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Saravanamuttu J, Radhu N, Udupa K, Baarbé J, Gunraj C, Chen R. Impaired motor cortical facilitatory-inhibitory circuit interaction in Parkinson's disease. Clin Neurophysiol 2021; 132:2685-2692. [PMID: 34284974 DOI: 10.1016/j.clinph.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Motor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson's disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD. METHODS Fifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit. RESULTS SICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions. CONCLUSIONS The facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication. SIGNIFICANCE Impaired interaction between M1 circuits is a pathophysiological feature of PD.
Collapse
Affiliation(s)
- James Saravanamuttu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Natasha Radhu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Kaviraja Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Department of Neurophysiology, National Institute of Mental Health and NeuroSciences, Hosur Road, Bangalore, India
| | - Julianne Baarbé
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Carolyn Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
9
|
Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020. [PMID: 33322688 DOI: 10.3390/jpm10040274.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
|
10
|
Fisicaro F, Lanza G, Cantone M, Ferri R, Pennisi G, Nicoletti A, Zappia M, Bella R, Pennisi M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020; 10:274. [PMID: 33322688 PMCID: PMC7768400 DOI: 10.3390/jpm10040274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo, 6-93100 Caltanissetta, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
11
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V. Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease. Front Hum Neurosci 2019; 13:111. [PMID: 31024277 PMCID: PMC6463734 DOI: 10.3389/fnhum.2019.00111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's Disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex (M1). Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies of SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI has been shown to scale with individual motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration. The magnitude of SAI has also been linked to cognitive dysfunction, and it has been suggested that SAI also reflects cholinergic denervation at the cortical level. Together, the results indicate that SAI is a useful marker of disease-related alterations in fast cortical sensory-motor integration driven by subcortical changes in the dopaminergic and cholinergic system. Since a multitude of neurobiological factors contribute to the magnitude of inhibition, any mechanistic interpretation of SAI changes in PD needs to consider the group characteristics in terms of phenotypical spectrum, disease stage, and medication.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
13
|
Leon-Sarmiento FE, Bayona-Prieto J, Leon-Ariza JS, Leon-Ariza DS, Jacob AE, LaFaver K, Doty RL. Smell status in functional movement disorders: New clues for diagnosis and underlying mechanisms. Clin Neurol Neurosurg 2019; 177:68-72. [DOI: 10.1016/j.clineuro.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 01/11/2023]
|
14
|
Nelson AJ, Hoque T, Gunraj C, Chen R. Altered somatosensory processing in Parkinson's disease and modulation by dopaminergic medications. Parkinsonism Relat Disord 2018; 53:76-81. [DOI: 10.1016/j.parkreldis.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
|
15
|
Discrimination of atypical parkinsonisms with transcranial magnetic stimulation. Brain Stimul 2018; 11:366-373. [DOI: 10.1016/j.brs.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022] Open
|
16
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
17
|
Neurophysiological studies on atypical parkinsonian syndromes. Parkinsonism Relat Disord 2017; 42:12-21. [DOI: 10.1016/j.parkreldis.2017.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 06/24/2017] [Indexed: 01/31/2023]
|
18
|
Cortical afferent inhibition abnormalities reveal cholinergic dysfunction in Parkinson’s disease: a reappraisal. J Neural Transm (Vienna) 2017; 124:1417-1429. [DOI: 10.1007/s00702-017-1775-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
|
19
|
Benítez-Rivero S, Palomar FJ, Martín-Rodríguez JF, Álvarez de Toledo P, Lama MJ, Huertas-Fernández I, Cáceres-Redondo MT, Porcacchia P, Mir P. Abnormal sensorimotor integration correlates with cognitive profile in vascular parkinsonism. J Neurol Sci 2017; 377:161-166. [PMID: 28477688 DOI: 10.1016/j.jns.2017.03.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Sonia Benítez-Rivero
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco J Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Juan F Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Paloma Álvarez de Toledo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María J Lama
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Ismael Huertas-Fernández
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María T Cáceres-Redondo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
20
|
Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 2017; 16:478-488. [DOI: 10.1016/s1474-4422(17)30123-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
|
21
|
Oh E, Park J, Youn J, Kim JS, Park S, Jang W. Olfactory dysfunction in early Parkinson's disease is associated with short latency afferent inhibition reflecting central cholinergic dysfunction. Clin Neurophysiol 2017; 128:1061-1068. [PMID: 28400098 DOI: 10.1016/j.clinph.2017.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Our study aimed to determine whether the short latency afferent inhibition (SAI) response could be associated with the severity of olfactory dysfunction in PD patients. METHODS A total of 71 PD patients and 20 controls were enrolled. All PD patients were classified into 3 groups by the severity of the olfactory deficit. Single-pulse transmagnetic stimulation (TMS) parameters and SAI were assessed. RESULTS The integrated SAI in the PD with anosmia and PD with hyposomia groups was significantly less inhibited than that in the PD with normosmia and control groups [64.79 {Interquartile range (IQR): 59.96, 71.33}, 84.79 {IQR: 75.03, 90.63} versus 36.72 {IQR: 32.28, 48.33}, 42.15 {IQR: 34.60, 44.96}, respectively]. In PD subjects, the severity of olfactory dysfunction also showed a significant negative correlation with the SAI response (r=-0.829, p<0.001). CONCLUSIONS Considering that the SAI response partly reflects central cholinergic dysfunction and that our study shows a relationship between the SAI response and the severity of olfactory dysfunction in PD, our findings indicate that cholinergic dysfunction could possibly contribute to the pathogenesis of olfactory dysfunction in early PD. SIGNIFICANCE SAI could be a useful marker to detect severe olfactory dysfunction in PD.
Collapse
Affiliation(s)
- Eungseok Oh
- Department of Neurology, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jinse Park
- Department of Neurology, Inje University, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea.
| |
Collapse
|
22
|
Vucic S, Kiernan MC. Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics 2017; 14:91-106. [PMID: 27830492 PMCID: PMC5233629 DOI: 10.1007/s13311-016-0487-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive technique that has provided important information about cortical function across an array of neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and related extrapyramidal disorders. Application of TMS techniques in neurodegenerative diseases has provided important pathophysiological insights, leading to the development of pathogenic and diagnostic biomarkers that could be used in the clinical setting and therapeutic trials. Abnormalities of TMS outcome measures heralding cortical hyperexcitability, as evidenced by a reduction of short-interval intracortical inhibition and increased in motor-evoked potential amplitude, have been consistently identified as early and intrinsic features of amyotrophic lateral sclerosis (ALS), preceding and correlating with the ensuing neurodegeneration. Cortical hyperexcitability appears to form the pathogenic basis of ALS, mediated by trans-synaptic glutamate-mediated excitotoxic mechanisms. As a consequence of these research findings, TMS has been developed as a potential diagnostic biomarker, capable of identifying upper motor neuronal pathology, at earlier stages of the disease process, and thereby aiding in ALS diagnosis. Of further relevance, marked TMS abnormalities have been reported in other neurodegenerative diseases, which have varied from findings in ALS. With time and greater utilization by clinicians, TMS outcome measures may prove to be of utility in future therapeutic trial settings across the neurodegenerative disease spectrum, including the monitoring of neuroprotective, stem-cell, and genetic-based strategies, thereby enabling assessment of biological effectiveness at early stages of drug development.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Camperdown, Australia.
| |
Collapse
|
23
|
Bailey AZ, Asmussen MJ, Nelson AJ. Short-latency afferent inhibition determined by the sensory afferent volley. J Neurophysiol 2016; 116:637-44. [PMID: 27226451 DOI: 10.1152/jn.00276.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023] Open
Abstract
Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition.
Collapse
Affiliation(s)
- Aaron Z Bailey
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Asmussen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Effect of augmenting cholinergic function on gait and balance. BMC Neurol 2015; 15:264. [PMID: 26697847 PMCID: PMC4690312 DOI: 10.1186/s12883-015-0523-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Impaired mobility and falls are clinically important complications of Parkinson’s disease (PD) and a major detractor from quality of life for which there are limited therapies. Pathological, neuroimaging and clinical evidence suggest that degeneration of cholinergic systems may contribute to impairments of balance and gait in PD. The proposed trial will examine the effects of augmentation of the cholinergic system on balance and gait. Design The study is a single-site, proof of concept, randomized, double-blind, cross-over trial in patients with PD. Each treatment period will be 6 weeks with a 6-week washout between treatments for a total of 18 weeks for each subject. Donepezil in 2.5 mg capsules or identical appearing placebo capsules will be increased from two per day (5 mg) to four capsules (10 mg) after 3 weeks, if tolerated. Subjects will have idiopathic Parkinson’s disease, Hoehn and Yahr stages 2 to 4. We anticipate recruiting up to 100 subjects for screening to have 54 enrolled and 44 subjects complete both phases of treatment. Dropouts will be replaced. As this is a crossover trial, all subjects will be exposed to both donepezil and to placebo. The primary outcome measures will be the root mean square of the mediolateral sway when standing and the variability of the stride duration when walking for two minutes. Secondary outcomes will be the computerized Attention Network Test to examine three domains of attention and the Short-latency Afferent Inhibition (SAI), a physiological marker obtained with transcranial magnetic stimulation as a putative marker of cholinergic activity. Discussion The results of this study will be the most direct test of the hypothesized role of cholinergic neurotransmission in gait and balance. The study is exploratory because we do not know whether donepezil will affect gait, balance or attention, nor which measures of gait, balance or attention will be sensitive to drug manipulation. We hypothesize that change in cholinergic activity, as measured with SAI, will predict the relative effectiveness of donepezil on gait and balance. Our immediate goal is to determine the potential utility of cholinergic manipulation as a strategy for preventing or treating balance and gait dysfunction in PD. The findings of this trial are intended to lead to more sharply focused questions about the role of cholinergic neurotransmission in balance and gait and eventually to Phase II B trials to determine clinical utility of cholinergic manipulation to prevent falls and improve mobility. Trial registration This trial is registered at clinical trials.gov (NCT02206620).
Collapse
|
25
|
Cromarty RA, Elder GJ, Graziadio S, Baker M, Bonanni L, Onofrj M, O'Brien JT, Taylor JP. Neurophysiological biomarkers for Lewy body dementias. Clin Neurophysiol 2015; 127:349-359. [PMID: 26183755 PMCID: PMC4727506 DOI: 10.1016/j.clinph.2015.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/07/2022]
Abstract
Biomarkers are needed to improve Lewy body dementia (LBD) diagnosis and measure treatment response. There is substantial heterogeneity in neurophysiology biomarker methodologies limiting comparison. However, there is tentative evidence to suggest neurophysiological approaches may show promise as potential biomarkers of LBD.
Objective Lewy body dementias (LBD) include both dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD), and the differentiation of LBD from other neurodegenerative dementias can be difficult. Currently, there are few biomarkers which might assist early diagnosis, map onto LBD symptom severity, and provide metrics of treatment response. Traditionally, biomarkers in LBD have focussed on neuroimaging modalities; however, as biomarkers need to be simple, inexpensive and non-invasive, neurophysiological approaches might also be useful as LBD biomarkers. Methods In this review, we searched PubMED and PsycINFO databases in a semi-systematic manner in order to identify potential neurophysiological biomarkers in the LBDs. Results We identified 1491 studies; of these, 37 studies specifically examined neurophysiological biomarkers in LBD patients. We found that there was substantial heterogeneity with respect to methodologies and patient cohorts. Conclusion Generally, many of the findings have yet to be replicated, although preliminary findings reinforce the potential utility of approaches such as quantitative electroencephalography and motor cortical stimulation paradigms. Significance Various neurophysiological techniques have the potential to be useful biomarkers in the LBDs. We recommend that future studies focus on maximising the diagnostic specificity and sensitivity of the most promising neurophysiological biomarkers.
Collapse
Affiliation(s)
- Ruth A Cromarty
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Greg J Elder
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sara Graziadio
- Institute of Neuroscience, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mark Baker
- Institute of Neuroscience, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Bonanni
- Clinica Neurologica, Dipartimento di Neuroscienze e Imaging, Università "G.D'Annunzio" Chieti-Pescara, Italy
| | - Marco Onofrj
- Clinica Neurologica, Dipartimento di Neuroscienze e Imaging, Università "G.D'Annunzio" Chieti-Pescara, Italy
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
26
|
Colosimo C, Bak TH, Bologna M, Berardelli A. Fifty years of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2014; 85:938-44. [PMID: 24013274 DOI: 10.1136/jnnp-2013-305740] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carlo Colosimo
- Department of Neurology and Psychiatry, "Sapienza" University, Rome, Italy
| | - Thomas H Bak
- School of Philosophy, Psychology and Language Sciences (PPLS) & Centre for Clinical Brain Sciences (CCBS), University of Edinburgh, Edinburgh, UK
| | | | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University, Rome, Italy Neuromed Institute IRCCS, Pozzilli (IS), Italy
| |
Collapse
|
27
|
Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 2014; 125:1509-32. [PMID: 24840904 DOI: 10.1016/j.clinph.2014.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/01/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is emerging as a promising tool to non-invasively assess specific cortical circuits in neurological diseases. A number of studies have reported the abnormalities in TMS assays of cortical function in dementias. A PubMed-based literature review on TMS studies targeting primary and secondary dementia has been conducted using the key words "transcranial magnetic stimulation" or "motor cortex excitability" and "dementia" or "cognitive impairment" or "memory impairment" or "memory decline". Cortical excitability is increased in Alzheimer's disease (AD) and in vascular dementia (VaD), generally reduced in secondary dementias. Short-latency afferent inhibition (SAI), a measure of central cholinergic circuitry, is normal in VaD and in frontotemporal dementia (FTD), but suppressed in AD. In mild cognitive impairment, abnormal SAI may predict the progression to AD. No change in cortical excitability has been observed in FTD, in Parkinson's dementia and in dementia with Lewy bodies. Short-interval intracortical inhibition and controlateral silent period (cSP), two measures of gabaergic cortical inhibition, are abnormal in most dementias associated with parkinsonian symptoms. Ipsilateral silent period (iSP), which is dependent on integrity of the corpus callosum is abnormal in AD. While single TMS measure owns low specificity, a panel of measures can support the clinical diagnosis, predict progression and possibly identify earlier the "brain at risk". In dementias, TMS can be also exploited to select and evaluate the responders to specific drugs and, it might become a rehabilitative tool, in the attempt to restore impaired brain plasticity.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Giovanni Di Pino
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Fioravante Capone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Marianna Piombo
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Daniela Chiarello
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy
| | - Vincenzo Di Lazzaro
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy.
| |
Collapse
|
28
|
Manganelli F, Dubbioso R, Iodice R, Topa A, Dardis A, Russo CV, Ruggiero L, Tozza S, Filla A, Santoro L. Central cholinergic dysfunction in the adult form of Niemann Pick disease type C: a further link with Alzheimer's disease? J Neurol 2014; 261:804-8. [PMID: 24570279 DOI: 10.1007/s00415-014-7282-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
Adult patients with Niemann-Pick disease type C (NPC) usually develop cognitive impairment progressing to dementia, whose pathophysiology remains still unclear. Noteworthy parallels exist in cognitive impairment and cellular pathology of NPC and Alzheimer's disease (AD). In particular, alterations of cholinergic system, which represent one of the pathological hallmarks and contribute to cognitive deterioration in AD, have recently been demonstrated in a human brain autopsy and in an experimental model of NPC. This finding raised the issue that central cholinergic circuits dysfunction may contribute to pathophysiology of cognitive impairment in NPC as well, and prompted us to evaluate the cholinergic functional involvement in NPC patients by applying a neurophysiologic technique, named short-latency afferent inhibition (SAI). We describe clinical, biochemical, molecular and neuropsychological features, and SAI findings in three patients affected by NPC. Diagnosis of NPC was assessed by molecular analysis of the NPC1 gene in all patients. In two of them, biochemical analysis of intracellular accumulation of unesterified cholesterol was also performed. The main clinical features were cerebellar ataxia, vertical supranuclear gaze palsy and a variable degree of cognitive impairment ranging from only memory impairment to severe dementia. Electrophysiological evaluation revealed a reduced SAI in all three patients. Our SAI findings provide evidence of cholinergic dysfunction in patients with the adult form of NPC, supporting that cholinergic alterations may play a role in cognitive impairment in NPC, and strengthening the similarities between NPC and AD.
Collapse
Affiliation(s)
- Fiore Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brusa L, Ponzo V, Mastropasqua C, Picazio S, Bonnì S, Di Lorenzo F, Iani C, Stefani A, Stanzione P, Caltagirone C, Bozzali M, Koch G. Theta Burst Stimulation Modulates Cerebellar-Cortical Connectivity in Patients with Progressive Supranuclear Palsy. Brain Stimul 2014; 7:29-35. [DOI: 10.1016/j.brs.2013.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022] Open
|
30
|
Vonloh M, Chen R, Kluger B. Safety of transcranial magnetic stimulation in Parkinson's disease: a review of the literature. Parkinsonism Relat Disord 2013; 19:573-85. [PMID: 23473718 DOI: 10.1016/j.parkreldis.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) has been used in both physiological studies and, more recently, the therapy of Parkinson's disease (PD). Prior TMS studies in healthy subjects and other patient populations demonstrate a slight risk of seizures and other adverse events. Our goal was to estimate these risks and document other safety concerns specific to PD patients. METHODS We performed an English-Language literature search through PudMed to review all TMS studies involving PD patients. We documented any seizures or other adverse events associated with these studies. Crude risks were calculated per subject and per session of TMS. RESULTS We identified 84 single pulse (spTMS) and/or paired-pulse (ppTMS) TMS studies involving 1091 patients and 77 repetitive TMS (rTMS) studies involving 1137 patients. Risk of adverse events was low in all protocols. spTMS and ppTMS risk per patient for any adverse event was 0.0018 (95% CI: 0.0002-0.0066) per patient and no seizures were encountered. Risk of an adverse event from rTMS was 0.040 (95% CI: 0.029-0.053) per patient and no seizures were reported. Other adverse events included transient headaches, scalp pain, tinnitus, nausea, increase in pre-existing pain, and muscle jerks. Transient worsening of Parkinsonian symptoms was noted in one study involving rTMS of the supplementary motor area (SMA). CONCLUSION We conclude that current TMS and rTMS protocols do not pose significant risks to PD patients. We would recommend that TMS users in this population follow the most recent safety guidelines but do not warrant additional precautions.
Collapse
Affiliation(s)
- Matthew Vonloh
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
31
|
Rochester L, Yarnall AJ, Baker MR, David RV, Lord S, Galna B, Burn DJ. Cholinergic dysfunction contributes to gait disturbance in early Parkinson's disease. Brain 2012; 135:2779-88. [PMID: 22961550 DOI: 10.1093/brain/aws207] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gait disturbance is an early feature in Parkinson's disease. Its pathophysiology is poorly understood; however, cholinergic dysfunction may be a non-dopaminergic contributor to gait. Short-latency afferent inhibition is a surrogate measure of cholinergic activity, allowing the contribution of cholinergic dysfunction to gait to be evaluated. We hypothesized that short-latency afferent inhibition would be an independent predictor of gait dysfunction in early Parkinson's disease. Twenty-two participants with Parkinson's disease and 22 age-matched control subjects took part in the study. Gait was measured objectively using an instrumented walkway (GAITRite), and subjects were asked to walk at their preferred speed for 2 min around a 25-m circuit. Spatiotemporal characteristics (speed, stride length, stride time and step width) and gait dynamics (variability described as the within subject standard deviation of: speed, stride time, stride length and step width) were determined. Short-latency afferent inhibition was measured by conditioning motor evoked potentials, elicited by transcranial magnetic stimulation of the motor cortex, with electrical stimuli delivered to the contralateral median nerve at intervals ranging from N20 (predetermined) to N20 + 4 ms. Short-latency afferent inhibition was determined as the percentage difference between test and conditioned response for all intervals and was described as the group mean. Participants were optimally medicated at the time of testing. Participants with Parkinson's disease had significantly reduced gait speed (P = 0.002), stride length (P = 0.008) and stride time standard deviation (P = 0.001). Short-latency afferent inhibition was also significantly reduced in participants with Parkinson's disease (P = 0.004). In participants with Parkinson's disease, but not control subjects, significant associations were found between gait speed, short-latency afferent inhibition, age and postural instability and gait disorder score (Movement Disorders Society Unified Parkinson's Disease Rating Scale) and attention, whereas global cognition and depression were marginally significant. No other gait variables were associated with short-latency afferent inhibition. A multiple hierarchical regression model explored the contribution of short-latency afferent inhibition to gait speed, controlling for age, posture and gait symptoms (Postural Instability and Gait Disorder score-Movement Disorders Society Unified Parkinson's Disease Rating Scale), attention and depression. Regression analysis in participants with Parkinson's disease showed that reduced short-latency afferent inhibition was an independent predictor of slower gait speed, explaining 37% of variability. The final model explained 72% of variability in gait speed with only short-latency afferent inhibition and attention emerging as independent determinants. The results suggest that cholinergic dysfunction may be an important and early contributor to gait dysfunction in Parkinson's disease. The findings also point to the contribution of non-motor mechanisms to gait dysfunction. Our study provides new insights into underlying mechanisms of non-dopaminergic gait dysfunction, and may help to direct future therapeutic approaches.
Collapse
Affiliation(s)
- Lynn Rochester
- Institute for Ageing and Health, Newcastle University, Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nardone R, Bergmann J, Brigo F, Christova M, Kunz A, Seidl M, Tezzon F, Trinka E, Golaszewski S. Functional evaluation of central cholinergic circuits in patients with Parkinson’s disease and REM sleep behavior disorder: a TMS study. J Neural Transm (Vienna) 2012; 120:413-22. [DOI: 10.1007/s00702-012-0888-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/03/2012] [Indexed: 01/04/2023]
|
33
|
Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. J Neural Transm (Vienna) 2012; 120:453-61. [DOI: 10.1007/s00702-012-0879-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
34
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Celebi O, Temuçin ÇM, Elibol B, Saka E. Short latency afferent inhibition in Parkinson's disease patients with dementia. Mov Disord 2012; 27:1052-5. [DOI: 10.1002/mds.25040] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/07/2022] Open
|
36
|
Scelzo E, Giannicola G, Rosa M, Ciocca M, Ardolino G, Cogiamanian F, Ferrucci R, Fumagalli M, Mameli F, Barbieri S, Priori A. Increased short latency afferent inhibition after anodal transcranial direct current stimulation. Neurosci Lett 2011; 498:167-70. [PMID: 21600266 DOI: 10.1016/j.neulet.2011.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 11/29/2022]
Abstract
Transcranial direct current stimulation (tDCS), a technique for central neuromodulation, has been recently proposed as possible treatment in several neurological and psychiatric diseases. Although shifts on focal brain excitability have been proposed to explain the clinical effects of tDCS, how tDCS-induced functional changes influence cortical interneurones is still largely unknown. The assessment of short latency afferent inhibition (SLAI) of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS), provides the opportunity to test non-invasively interneuronal cholinergic circuits in the human motor cortex. The aim of the present study was to assess whether anodal tDCS can modulate interneuronal circuits involved in SLAI. Resting motor threshold (RMT), amplitude of unconditioned MEPs and SLAI were assessed in the dominant hemisphere of 12 healthy subjects (aged 21-37) before and after anodal tDCS (primary motor cortex, 13min, 1mA). SLAI was assessed delivering electrical conditioning stimuli to the median nerve at the wrist prior to test TMS given at the interstimulus interval (ISI) of 2ms. Whereas RMT and the amplitude of unconditioned MEPs did not change after anodal tDCS, SLAI significantly increased. In conclusion, anodal tDCS-induced effects depend also on the modulation of cortical interneuronal circuits. The enhancement of cortical cholinergic activity assessed by SLAI could be an important mechanism explaining anodal tDCS action in several pathological conditions.
Collapse
Affiliation(s)
- Emma Scelzo
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thabit MN, Nakatsuka M, Koganemaru S, Fawi G, Fukuyama H, Mima T. Momentary reward induce changes in excitability of primary motor cortex. Clin Neurophysiol 2011; 122:1764-70. [PMID: 21439903 DOI: 10.1016/j.clinph.2011.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/01/2011] [Accepted: 02/19/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the human primary motor cortex (M1) excitability changes induced by momentary reward. METHODS To test the changes in excitatory and inhibitory functions of M1, motor-evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI) were tested in the abductor pollicis brevis (APB) muscle of non-dominant hand in 14 healthy volunteers by transcranial magnetic stimulation (TMS) during a behavioral task in which subjects were pseudorandomly received either reward target or non-target stimuli in response to a cue. To control sensorimotor and attention effects, a sensorimotor control task was done replacing the reward target with non-reward target. RESULTS The SICI was increased, and the SAI was decreased significantly during the presentation of the reward target stimuli. Those changes were not evident during non-reward target stimuli in the sensorimotor control task, indicating that this change is specific to momentary reward. CONCLUSIONS Momentary rewarding is associated with change in intracortical inhibitory circuits of M1. SIGNIFICANCE TMS may be a useful probe to study the reward system in health and in many diseases in which its dysfunction is suspected.
Collapse
Affiliation(s)
- Mohamed Nasreldin Thabit
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Liepelt I, Gaenslen A, Godau J, Di Santo A, Schweitzer KJ, Gasser T, Berg D. Rivastigmine for the treatment of dementia in patients with progressive supranuclear palsy: Clinical observations as a basis for power calculations and safety analysis. Alzheimers Dement 2010; 6:70-4. [DOI: 10.1016/j.jalz.2009.04.1231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/16/2022]
Affiliation(s)
- Iuga Liepelt
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Alexandra Gaenslen
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Jana Godau
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Adriana Di Santo
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Katharine J. Schweitzer
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Thomas Gasser
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Daniela Berg
- Center of Neurology Department of Neurodegeneration and Hertie Institute of Clinical Brain ResearchUniversity of TübingenTübingenGermany
| |
Collapse
|
39
|
Manganelli F, Vitale C, Santangelo G, Pisciotta C, Iodice R, Cozzolino A, Dubbioso R, Picillo M, Barone P, Santoro L. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson's disease. Brain 2009; 132:2350-5. [PMID: 19584099 PMCID: PMC2800383 DOI: 10.1093/brain/awp166] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/16/2009] [Accepted: 05/15/2009] [Indexed: 11/13/2022] Open
Abstract
Visual hallucinations (VHs) represent a frequent and disturbing complication of Parkinson's disease. Evidence suggests that VH can be related to central cholinergic dysfunction. Short-latency afferent inhibition (SAI) technique gives the opportunity to test an inhibitory cholinergic circuit in the human cerebral motor cortex. This inhibition of motor-evoked potentials can be observed when transcranial magnetic stimulation is delivered with a delay ranging from 2 to 8 ms, after a peripheral nerve afferent input has reached the somatosensory cortex. We applied SAI technique in 10 non-demented patients with Parkinson's disease with VHs, in 12 non-demented patients with Parkinson's disease without VHs (NVH-pts) and in 11 age-matched normal controls. All patients with Parkinson's disease underwent a battery of neuropsychological tests to assess frontal and visuospatial functions, memory and attention. SAI was significantly reduced in patients with VHs compared with controls and patients without VHs. Neuropsychological examination showed a mild cognitive impairment in 16 out of 22 patients with Parkinson's disease. In addition, we found that in our patients with VHs, performance of some tasks evaluating visuospatial functions and attentional/frontal lobe functions was significantly more impaired than in patients without VHs. SAI abnormalities, presence of VH and neuropsychological results strongly support the hypothesis of cholinergic dysfunction in some patients with Parkinson's disease, who will probably develop a dementia. A follow-up study of our patients is required to verify whether SAI abnormalities can predict a future severe cognitive decline. Moreover, SAI can also be very useful to follow-up the efficacy of anti-cholinesterase therapies.
Collapse
Affiliation(s)
- Fiore Manganelli
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Carmine Vitale
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
- 2 University Parthenope of Naples, Naples, Italy
- 3 Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Gabriella Santangelo
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
- 3 Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
- 4 Second University of Naples, Neuropsychology Laboratory, Department of Psychology, Naples, Italy
| | - Chiara Pisciotta
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Rosa Iodice
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Autilia Cozzolino
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Raffaele Dubbioso
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Marina Picillo
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Paolo Barone
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | - Lucio Santoro
- 1 Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| |
Collapse
|
40
|
Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rösler KM, Triggs WJ, Ugawa Y, Ziemann U. The clinical diagnostic utility of transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 2008; 119:504-532. [DOI: 10.1016/j.clinph.2007.10.014] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 12/11/2022]
|
41
|
Liepelt I, Maetzler W, Blaicher HP, Gasser T, Berg D. Treatment of dementia in parkinsonian syndromes with cholinesterase inhibitors. Dement Geriatr Cogn Disord 2007; 23:351-67. [PMID: 17389795 DOI: 10.1159/000101337] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2006] [Indexed: 12/13/2022] Open
Abstract
In Parkinsonian syndromes behavioural symptoms and dementia can be even more debilitating than motor symptoms and are an important predictor for nursing home placement and mortality. Neuropathologically, dementia seems to be primarily related to cortical changes rather than to subcortical alterations. Concerning neurotransmitter systems, the cholinergic system has been proposed to play a key role in cognitive disturbances. Based on studies with patients with Alzheimer disease, the application of cholinesterase inhibitors is vividly discussed also for dementia associated with parkinsonian syndromes. This review focuses on the specific symptoms of dementia in different parkinsonian syndromes and critically questions the effect of cholinergic treatment on cognitive functions in patients with extrapyramidal syndromes and dementia. There is evidence that medication with some cholinesterase inhibitors can enhance cognition as well as activities of daily living in dementia with Parkinson's disease and seems to reduce behavioural disturbances in both dementia with Parkinson's disease and dementia with Lewy bodies. The effect of treatment with cholinesterase inhibitors in progressive supranuclear palsy and corticobasal degeneration warrants carefully designed studies including a sufficient number of patients and symptom-adopted dementia scales.
Collapse
Affiliation(s)
- Inga Liepelt
- Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany.
| | | | | | | | | |
Collapse
|