1
|
Nazari-Vanani R, Mohammadpour R, Asadian E, Rafii-Tabar H, Sasanpour P. A computational modelling study of excitation of neuronal cells with triboelectric nanogenerators. Sci Rep 2022; 12:13411. [PMID: 35927441 PMCID: PMC9352766 DOI: 10.1038/s41598-022-17050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves. In the present study, using a computational modelling approach, the effect of surface micropatterns on the electric field distribution, induced voltage and capacitance of the TENG structures have been investigated. By incorporating the effect of the TENG inside the mathematical model of neuron’s electrical behavior (cable equation with Hodgkin-Huxley model), its impact on the electrical behavior of the neurons has been studied. The results show that the TENG operates differently with various surface modifications. The performance of the TENG in excitation of neurons depends on the contact and release speed of its electrodes accordingly.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran.
| | - Elham Asadian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran.
| |
Collapse
|
2
|
Darbin O, Hatanaka N, Takara S, Kaneko N, Chiken S, Naritoku D, Martino A, Nambu A. Parkinsonism Differently Affects the Single Neuronal Activity in the Primary and Supplementary Motor Areas in Monkeys: An Investigation in Linear and Nonlinear Domains. Int J Neural Syst 2020; 30:2050010. [PMID: 32019380 DOI: 10.1142/s0129065720500100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The changes in neuronal firing activity in the primary motor cortex (M1) and supplementary motor area (SMA) were compared in monkeys rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The neuronal dynamic was characterized using mathematical tools defined in different frameworks (rate, oscillations or complex patterns). Then, and for each cortical area, multivariate and discriminate analyses were further performed on these features to identify those important to differentiate between the normal and the pathological neuronal activity. Our results show a different order in the importance of the features to discriminate the pathological state in each cortical area which suggests that the M1 and the SMA exhibit dissimilarities in their neuronal alterations induced by parkinsonism. Our findings highlight the need for multiple mathematical frameworks to best characterize the pathological neuronal activity related to parkinsonism. Future translational studies are warranted to investigate the causal relationships between cortical region-specificities, dominant pathological hallmarks and symptoms.
Collapse
Affiliation(s)
- Olivier Darbin
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Nobuhiko Hatanaka
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Sayuki Takara
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Nobuya Kaneko
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Dean Naritoku
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Anthony Martino
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Andres D. On the Motion of Spikes: Turbulent-Like Neuronal Activity in the Human Basal Ganglia. Front Hum Neurosci 2018; 12:429. [PMID: 30405381 PMCID: PMC6207592 DOI: 10.3389/fnhum.2018.00429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/02/2018] [Indexed: 12/03/2022] Open
Abstract
Neuronal signals are usually characterized in terms of their discharge rate, a description inadequate to account for the complex temporal organization of spike trains. Complex temporal properties, which are characteristic of neuronal systems, can only be described with the appropriate, complex mathematical tools. Here, I apply high order structure functions to the analysis of neuronal signals recorded from parkinsonian patients during functional neurosurgery, recovering multifractal properties. To achieve an accurate model of such multifractality is critical for understanding the basal ganglia, since other non-linear properties, such as entropy, depend on the fractal properties of complex systems. I propose a new approach to the study of neuronal signals: to study spiking activity in terms of the velocity of spikes, defining it as the inverse function of the instantaneous frequency. I introduce a neural field model that includes a non-linear gradient field, representing neuronal excitability, and a diffusive term to consider the physical properties of the electric field. Multifractality is present in the model for a range of diffusion coefficients, and multifractal temporal properties are mirrored into space. The model reproduces the behavior of human basal ganglia neurons and shows that it is like that of turbulent fluids. The results obtained from the model predict that passive electric properties of neuronal activity, including ephaptic coupling, are far more relevant to the human brain than what is usually considered: passive electric properties determine the temporal and spatial organization of neuronal activity in the neural tissue.
Collapse
Affiliation(s)
- Daniela Andres
- Science and Technology School, National University of San Martin, Buenos Aires, Argentina
| |
Collapse
|
4
|
Tian J, Yan Y, Xi W, Zhou R, Lou H, Duan S, Chen JF, Zhang B. Optogenetic Stimulation of GABAergic Neurons in the Globus Pallidus Produces Hyperkinesia. Front Behav Neurosci 2018; 12:185. [PMID: 30210317 PMCID: PMC6119815 DOI: 10.3389/fnbeh.2018.00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 08/02/2018] [Indexed: 01/19/2023] Open
Abstract
The globus pallidus (GP) is emerging as a critical locus of basal ganglia control of motor activity, but the exact role of GABAergic GP neurons remain to be defined. By targeted expression of channelrhodopsin 2 (ChR2) in GABAergic neurons using the VGAT-ChR2-EYFP transgenic mice, we showed that optogenetic stimulation of GABAergic neurons in the right GP produced hyperkinesia. Optogenetic stimulation of GABAergic GP neurons increased c-Fos-positive cells in GP, M1 cortex, and caudate-putamen (CPu), and decreased c-Fos-positive cells in entopeduncular nucleus (EPN), compared to the contralateral hemisphere. In agreement with the canonical basal ganglia model. Furthermore, we delivered AAV-CaMKIIα-ChR2-mCherry virus to the excitatory neurons of the subthalamic nucleus (STN) and selectively stimulated glutamatergic afferent fibers from the STN onto the GP. This optogenetic stimulation produced abnormal movements, similar to the behaviors that observed in the VGAT-ChR2-EYFP transgenic mice. Meanwhile, we found that the c-Fos expression pattern in the GP, M1, STN, EPN, and CPu produced by optogenetic activation of glutamatergic afferent fibers from the STN in GP was similar to the c-Fos expression pattern in the VGAT-ChR2-EYFP transgenic mice. Taken together, our results suggest that excess GP GABAergic neurons activity could be the neural substrate of abnormal involuntary movements in hyperkinetic movement disorders. The neural circuitry underlying the abnormal involuntary movements is associated with excessive GP, M1, CPu activity, and reduced EPN activity. Inhibition of GP GABAergic neurons represents new treatment targets for hyperkinetic movement disorder.
Collapse
Affiliation(s)
- Jun Tian
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Xi
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Zhou
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifang Lou
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Fan Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Baorong Zhang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Ramirez-Zamora A, Eisinger RS, Haider SA, Youn Y, Shin D, Molho ES, Pilitsis JG. Pallidal deep brain stimulation and intraoperative neurophysiology for treatment of poststroke hemiballism. Ann Clin Transl Neurol 2018; 5:865-869. [PMID: 30009204 PMCID: PMC6043765 DOI: 10.1002/acn3.573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/29/2022] Open
Abstract
Deep brain stimulation is a recognized and effective treatment for several movement disorders. Nevertheless, the efficacy of this intervention on abnormal movements secondary to structural brain pathologies is less consistent. In this report, we describe a case of hemiballism-hemichorea due to a peripartum ischemic stroke-treated with deep brain stimulation of the globus pallidus internus. Patient observed marked improvement in her symptoms at long-term follow-up. Neurophysiologic data revealed lower globus pallidus internus firing rates compared to other hyperkinetic disorders. Pallidal deep brain stimulation is a plausible option for medically refractory hemiballism-hemichorea and cumulative data from multiple centers may be used to fully evaluate its efficacy.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology Center for Movement Disorders and Neurorestoration Fixel Center for neurological disorders at the University of Florida Gainesville Florida
| | - Robert S Eisinger
- Department of Neurology Center for Movement Disorders and Neurorestoration Fixel Center for neurological disorders at the University of Florida Gainesville Florida
| | - Sameah A Haider
- Department of Neurosurgery Henry Ford Hospital Detroit Michigan
| | - Youngwon Youn
- Department of Neurosurgery Albany Medical Center Albany New York
| | - Damian Shin
- Department of Neuroscience and Experimental Therapeutics Albany Medical College Albany New York
| | - Eric S Molho
- Department of Neurology Albany Medical Center Albany New York
| | - Julie G Pilitsis
- Department of Neurosurgery Albany Medical Center Albany New York.,Department of Neuroscience and Experimental Therapeutics Albany Medical College Albany New York
| |
Collapse
|
6
|
Wu XH, Song JJ, Faull RLM, Waldvogel HJ. GABAAand GABABreceptor subunit localization on neurochemically identified neurons of the human subthalamic nucleus. J Comp Neurol 2017; 526:803-823. [DOI: 10.1002/cne.24368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Xi Hua Wu
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Jennifer Junru Song
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| |
Collapse
|
7
|
Müller EJ, van Albada SJ, Kim JW, Robinson PA. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies. J Theor Biol 2017. [PMID: 28633970 DOI: 10.1016/j.jtbi.2017.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with observations. Overall, the findings demonstrate strong parallels between coherent oscillations in generalized epilepsies and PD, and provide insights into possible comorbidities.
Collapse
Affiliation(s)
- E J Müller
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia.
| | - S J van Albada
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Center, Jülich, Germany
| | - J W Kim
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Wojtecki L, Groiss SJ, Hartmann CJ, Elben S, Omlor S, Schnitzler A, Vesper J. Deep Brain Stimulation in Huntington's Disease-Preliminary Evidence on Pathophysiology, Efficacy and Safety. Brain Sci 2016; 6:brainsci6030038. [PMID: 27589813 PMCID: PMC5039467 DOI: 10.3390/brainsci6030038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Huntington's disease (HD) is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS) of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD.
Collapse
Affiliation(s)
- Lars Wojtecki
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Stefan Jun Groiss
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Christian Johannes Hartmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Saskia Elben
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Sonja Omlor
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| |
Collapse
|
9
|
Estévez-Fraga C, Avilés Olmos I, Mañanes Barral V, López-Sendón Moreno JL. Therapeutic advances in Huntington’s disease. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1196128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
di Biase L, Munhoz RP. Deep brain stimulation for the treatment of hyperkinetic movement disorders. Expert Rev Neurother 2016; 16:1067-78. [DOI: 10.1080/14737175.2016.1196139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hartmann CJ, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Brain stimulation in Huntington's disease. Neurodegener Dis Manag 2016; 6:223-36. [DOI: 10.2217/nmt-2016-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder which is associated with severe disturbances of motor function, especially choreatic movements, cognitive decline and psychiatric symptoms. Various brain stimulation methods have been used to study brain function in patients with HD. Moreover, brain stimulation has evolved as an alternative or additive treatment option, besides current symptomatic medical treatment. This article summarizes the results of brain stimulation to better understand the characteristics of cortical excitability and plasticity in HD and gives a perspective on the therapeutic role for noninvasive and invasive neuromodulatory brain stimulation methods.
Collapse
Affiliation(s)
- Christian Johannes Hartmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Stefan Jun Groiss
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
12
|
Alam M, Sanghera MK, Schwabe K, Lütjens G, Jin X, Song J, von Wrangel C, Stewart RM, Jankovic J, Grossman RG, Darbin O, Krauss JK. Globus pallidus internus neuronal activity: a comparative study of linear and non-linear features in patients with dystonia or Parkinson’s disease. J Neural Transm (Vienna) 2015; 123:231-40. [DOI: 10.1007/s00702-015-1484-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
13
|
Delorme C, Rogers A, Lau B, Francisque H, Welter ML, Vidal SF, Yelnik J, Durr A, Grabli D, Karachi C. Deep brain stimulation of the internal pallidum in Huntington's disease patients: clinical outcome and neuronal firing patterns. J Neurol 2015; 263:290-298. [PMID: 26568561 DOI: 10.1007/s00415-015-7968-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) of the internal globus pallidus (GPi) could treat chorea in Huntington's disease patients. The objectives of this study were to evaluate the efficacy of GPi-DBS to reduce abnormal movements of three patients with Huntington's disease and assess tolerability. Three non-demented patients with severe pharmacoresistant chorea underwent bilateral GPi-DBS and were followed for 30, 24, and 12 months, respectively. Primary outcome measure was the change of the chorea and total motor scores of the Unified Huntington's Disease Rating Scale between pre- and last postoperative assessments. Secondary outcome measures were motor changes between ventral versus dorsal and between on- and off- GPi-DBS. GPi neuronal activities were analyzed and compared to those obtained in patients with Parkinson's disease. No adverse effects occurred. Chorea decreased in all patients (13, 67 and 29%) postoperatively. Total motor score decreased in patient 2 (19.6%) and moderately increased in patients 1 and 3 (17.5 and 1.7%), due to increased bradykinesia and dysarthria. Ventral was superior to dorsal GPi-DBS to control chorea. Total motor score increased dramatically off-stimulation compared to ventral GPi-DBS (70, 63 and 19%). Cognitive and psychic functions were overall unchanged. Lower mean rate and less frequent bursting activity were found in Huntington's disease compared to Parkinson's disease patients. Ventral GPi-DBS sustainably reduced chorea, but worsened bradykinesia and dysarthria. Based on these results and previous published reports, we propose to select non-demented HD patients with severe chorea, and a short disease evolution as the best candidates for GPi-DBS.
Collapse
Affiliation(s)
- Cécile Delorme
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alister Rogers
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France. .,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France. .,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France.
| | - Brian Lau
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Hélène Francisque
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Marie-Laure Welter
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Sara Fernandez Vidal
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, 75013, Paris, France
| | - Jérôme Yelnik
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alexandra Durr
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - David Grabli
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Carine Karachi
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
14
|
Dorval AD, Muralidharan A, Jensen AL, Baker KB, Vitek JL. Information in pallidal neurons increases with parkinsonian severity. Parkinsonism Relat Disord 2015; 21:1355-61. [PMID: 26433544 DOI: 10.1016/j.parkreldis.2015.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The motor symptoms of Parkinson's disease (PD) present with pathological neuronal activity in the basal ganglia. Although neuronal firing rate changes in the globus pallidus internus (GPi) and externus (GPe) are reported to underlie the development of PD motor signs, firing rates change inconsistently, vary confoundingly with some therapies, and are poor indicators of symptom severity. METHODS We explored the relationship between parkinsonian symptom severity and the effectiveness with which pallidal neurons transmit information. We quantify neuronal entropy and information - alternatives to firing rate and correlations respectively - in and between GPe and GPi neurons using a progressive, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, non-human primate model of PD. RESULTS Neuronal entropy and symptom severity were not linearly correlated: in both pallidal segments, entropy increased from naive to moderate parkinsonism, but decreased with further progression to the severely parkinsonian condition. In contrast, information transmitted from GPe to GPi increased consistently with symptom severity. Furthermore, antidromic information from GPi to GPe increased substantially with symptom severity. Together, these findings suggest that as parkinsonian severity increases, more and more information enters GPe and GPi from common sources, diminishing the relative importance of the orthodromic GPe to GPi connection. CONCLUSIONS With parkinsonian progression, the direct and indirect pathways lose their independence and start to convey redundant information. We hypothesize that a loss of parallel processing impairs the ability of the network to select and implement motor commands, thus promoting the hypokinetic symptoms of PD.
Collapse
Affiliation(s)
- Alan D Dorval
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| | | | - Alicia L Jensen
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth B Baker
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Anderson CJ, Sheppard DT, Huynh R, Anderson DN, Polar CA, Dorval AD. Subthalamic deep brain stimulation reduces pathological information transmission to the thalamus in a rat model of parkinsonism. Front Neural Circuits 2015. [PMID: 26217192 PMCID: PMC4491629 DOI: 10.3389/fncir.2015.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to parkinsonian motor symptoms via changes in electrophysiological activity throughout the basal ganglia. High-frequency deep brain stimulation (DBS) partially treats these symptoms, but the mechanisms are unclear. We hypothesize that motor symptoms of Parkinson’s disease (PD) are associated with increased information transmission from basal ganglia output neurons to motor thalamus input neurons and that therapeutic DBS of the subthalamic nucleus (STN) treats these symptoms by reducing this extraneous information transmission. We tested these hypotheses in a unilateral, 6-hydroxydopamine-lesioned rodent model of hemiparkinsonism. Information transfer between basal ganglia output neurons and motor thalamus input neurons increased in both the orthodromic and antidromic directions with hemiparkinsonian (hPD) onset, and these changes were reversed by behaviorally therapeutic STN-DBS. Omnidirectional information increases in the parkinsonian state underscore the detrimental nature of that pathological information and suggest a loss of information channel independence. Therapeutic STN-DBS reduced that pathological information, suggesting an effective increase in the number of independent information channels. We interpret these data with a model in which pathological information and fewer information channels diminishes the scope of possible motor activities, driving parkinsonian symptoms. In this model, STN-DBS restores information-channel independence by eliminating or masking the parkinsonism-associated information, and thus enlarges the scope of possible motor activities, alleviating parkinsonian symptoms.
Collapse
Affiliation(s)
- Collin J Anderson
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | - Daylan T Sheppard
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | - Rachel Huynh
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | | | - Christian A Polar
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | - Alan D Dorval
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
16
|
Abstract
The basal ganglia are a series of interconnected subcortical nuclei. The function and dysfunction of these nuclei have been studied intensively in motor control, but more recently our knowledge of these functions has broadened to include prominent roles in cognition and affective control. This review summarizes historical models of basal ganglia function, as well as findings supporting or conflicting with these models, while emphasizing recent work in animals and humans directly testing the hypotheses generated by these models.
Collapse
|
17
|
Phookan S, Sutton AC, Walling I, Smith A, O'Connor KA, Campbell JC, Calos M, Yu W, Pilitsis JG, Brotchie JM, Shin DS. Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats. Exp Neurol 2015; 265:160-70. [PMID: 25622779 DOI: 10.1016/j.expneurol.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by akinesia, bradykinesia, resting tremors and postural instability. Although various models have been developed to explain basal ganglia (BG) pathophysiology in PD, the recent reports that dominant beta (β) oscillations (12-30Hz) in BG nuclei of PD patients and parkinsonian animals coincide with motor dysfunction has led to an emerging idea that these oscillations may be a characteristic of PD. Due to the recent realization of these oscillations, the cellular and network mechanism(s) that underlie this process remain ill-defined. Here, we postulate that gap junctions (GJs) can contribute to β oscillations in the BG of hemiparkinsonian rats and inhibiting their activity will disrupt neuronal synchrony, diminish these oscillations and improve motor function. To test this, we injected the GJ blockers carbenoxolone (CBX) or octanol in the right globus pallidus externa (GPe) of anesthetized hemiparkinsonian rats and noted whether subsequent changes in β oscillatory activity occurred using in vivo electrophysiology. We found that systemic treatment of 200mg/kg CBX attenuated normalized GPe β oscillatory activity from 6.10±1.29 arbitrary units (A.U.) (pre-CBX) to 2.48±0.87 A.U. (post-CBX) with maximal attenuation occurring 90.0±20.5min after injection. The systemic treatment of octanol (350mg/kg) also decreased β oscillatory activity in a similar manner to CBX treatment with β oscillatory activity decreasing from 3.58±0.89 (pre-octanol) to 2.57±1.08 after octanol injection. Next, 1μl CBX (200mg/kg) was directly injected into the GPe of anesthetized hemiparkinsonian rats; 59.2±19.0min after injection, β oscillations in this BG nucleus decreased from 3.62±1.17 A.U. to 1.67±0.62 A.U. Interestingly, we were able to elicit β oscillations in the GPe of naive non-parkinsonian rats by increasing GJ activity with 1μl trimethylamine (TMA, 500nM). Finally, we systemically injected CBX (200mg/kg) into hemiparkinsonian rats which attenuated dominant β oscillations in the right GPe and also improved left forepaw akinesia in the step test. Conversely, direct injection of TMA into the right GPe of naive rats induced contralateral left forelimb akinesia. Overall, our results suggest that GJs contribute to β oscillations in the GPe of hemiparkinsonian rats.
Collapse
Affiliation(s)
- Sujoy Phookan
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Ian Walling
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Autumn Smith
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Katherine A O'Connor
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Joannalee C Campbell
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Megan Calos
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Wilson Yu
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Julie G Pilitsis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA; Division of Neurosurgery, Albany Medical Center, Albany, NY USA
| | - Jonathan M Brotchie
- Division of Brain Imaging and Behavioral Neuroscience Systems, Toronto Western Research Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Damian S Shin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA.
| |
Collapse
|
18
|
Lobb CJ, Jaeger D. Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states. Neurobiol Dis 2015; 75:177-85. [PMID: 25576395 DOI: 10.1016/j.nbd.2014.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 01/24/2023] Open
Abstract
Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson's disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states.
Collapse
Affiliation(s)
- C J Lobb
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - D Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Swann N, Starr P. Human and Nonhuman Primate Neurophysiology to Understand the Pathophysiology of Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Comparative characterization of single cell activity in the globus pallidus internus of patients with dystonia or Tourette syndrome. J Neural Transm (Vienna) 2014; 122:687-99. [DOI: 10.1007/s00702-014-1277-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
21
|
|
22
|
Abstract
Despite remarkable advances in Parkinson's disease (PD) research, the pathophysiological mechanisms causing motor dysfunction remain unclear, possibly delaying the advent of new and improved therapies. Several such mechanisms have been proposed including changes in neuronal firing rates, the emergence of pathological oscillatory activity, increased neural synchronization, and abnormal bursting. This review focuses specifically on the role of abnormal bursting of basal ganglia neurons in PD, where a burst is a physiologically-relevant, transient increase in neuronal firing over some reference period or activity. After reviewing current methods for how bursts are detected and what the functional role of bursts may be under normal conditions, existing studies are reviewed that suggest that bursting is abnormally increased in PD and that this increases with worsening disease. Finally, the influence of therapeutic approaches for PD such as dopamine-replacement therapy with levodopa or dopamine agonists, lesions, or deep brain stimulation on bursting is discussed. Although there is insufficient evidence to conclude that increased bursting causes motor dysfunction in PD, current evidence suggests that targeted investigations into the role of bursting in PD may be warranted.
Collapse
Affiliation(s)
- Cj Lobb
- Dept. of Biology, Emory University, Atlanta GA 30322
| |
Collapse
|
23
|
Dorval AD, Grill WM. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J Neurophysiol 2014; 111:1949-59. [PMID: 24554786 DOI: 10.1152/jn.00713.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by decreasing neuronal disorder while simultaneously increasing information transfer through the same regions. We tested these hypotheses in the freely behaving, 6-hydroxydopamine-lesioned rat model of hemiparkinsonism. Following the onset of parkinsonism, mean neuronal firing rates were unchanged, despite a significant increase in firing pattern disorder (i.e., neuronal entropy), in both the globus pallidus and substantia nigra pars reticulata. This increase in neuronal entropy was reversed by symptom-alleviating DBS. Whereas increases in signal entropy are most commonly indicative of similar increases in information transmission, directed information through both regions was substantially reduced (>70%) following the onset of parkinsonism. Again, this decrease in information transmission was partially reversed by DBS. Together, these results suggest that the parkinsonian basal ganglia are rife with entropic activity and incapable of functional information transmission. Furthermore, they indicate that symptom-alleviating DBS works by lowering the entropic noise floor, enabling more information-rich signal propagation. In this view, the symptoms of parkinsonism may be more a default mode, normally overridden by healthy basal ganglia information. When that information is abolished by parkinsonian pathophysiology, hypokinetic symptoms emerge.
Collapse
Affiliation(s)
- Alan D Dorval
- Department of Bioengineering and Brain Institute, University of Utah, Salt Lake City, Utah;
| | - Warren M Grill
- Departments of Biomedical Engineering and Electrical and Computer Engineering, Duke University, Durham, North Carolina; and Departments of Neurobiology and Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
24
|
Oyama G, Maling N, Avila-Thompson A, Zeilman PR, Foote KD, Malaty IA, Rodriguez RL, Okun MS. Rescue GPi-DBS for a Stroke-associated Hemiballism in a Patient with STN-DBS. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4. [PMID: 24587970 PMCID: PMC3918512 DOI: 10.7916/d8xp72wf] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/23/2013] [Indexed: 01/24/2023]
Abstract
Background Hemiballism/hemichorea commonly occurs as a result of a lesion in the subthalamic region. Case Report A 38-year-old male with Parkinson’s disease developed intractable hemiballism in his left extremities due to a small lesion that was located adjacent to the right deep brain stimulation (DBS) lead, 10 months after bilateral subthalamic nucleus (STN)-DBS placement. He underwent a right globus pallidus internus (GPi)-DBS lead implantation. GPi-DBS satisfactorily addressed his hemiballism. Discussion This case offered a unique look at basal ganglia physiology in human hemiballism. GPi-DBS is a reasonable therapeutic option for the treatment of medication refractory hemiballism in the setting of Parkinson’s disease.
Collapse
Affiliation(s)
- Genko Oyama
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Nicholas Maling
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Amanda Avila-Thompson
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Pam R Zeilman
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Kelly D Foote
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Irene A Malaty
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Ramon L Rodriguez
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| | - Michael S Okun
- Departments of Neurology and Neurosurgery, Center for Movement Disorders & Neurorestoration, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Darbin O, Adams E, Martino A, Naritoku L, Dees D, Naritoku D. Non-linear dynamics in parkinsonism. Front Neurol 2013; 4:211. [PMID: 24399994 PMCID: PMC3872328 DOI: 10.3389/fneur.2013.00211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/12/2013] [Indexed: 11/15/2022] Open
Abstract
Over the last 30 years, the functions (and dysfunctions) of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the “rate hypothesis” and the “oscillatory hypothesis.” In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively. More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e., parkinsonism, dyskinesia, healthy control) and are responsive to treatments (i.e., l-DOPA, deep brain stimulation). A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series) is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG), muscular activities (EMG), or kinetic of motor symptoms (tremor, gait) of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity, and hypokinesia.
Collapse
Affiliation(s)
- Olivier Darbin
- Department of Neurology, University of South Alabama , Mobile, AL , USA ; Division of System Neurophysiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Elizabeth Adams
- Department of Speech Pathology and Audiology, University of South Alabama , Mobile, AL , USA
| | - Anthony Martino
- Department of Neurosurgery, University of South Alabama , Mobile, AL , USA
| | - Leslie Naritoku
- Department of Neurology, University of South Alabama , Mobile, AL , USA
| | - Daniel Dees
- Department of Neurology, University of South Alabama , Mobile, AL , USA
| | - Dean Naritoku
- Department of Neurology, University of South Alabama , Mobile, AL , USA
| |
Collapse
|
26
|
Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci 2013; 33:7583-94. [PMID: 23616563 DOI: 10.1523/jneurosci.4932-12.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The striatum and subthalamic nucleus (STN) are the input stations of the basal ganglia and receive excitatory afferents from the cerebral cortex. The basal ganglia control voluntary movements through three parallel pathways mediated by the input stations: the hyperdirect pathway, which conveys direct cortical inputs to the substantia nigra pars reticulata (SNr), the output nucleus, through the STN; the direct pathway, which arises from striatal neurons expressing dopamine D1 receptors and projects to the SNr; and the indirect pathway, which arises from striatal neurons expressing dopamine D2 receptors (D2Rs) and projects indirectly to the SNr by way of the globus pallidus (GP) and STN. Our previous study showed that immunotoxin-mediated cell targeted ablation of D2R-expressing striatal neurons in mice induced motor hyperactivity. To elucidate the mechanism underlying the hyperactivity, here we examined neuronal activity in the GP and SNr. The ablation of D2R-expressing striatal neurons had little effect on spontaneous activity in the GP and SNr, but induced dramatic changes in the cortically evoked triphasic response composed of early excitation, inhibition, and late excitation in the GP and SNr (i.e., reduced inhibition in the GP, and reduced late excitation in the GP and SNr). In contrast, the ablation of striatal cholinergic interneurons, which also express D2Rs, did not show such effects. Therefore, the reduction of the cortically evoked late excitation in the SNr seems to be responsible for hyperactivity. These observations suggest that phasic late excitation in the SNr through the striatopallidal indirect pathway plays a key role in stopping movements.
Collapse
|
27
|
An entropy-based model for basal ganglia dysfunctions in movement disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:742671. [PMID: 23762856 PMCID: PMC3671275 DOI: 10.1155/2013/742671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022]
Abstract
During this last decade, nonlinear analyses have been used to characterize the irregularity that exists in the neuronal data stream of the basal ganglia. In comparison to linear parameters for disparity (i.e., rate, standard deviation, and oscillatory activities), nonlinear analyses focus on complex patterns that are composed of groups of interspike intervals with matching lengths but not necessarily contiguous in the data stream. In light of recent animal and clinical studies, we present a review and commentary on the basal ganglia neuronal entropy in the context of movement disorders.
Collapse
|
28
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
29
|
Murphy-Nakhnikian A, Dorner JL, Fischer BI, Bower-Bir ND, Rebec GV. Abnormal burst patterns of single neurons recorded in the substantia nigra reticulata of behaving 140 CAG Huntington's disease mice. Neurosci Lett 2012; 512:1-5. [PMID: 22327034 DOI: 10.1016/j.neulet.2011.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/01/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes neurological pathology in the basal ganglia and related circuitry. A key site of HD pathology is striatum, the principal basal ganglia input structure; striatal pathology likely changes basal ganglia output but no existing studies address this issue. In this report, we characterize single-neuron activity in the substantia nigra reticulata (SNr) of awake, freely behaving 140 CAG knock-in (KI) mice at 16-40 weeks. KI mice are a well characterized model of adult HD and are mildly symptomatic in this age range. As the primary basal ganglia output nucleus in rodents, the SNr receives direct innervation from striatum, as well as indirect influence via polysynaptic inputs. We analyzed 32 single neurons recorded from KI animals and 44 from wild-type (WT) controls. We found increased burst rates, without a concordant change in spike discharge rate, in KI animals relative to WTs. Furthermore, although metrics of burst structure, such as the inter-spike interval in bursts, do not differ between groups, burst rate increases with age in KI, but not WT, animals. Our findings suggest that altered basal ganglia output is a physiological feature of early HD pathology.
Collapse
|
30
|
Oscillatory activity in the globus pallidus internus: Comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 2012; 123:358-68. [DOI: 10.1016/j.clinph.2011.07.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 11/22/2022]
|
31
|
Wilson CJ, Bevan MD. Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease. Neuroscience 2011; 198:54-68. [PMID: 21723918 PMCID: PMC3206160 DOI: 10.1016/j.neuroscience.2011.06.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/22/2022]
Abstract
Neurons in the subthalamic nucleus occupy a pivotal position in the circuitry of the basal ganglia. They receive direct excitatory input from the cerebral cortex and the intralaminar nuclei of the thalamus, and directly excite the inhibitory basal ganglia output neurons in the internal segment of the globus pallidus and the substantia nigra. They are also engaged in a reciprocal synaptic arrangement with inhibitory neurons in the external segment of the globus pallidus. Although once viewed as a simple relay of extrinsic input to the basal ganglia, physiological studies of subthalamic neurons have revealed that activity in these neurons does not directly reflect their pattern of extrinsic excitation. Subthalamic neurons are autonomously active at rates comparable to those observed in vivo, and they generate complex patterns of intrinsic activity arising from the interactions between voltage sensitive ion channels on the somatodendritic and axonal membranes. Extrinsic synaptic excitation does not create the firing pattern of the subthalamic neuron, but rather controls the timing of action potentials generated intrinsically. The dopaminergic innervation of the subthalamic nucleus, although moderate, can directly influence firing patterns by acting both on synaptic transmission and voltage-sensitive ion channels responsible for intrinsic properties. Furthermore, chronic dopamine depletion in Parkinson's disease may modify both synaptic transmission and integration in the subthalamic nucleus, in addition to its effects on other regions of the basal ganglia.
Collapse
Affiliation(s)
- C J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | |
Collapse
|
32
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
33
|
Edwards TC, Zrinzo L, Limousin P, Foltynie T. Deep brain stimulation in the treatment of chorea. Mov Disord 2011; 27:357-63. [PMID: 21997283 DOI: 10.1002/mds.23967] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deep brain stimulation has been used as a means of reducing dyskinesias in various conditions, including Parkinson's disease and dystonia for many years. Recently, owing to the clinical similarities between L-dopa induced dyskinesia and chorea, deep brain stimulation has now been implemented as a novel treatment method in both Huntington's disease and neuroacanthocytosis, and a paucity of case studies exist reporting its efficacy. This review will summarize the case studies of deep brain stimulation in both Huntington's disease and neuroacanthocytosis, and discuss the possible implications and limitations associated with these reports. As both these disorders are often refractory to medication and difficult to treat, deep brain stimulation may be a useful treatment option in the future.
Collapse
Affiliation(s)
- Thomas C Edwards
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | | | |
Collapse
|
34
|
Capelle HH, Kinfe TM, Krauss JK. Deep brain stimulation for treatment of hemichorea-hemiballism after craniopharyngioma resection: long-term follow-up. J Neurosurg 2011; 115:966-70. [PMID: 21819190 DOI: 10.3171/2011.6.jns101388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hemichorea-hemiballism is a rare movement disorder that has various causes. In treatment-resistant cases, both thalamic and pallidal functional procedures have been shown to yield beneficial results. Until now it has not been clarified whether the thalamus or the pallidum would yield a superior outcome. After resection of a craniopharyngioma in this patient at the age of 49 years, hemichorea-hemiballism developed, with a latency of several weeks. Because the patient was greatly impaired by the movement disorder, she underwent implantation of deep brain stimulation (DBS) electrodes in the thalamic ventralis intermedius nucleus and the posteroventral lateral globus pallidus internus. Although both pallidal and thalamic stimulation could suppress the movement disorder, the voltage needed was clearly less with thalamic than with pallidal stimulation. At the last available follow-up 25 months postoperatively, complete subsidence of hemichorea-hemiballism was achieved with long-term thalamic stimulation. Long-term DBS therapy is an efficient treatment modality for refractory hemichorea-hemiballism in the long run (> 2 years). A bifocal (thalamic and pallidal) target paradigm allowed selection of the optimal stimulation site. Thalamic DBS was more favorable with regard to energy consumption.
Collapse
|
35
|
Eidelberg D, Surmeier DJ. Brain networks in Huntington disease. J Clin Invest 2011; 121:484-92. [PMID: 21285521 DOI: 10.1172/jci45646] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies have focused on understanding the neural mechanisms underlying the emergence of clinical signs and symptoms in early stage Huntington disease (HD). Although cell-based assays have focused on cell autonomous effects of mutant huntingtin, animal HD models have revealed alterations in the function of neuronal networks, particularly those linking the cerebral cortex and striatum. These findings are complemented by metabolic imaging studies of disease progression in premanifest subjects. Quantifying metabolic progression at the systems level may identify network biomarkers to aid in the objective assessment of new disease-modifying therapies and identify new regions that merit mechanistic study in HD models.
Collapse
Affiliation(s)
- David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.
| | | |
Collapse
|
36
|
Bronfeld M, Belelovsky K, Erez Y, Bugaysen J, Korngreen A, Bar-Gad I. Bicuculline-Induced Chorea Manifests in Focal Rather Than Globalized Abnormalities in the Activation of the External and Internal Globus Pallidus. J Neurophysiol 2010; 104:3261-75. [DOI: 10.1152/jn.00093.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chorea is a basal-ganglia (BG) related hyperkinetic movement disorder characterized by irregular continuous involuntary movements. Chorea and related hyperbehavioral disorders may be induced in behaving primates by local microinjections of the GABAA antagonist bicuculline to the globus pallidus externus (GPe). We performed multielectrode extracellular recordings in the GPe and in the globus pallidus internus (GPi) before, during, and after bicuculline microinjections. Bicuculline led to an increase in the firing rate and a change in the firing pattern of GPe neurons. Two types of abnormal neuronal firing patterns were detected in GPe neurons close to the bicuculline microinjection site: continuous high-frequency activity and bistable activity, in which neurons transitioned between high-frequency and complete cessation of firing. Neuronal activity remained uncorrelated within and between the GPe and the GPi, with no evidence for propagation of the focal GPe abnormal activity downstream to the GPi. Despite reduction in the information capacity of bicuculline-affected GPe neurons, the ability to encode behavioral events was maintained. We found similar responses of GPe neurons to bicuculline in vitro in the rat, suggesting a basic cellular mechanism underlying these abnormal firing patterns. These results demonstrate that chorea is associated with focal neuronal changes that are not complemented by global changes in the BG nuclei. This suggests a mechanism of stochastic phasic alteration of BG control leading to the chaotic nature of chorea. Thus rather than imposing a globalized state of cortical excitability, chorea might be associated with changes in internal information processing within the BG.
Collapse
Affiliation(s)
- Maya Bronfeld
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center and
| | - Katya Belelovsky
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center and
| | - Yaara Erez
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center and
| | - Jenia Bugaysen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center and
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center and
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
37
|
Abstract
The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. A hallmark of the SNr gamma-aminobutyric acid (GABA)-containing projection neurons is their depolarized membrane potential, accompanied by rapid spontaneous spikes. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question is the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. Recent data show that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. Such channels are tonically active and mediate an inward, Na(+)-dependent current, leading to a substantial depolarization and ensuring appropriate firing intensity and pattern in SNr GABA projection neurons. Equally important, TRPC3 channels in SNr GABA neurons are up-regulated by dopamine (DA) released from neighboring nigral DA neuron dendrites. Co-activation of D1 and D5 DA receptors leads to a TRPC3 channel-mediated inward current and increased firing in SNr GABA neurons, whereas D1-like receptor blockade reduces SNr GABA neuron firing frequency and increases their firing irregularity. TRPC3 channels serve as the effector channels mediating an ultra-short SNc-->SNr DA pathway that regulates the firing intensity and pattern of the basal ganglia output neurons.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis TN 38163, USA.
| |
Collapse
|
38
|
Dorval AD, Kuncel AM, Birdno MJ, Turner DA, Grill WM. Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. J Neurophysiol 2010; 104:911-21. [PMID: 20505125 DOI: 10.1152/jn.00103.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the basal ganglia can alleviate the motor symptoms of Parkinson's disease although the therapeutic mechanisms are unclear. We hypothesize that DBS relieves symptoms by minimizing pathologically disordered neuronal activity in the basal ganglia. In human participants with parkinsonism and clinically effective deep brain leads, regular (i.e., periodic) high-frequency stimulation was replaced with irregular (i.e., aperiodic) stimulation at the same mean frequency (130 Hz). Bradykinesia, a symptomatic slowness of movement, was quantified via an objective finger tapping protocol in the absence and presence of regular and irregular DBS. Regular DBS relieved bradykinesia more effectively than irregular DBS. A computational model of the relevant neural structures revealed that output from the globus pallidus internus was more disordered and thalamic neurons made more transmission errors in the parkinsonian condition compared with the healthy condition. Clinically therapeutic, regular DBS reduced firing pattern disorder in the computational basal ganglia and minimized model thalamic transmission errors, consistent with symptom alleviation by clinical DBS. However, nontherapeutic, irregular DBS neither reduced disorder in the computational basal ganglia nor lowered model thalamic transmission errors. Thus we show that clinically useful DBS alleviates motor symptoms by regularizing basal ganglia activity and thereby improving thalamic relay fidelity. This work demonstrates that high-frequency stimulation alone is insufficient to alleviate motor symptoms: DBS must be highly regular. Descriptive models of pathophysiology that ignore the fine temporal resolution of neuronal spiking in favor of average neural activity cannot explain the mechanisms of DBS-induced symptom alleviation.
Collapse
Affiliation(s)
- Alan D Dorval
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. Its GABA-containing projection neurons intermingle with nigral dopamine (DA) neuron dendrites. Here we show that SNr GABA neurons coexpress dopamine D(1) and D(5) receptor mRNAs and also mRNA for TRPC3 channels. Dopamine induced an inward current in these neurons and increased their firing frequency. These effects were mimicked by D(1)-like agonists, blocked by a D(1)-like antagonist. D(1)-like receptor blockade reduced SNr GABA neuron firing frequency and increased their firing irregularity. These D(1)-like effects were absent in D(1) or D(5) receptor knock-out mice and inhibited by intracellularly applied D(1) or D(5) receptor antibody. These D(1)-like effects were also inhibited when the tonically active TRPC3 channels were inhibited by intracellularly applied TRPC3 channel antibody. Furthermore, stimulation of DA neurons induced a direct inward current in SNr GABA neurons that was sensitive to D(1)-like blockade. Manipulation of DA neuron activity and DA release and inhibition of dopamine reuptake affected SNr GABA neuron activity in a D(1)-like receptor-dependent manner. Together, our findings indicate that dendritically released dopamine tonically excites SNr GABA neurons via D(1)-D(5) receptor coactivation that enhances constitutively active TRPC3 channels, forming an ultra-short substantia nigra pars compacta --> SNr dopamine pathway that regulates the firing intensity and pattern of these basal ganglia output neurons.
Collapse
|
40
|
Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol 2009; 16:506-12. [PMID: 19207733 DOI: 10.1111/j.1468-1331.2008.02520.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is successful in dystonia, but the role of each electrical parameters of stimulation is unclear. We studied the clinical effects of acute changes of different parameters of GPi-DBS in cervical dystonia (CD). METHODS Eight CD patients with bilateral GPi-DBS at 28.6 +/- 19.2 (mean +/- SD) months after surgery were recruited. Mean improvement in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) severity score was 54.5% compared to before surgery. Ten settings, including a combination of a wide range of pulse widths (PWs), low and high frequencies and voltage, were administered in a randomized double blinded fashion. Clinical benefit was assessed by two raters using the TWSTRS and by the patients using an analogue rating scale. RESULTS The TWSTRS severity scores were reduced by 56.7% with stimulation at the best settings. Improvement was significantly associated with high frequency (> or = 60 Hz) and high voltage. Stimulation at 130 Hz showed the best clinical improvement. Increasing PWs (from 60 to 450 micros) did not result in a significant improvement. CONCLUSION Frequency and amplitude appear to be the most important factors in the acute anti-dystonic effects in GPi-DBS patients with CD.
Collapse
Affiliation(s)
- E Moro
- Movement Disorders Center, Toronto Western Hospital, University of Toronto, University Health Network, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Sani S, Ostrem JL, Shimamoto S, Levesque N, Starr PA. Single unit "pauser" characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease. Exp Neurol 2009; 216:295-9. [PMID: 19146856 PMCID: PMC2659350 DOI: 10.1016/j.expneurol.2008.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022]
Abstract
The presence of high frequency discharge neurons with long periods of silence or "pauses" in the globus pallidus pars externa (GPe) is a unique identifying feature of this nucleus. Prior studies have demonstrated that pause characteristics reflect synaptic inputs into GPe. We hypothesized that GPe pause characteristics should distinguish movement disorders whose basal ganglia network abnormalities are different. We examined pause characteristics in 224 GPe units in patients with primary generalized dystonia, Parkinson's disease (PD), and secondary dystonia, undergoing single unit microelectrode recording for DBS placement in the awake state. Pauses in neuronal discharge were identified using the Poisson surprise method. Mean pause length in primary dystonia (606.8373.3) was higher than in PD (557.4366.6) (p<0.05). Interpause interval (IPI) was lower in primary dystonia (2331.63874.1) than PD (3646.45894.5) (p<0.01), and mean pause frequency was higher in primary dystonia (0.140.10) than PD (0.070.12) (p<0.01). Comparison of pause characteristics in primary versus secondary generalized dystonia revealed a significantly longer mean pause length in primary (606.8373.3) than in secondary dystonia (495.6236.5) (p<0.01). IPI was shorter in primary (2331.6+/-3874.1) than in secondary dystonia (3484.5+/-3981.6) (p<0.01). The results show that pause characteristics recorded in the awake human GPe distinguish primary dystonia from Parkinson's disease and secondary dystonia. The differences may reflect increased phasic input from striatal D2 receptor positive cells in primary dystonia, and are consistent with a recent model proposing that GPe provides capacity scaling for cortical input.
Collapse
Affiliation(s)
- Sepehr Sani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
42
|
Starr PA, Kang GA, Heath S, Shimamoto S, Turner RS. Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol 2008; 211:227-33. [PMID: 18342309 PMCID: PMC3673313 DOI: 10.1016/j.expneurol.2008.01.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/24/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Chorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD). We present single-unit discharge characteristics (33 neurons) observed in an awake patient with HD (41 CAG repeats) undergoing microelectrode guided surgery for pallidal deep brain stimulation. Pallidal single-unit activity at "rest" and during voluntary movement was discriminated off line by principal component analysis and evaluated with respect to discharge rate, bursting, and oscillatory activity in the 0-200 Hz range. 24 GPi and 9 GPe units were studied, and compared with 132 GPi and 50 GPe units from 14 patients with PD. The mean (+/-SEM) spontaneous discharge rate for HD was 58+/-4 for GPi and 73+/-5 for GPe. This contrasted with discharge rates in PD of 95+/-2 for GPi and 57+/-3 for GPe. HD GPi units showed more bursting than PD GPi units but much less oscillatory activity in the 2-35 Hz frequency range at rest. These findings are consistent with selective early loss of striatal cells originating the indirect pathway.
Collapse
Affiliation(s)
- Philip A Starr
- Department of Neurosurgery, University of California, San Francisco, San Francisco CA 94143, USA.
| | | | | | | | | |
Collapse
|
43
|
Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 2008; 188:165-74. [DOI: 10.1007/s00221-008-1349-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 03/06/2008] [Indexed: 11/25/2022]
|
44
|
Montgomery EB. Subthalamic nucleus neuronal activity in Parkinson's disease and epilepsy subjects. Parkinsonism Relat Disord 2008; 14:120-5. [PMID: 17870651 DOI: 10.1016/j.parkreldis.2007.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 06/04/2007] [Accepted: 06/22/2007] [Indexed: 11/16/2022]
|
45
|
Abstract
A hallmark of the GABA projection neurons of the substantia nigra pars reticulata (SNr), a key basal ganglia output nucleus, is its depolarized membrane potential and rapid spontaneous spikes that encode the basal ganglia output. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question remains regarding the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. We show here that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. These channels are tonically active and mediate an inward, Na+-dependent current, leading to a substantial depolarization in these neurons. Inhibition of TRPC3 channels induces hyperpolarization, decreases firing frequency, and increases firing irregularity. These data demonstrate that TRPC3 channels play important roles in ensuring the appropriate firing intensity and pattern in SNr GABA projection neurons that are crucial to movement control.
Collapse
|
46
|
Gale JT, Amirnovin R, Williams ZM, Flaherty AW, Eskandar EN. From symphony to cacophony: Pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev 2008; 32:378-87. [PMID: 17466375 DOI: 10.1016/j.neubiorev.2006.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 10/06/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022]
Abstract
Despite remarkable advances, the relationship between abnormal neuronal activity and the clinical manifestations of Parkinson disease (PD) remains unclear. Numerous hypotheses have emerged to explain the relationship between neuronal activity and symptoms such as tremor, rigidity and akinesia. Among these are the antagonist balance hypothesis wherein increased firing rates in the indirect pathway inhibits movement; the selectivity hypothesis wherein loss of neuronal selectivity leads to an inability to select or initiate movements; the firing pattern hypothesis wherein increased oscillation and synchronization contribute to tremor and disrupt information flow; and the learning hypothesis, wherein the basal ganglia are conceived as playing an important role in learning sensory-motor associations which is disrupted by the loss of dopamine. Deep brain stimulation (DBS) surgery provides a unique opportunity to assess these different ideas since neuronal activity can be directly recorded from PD patients. The emerging data suggest that the pathophysiologic changes include derangements in the overall firing rates, decreased neuronal selectivity, and increased neuronal oscillation and synchronization. Thus, elements of all hypotheses are present, emphasizing that the loss of dopamine results in a profound and multifaceted disruption of normal information flow through the basal ganglia that ultimately leads to the signs and symptoms of PD.
Collapse
Affiliation(s)
- John T Gale
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
47
|
Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 2008; 5:14-25. [PMID: 18164480 PMCID: PMC2200868 DOI: 10.1016/j.nurt.2007.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for symptoms in movement disorders and is under investigation for symptom management in persons with psychiatric disorders and epilepsy. Nevertheless, there remains disagreement regarding the physiological mechanisms responsible for the actions of DBS, and this lack of understanding impedes both the design of DBS systems for treating novel diseases and the effective tuning of current DBS systems. Currently available data indicate that effective DBS overrides pathological bursts, low frequency oscillations, synchronization, and disrupted firing patterns present in movement disorders, and replaces them with more regularized firing. Although it is likely that the specific mechanism(s) by which DBS exerts its effects varies between diseases and target nuclei, the overriding of pathological activity appears to be ubiquitous. This review provides an overview of changes in motor symptoms with changes in DBS frequency and highlights parallels between the changes in motor symptoms and the changes in cellular activity that appear to underlie the motor symptoms.
Collapse
Affiliation(s)
- Merrill J. Birdno
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| | - Warren M. Grill
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| |
Collapse
|
48
|
Montgomery EB. Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism Relat Disord 2007; 13:455-65. [PMID: 17977052 DOI: 10.1016/j.parkreldis.2007.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 07/12/2007] [Accepted: 07/18/2007] [Indexed: 12/01/2022]
Abstract
Current theories of basal ganglia (BG) function based on suppression of activity in the ventrolateral thalamic-cortical circuits by the globus pallidus internal segment are inconsistent with accumulating evidence, demonstrating the need for reconsideration. Changes in busting, oscillatory and synchronous neuronal activities have been indicted as pathophyisological mechanisms but they are unaccompanied by any mechanistic explanatory theory and rely on the same basic assumptions as previous theories now suspect. These notions and theories are reviewed and an alternative is proposed. The systems oscillators theory presented here proposes that the BG is a network of sets of interconnected closed neural loops functioning as oscillators. Its unique physiological and pathophysiological mechanisms are explored.
Collapse
Affiliation(s)
- Erwin B Montgomery
- Department of Neurology, National Primate Research Center, University of Wisconsin-Madison, USA.
| |
Collapse
|
49
|
Leblois A, Meissner W, Bioulac B, Gross CE, Hansel D, Boraud T. Late emergence of synchronized oscillatory activity in the pallidum during progressive parkinsonism. Eur J Neurosci 2007; 26:1701-13. [PMID: 17880401 DOI: 10.1111/j.1460-9568.2007.05777.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease is known to result from basal ganglia dysfunction. Electrophysiological recordings in parkinsonian patients and animals have shown the emergence of abnormal synchronous oscillatory activity in the cortico-basal ganglia network in the pathological condition. In addition, previous studies pointed out an altered response pattern during movement execution in the pallidum of parkinsonian animals. To investigate the dynamics of these changes during disease progression and to relate them to the onset of the motor symptoms, we recorded spontaneous and movement-related neuronal activity in the internal pallidum of nonhuman primates during a progressive dopamine depletion process. Parkinsonian motor symptoms appeared progressively during the intoxication protocol, at the end of which both animals displayed severe akinesia, rigidity and postural abnormalities. Spontaneous firing rates did not vary significantly after intoxication. During the early phase of the protocol, voluntary movements were significantly slowed down and delayed. At the same time, the neuronal response to movement execution was modified and inhibitory responses disappeared. In contrast, the unitary and collective dynamic properties of spontaneous neuronal activity, as revealed by spectral and correlation analysis, remained unchanged during this period. Spontaneous correlated activity increased later, after animals became severely bradykinetic, whereas synchronous oscillatory activity appeared only after major motor symptoms developed. Thus, a causality between the emergence of synchronous oscillations in the pallidum and main parkinsonian motor symptoms seems unlikely. The pathological disruption of movement-related activity in the basal ganglia appears to be a better correlate at least to bradykinesia and stands as the best candidate to account for this motor symptom.
Collapse
Affiliation(s)
- Arthur Leblois
- Université Bordeaux 2, UMR CNRS 5227 Laboratoire Motricite Adaptation Cognition, Basal Gang, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
50
|
Tang JKH, Moro E, Mahant N, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson's disease. J Neurophysiol 2007; 98:720-9. [PMID: 17537900 DOI: 10.1152/jn.01107.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cervical dystonia (CD) is a movement disorder that involves involuntary turning and twisting of the neck caused by abnormal muscle contraction. Deep brain stimulation (DBS) in the globus pallidus internus (GPi) is used to treat both CD and the motor symptoms of Parkinson's disease (PD). It has been suggested that the differing motor symptoms in CD and PD may arise from a decreased GPi output in CD and elevation of output in PD. To test this hypothesis, extracellular recordings of GPi neuronal activity were obtained during stereotactic surgery for the implantation of DBS electrodes in seven idiopathic CD and 14 PD patients. The mean GPi neuronal firing rate recorded from CD patients was lower than that in PD patients (P < 0.001; means +/- SE: 71.4 +/- 2.2 and 91.7 +/- 3.0 Hz, respectively). Furthermore, GPi neurons fired in a more irregular pattern consisting of more frequent and longer pauses in CD compared with PD patients. When comparisons were done based on locations of recordings, these differences in firing rates and patterns were limited to the ventral portion of the GPi. In contrast, no difference in firing rate or pattern was observed in the globus pallidus externus between the two groups. These findings suggest that alterations in both firing rate and firing pattern may underlie the differing motor symptoms associated with these two movement disorders.
Collapse
Affiliation(s)
- Joyce K H Tang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|