1
|
Sporn S, Galea JM. The effects of haloperidol on motor vigour and movement fusion during sequential reaching. PLoS One 2025; 20:e0316894. [PMID: 39888903 PMCID: PMC11785334 DOI: 10.1371/journal.pone.0316894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/17/2024] [Indexed: 02/02/2025] Open
Abstract
Reward is a powerful tool to enhance human motor behaviour with previous research showing that during a sequential reaching movement, a monetary incentive leads to increased speed of each movement (motor vigour effect), whilst reward-based performance feedback increases the speed of transition between movements (movement fusion effect). The neurotransmitter dopamine plays a central role in the processing of reward signals and has been implicated to modulate motor vigour and regulate movement fusion. However, in humans, it is unclear if the same dopaminergic mechanism underlies both processes. To address this, we used a complex sequential reaching task in which rewards were based on movement times (MT). Crucially, MTs could be reduced via: 1) enhanced speed of individual movements (motor vigour effect) and/or 2) enhanced speed of transition between movements (movement fusion effect). 95 participants were randomly assigned to a reward or no reward group and were given either 2.5mg of the dopamine antagonist haloperidol or a placebo (control group). An independent decision-making task performed prior to the main experiment suggested that haloperidol was active during the sequential reaching task (positive control). We did not find evidence that haloperidol affected the facilitatory effects of reward on movement fusion. However, we found that haloperidol negated the reward-based effects on motor vigour. Therefore, our results suggest that a D2-antagonist differentially influences reward-based effects on movement vigour and movement fusion, indicating that the dopaminergic mechanisms underlying these two processes may be distinct.
Collapse
Affiliation(s)
- Sebastian Sporn
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical and Movement Neuroscience, Queens Square Institute of Neurology, UCL, London, United Kingdom
| | - Joseph M. Galea
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Buabang EK, Donegan KR, Rafei P, Gillan CM. Leveraging cognitive neuroscience for making and breaking real-world habits. Trends Cogn Sci 2025; 29:41-59. [PMID: 39500685 DOI: 10.1016/j.tics.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
Habits are the behavioral output of two brain systems. A stimulus-response (S-R) system that encourages us to efficiently repeat well-practiced actions in familiar settings, and a goal-directed system concerned with flexibility, prospection, and planning. Getting the balance between these systems right is crucial: an imbalance may leave people vulnerable to action slips, impulsive behaviors, and even compulsive behaviors. In this review we examine how recent advances in our understanding of these competing brain mechanisms can be harnessed to increase the control over both making and breaking habits. We discuss applications in everyday life, as well as validated and emergent interventions for clinical populations affected by the balance between these systems. As research in this area accelerates, we anticipate a rapid influx of new insights into intentional behavioral change and clinical interventions, including new opportunities for personalization of these interventions based on the neurobiology, environmental context, and personal preferences of an individual.
Collapse
Affiliation(s)
- Eike K Buabang
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland.
| | - Kelly R Donegan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Parnian Rafei
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Claire M Gillan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Favila N, Gurney K, Overton PG. Role of the basal ganglia in innate and learned behavioural sequences. Rev Neurosci 2024; 35:35-55. [PMID: 37437141 DOI: 10.1515/revneuro-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Integrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
Collapse
Affiliation(s)
- Natalia Favila
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Kevin Gurney
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Paul G Overton
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| |
Collapse
|
4
|
Janssen M, LeWarne C, Burk D, Averbeck BB. Hierarchical Reinforcement Learning, Sequential Behavior, and the Dorsal Frontostriatal System. J Cogn Neurosci 2022; 34:1307-1325. [PMID: 35579977 PMCID: PMC9274316 DOI: 10.1162/jocn_a_01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To effectively behave within ever-changing environments, biological agents must learn and act at varying hierarchical levels such that a complex task may be broken down into more tractable subtasks. Hierarchical reinforcement learning (HRL) is a computational framework that provides an understanding of this process by combining sequential actions into one temporally extended unit called an option. However, there are still open questions within the HRL framework, including how options are formed and how HRL mechanisms might be realized within the brain. In this review, we propose that the existing human motor sequence literature can aid in understanding both of these questions. We give specific emphasis to visuomotor sequence learning tasks such as the discrete sequence production task and the M × N (M steps × N sets) task to understand how hierarchical learning and behavior manifest across sequential action tasks as well as how the dorsal cortical-subcortical circuitry could support this kind of behavior. This review highlights how motor chunks within a motor sequence can function as HRL options. Furthermore, we aim to merge findings from motor sequence literature with reinforcement learning perspectives to inform experimental design in each respective subfield.
Collapse
Affiliation(s)
| | | | - Diana Burk
- National Institute of Mental Health, Bethesda, MD
| | | |
Collapse
|
5
|
Russo C, Veronelli L, Casati C, Monti A, Perucca L, Ferraro F, Corbo M, Vallar G, Bolognini N. Explicit motor sequence learning after stroke: a neuropsychological study. Exp Brain Res 2021; 239:2303-2316. [PMID: 34091696 PMCID: PMC8282572 DOI: 10.1007/s00221-021-06141-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Motor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.
| | - Laura Veronelli
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Laura Perucca
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Francesco Ferraro
- Riabilitazione Specialistica Neuromotoria - Dipartimento di Neuroscienze, ASST "Carlo Poma" di Mantova - Presidio di Riabilitazione Multifunzionale di Bozzolo, Mantua, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
6
|
Halbout B, Marshall AT, Azimi A, Liljeholm M, Mahler SV, Wassum KM, Ostlund SB. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. eLife 2019; 8:43551. [PMID: 31107241 PMCID: PMC6548499 DOI: 10.7554/elife.43551] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/19/2019] [Indexed: 01/21/2023] Open
Abstract
Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Andrew T Marshall
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Ali Azimi
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Mimi Liljeholm
- Department of Cognitive Sciences, University of California, Irvine, Irvine, United States
| | - Stephen V Mahler
- Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| |
Collapse
|
7
|
The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. J Clin Med 2019; 8:jcm8050578. [PMID: 31035583 PMCID: PMC6572639 DOI: 10.3390/jcm8050578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
When aerobic exercise is performed following skilled motor practice, it can enhance motor memory consolidation. Previous studies have suggested that dopamine may play a role in motor memory consolidation, but whether it is involved in the exercise effects on consolidation is unknown. Hence, we aimed to investigate the influence of dopaminergic pathways on the exercise-induced modulation of motor memory consolidation. We compared the effect of acute exercise on motor memory consolidation between the genotypes that are known to affect dopaminergic transmission and learning. By combining cluster analyses and fitting linear models with and without included polymorphisms, we provide preliminary evidence that exercise benefits the carriers of alleles that are associated with low synaptic dopamine content. In line with previous reports, our findings implicate dopamine as a modulator of the exercise-induced effects on motor memory consolidation, and suggest exercise as a potential clinical tool to counteract low endogenous dopamine bioavailability. Further experiments are needed to establish causal relations.
Collapse
|
8
|
Cardoso-Cruz H, Dourado M, Monteiro C, Galhardo V. Blockade of dopamine D2 receptors disrupts intrahippocampal connectivity and enhances pain-related working memory deficits in neuropathic pain rats. Eur J Pain 2018; 22:1002-1015. [PMID: 29377353 DOI: 10.1002/ejp.1186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dopamine (DA) is thought to be important to local hippocampal networks integrity during spatial working memory (sWM) processing. Chronic pain may contribute to deficient dopaminergic signalling, which may in turn affect cognition. However, the neural mechanisms that determine this impairment are poorly understood. Here, we evaluated whether the sWM impairment characteristic of animal models of chronic pain is dependent on DA D2 receptor (D2r) activity. METHODS To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 field (dvCA1) of rats and recorded the neuronal activity during a classical delayed food-reinforced T-maze sWM task. Within-subject behavioural performance and patterns of dorsoventral neural activity were assessed before and after the onset of persistent neuropathic pain using the spared nerve injury (SNI) model. RESULTS Our results show that the peripheral nerve lesion caused a disruption in sWM and hippocampus spike activity and that disruption was maximized by the systemic administration of the D2r antagonist raclopride. These deficits are strictly correlated with a selective disruption of hippocampal theta-oscillations. Particularly, we found a significant decrease in intrahippocampal CA1 field connectivity level. CONCLUSIONS Together, these results suggest that disruption of the dopaminergic balance in the intrahippocampal networks may be important for the development of cognitive deficits experienced during painful conditions. SIGNIFICANCE This study provides new insights into the role of D2r in the manifestation of pain-related sWM deficits. Our findings support that selective blockade of D2r produces a significant decrease in intrahippocampal connectivity mediated by theta-oscillations, and amplifies pain-related sWM deficits. These results suggest that further characterization of intrahippocampal dopaminergic modulation may be clinically relevant for the understanding of cognitive impairments that accompanies nociceptive stressful conditions.
Collapse
Affiliation(s)
- H Cardoso-Cruz
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - M Dourado
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal.,PDN - Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - C Monteiro
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - V Galhardo
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Salimi-Badr A, Ebadzadeh MM, Darlot C. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Comput Biol Med 2018; 92:78-89. [PMID: 29156412 DOI: 10.1016/j.compbiomed.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Abstract
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion.
Collapse
Affiliation(s)
- Armin Salimi-Badr
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran; INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| | - Mohammad Mehdi Ebadzadeh
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Christian Darlot
- INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| |
Collapse
|
10
|
A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. J Comput Neurosci 2017; 43:295-318. [DOI: 10.1007/s10827-017-0665-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
11
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
12
|
Abstract
After more than a century of work concentrating on the motor functions of the basal ganglia, new ideas have emerged, suggesting that the basal ganglia also have major functions in relation to learning habits and acquiring motor skills. We review the evidence supporting the role of the striatum in optimizing behavior by refining action selection and in shaping habits and skills as a modulator of motor repertoires. These findings challenge the notion that striatal learning processes are limited to the motor domain. The learning mechanisms supported by striatal circuitry generalize to other domains, including cognitive skills and emotion-related patterns of action.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139
| | - Scott T Grafton
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-9660 Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660
| |
Collapse
|
13
|
Dezfouli A, Lingawi NW, Balleine BW. Habits as action sequences: hierarchical action control and changes in outcome value. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0482. [PMID: 25267824 DOI: 10.1098/rstb.2013.0482] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Goal-directed action involves making high-level choices that are implemented using previously acquired action sequences to attain desired goals. Such a hierarchical schema is necessary for goal-directed actions to be scalable to real-life situations, but results in decision-making that is less flexible than when action sequences are unfolded and the decision-maker deliberates step-by-step over the outcome of each individual action. In particular, from this perspective, the offline revaluation of any outcomes that fall within action sequence boundaries will be invisible to the high-level planner resulting in decisions that are insensitive to such changes. Here, within the context of a two-stage decision-making task, we demonstrate that this property can explain the emergence of habits. Next, we show how this hierarchical account explains the insensitivity of over-trained actions to changes in outcome value. Finally, we provide new data that show that, under extended extinction conditions, habitual behaviour can revert to goal-directed control, presumably as a consequence of decomposing action sequences into single actions. This hierarchical view suggests that the development of action sequences and the insensitivity of actions to changes in outcome value are essentially two sides of the same coin, explaining why these two aspects of automatic behaviour involve a shared neural structure.
Collapse
Affiliation(s)
- Amir Dezfouli
- Brain and Mind Research Institute, University of Sydney, 100 Mallett St., Camperdown, New South Wales 2050, Australia
| | - Nura W Lingawi
- Brain and Mind Research Institute, University of Sydney, 100 Mallett St., Camperdown, New South Wales 2050, Australia
| | - Bernard W Balleine
- Brain and Mind Research Institute, University of Sydney, 100 Mallett St., Camperdown, New South Wales 2050, Australia
| |
Collapse
|
14
|
Lungu O, Monchi O, Albouy G, Jubault T, Ballarin E, Burnod Y, Doyon J. Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy. PLoS One 2014; 9:e103885. [PMID: 25148078 PMCID: PMC4141721 DOI: 10.1371/journal.pone.0103885] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/08/2014] [Indexed: 11/27/2022] Open
Abstract
Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.
Collapse
Affiliation(s)
- Ovidiu Lungu
- Unité de Neuroimagerie Fonctionelle (UNF), Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
- Département de Psychiatrie, Université de Montréal, Montréal, Canada
- Center for Research in Aging, Donald Berman Maimonides Geriatric Center, Montréal, Canada
- * E-mail:
| | - Oury Monchi
- Unité de Neuroimagerie Fonctionelle (UNF), Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
- Département de Radiologie, Université de Montréal, Montréal, Canada
| | - Geneviève Albouy
- Unité de Neuroimagerie Fonctionelle (UNF), Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
- Département de Psychologie, Université de Montréal, Montréal, Canada
| | - Thomas Jubault
- Unité de Neuroimagerie Fonctionelle (UNF), Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
| | | | - Yves Burnod
- INSERM U678, Université de Paris VI Jussieu, Paris, France
| | - Julien Doyon
- Unité de Neuroimagerie Fonctionelle (UNF), Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
- Département de Psychologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
15
|
Wymbs NF, Bassett DS, Mucha PJ, Porter MA, Grafton ST. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 2012; 74:936-46. [PMID: 22681696 DOI: 10.1016/j.neuron.2012.03.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2012] [Indexed: 11/25/2022]
Abstract
Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks.
Collapse
Affiliation(s)
- Nicholas F Wymbs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
16
|
Wassum KM, Ostlund SB, Maidment NT. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol Psychiatry 2012; 71:846-54. [PMID: 22305286 PMCID: PMC3471807 DOI: 10.1016/j.biopsych.2011.12.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sequential reward-seeking actions are readily learned despite the temporal gap between the earliest (distal) action in the sequence and the reward delivery. Fast dopamine signaling is hypothesized to mediate this form of learning by reporting errors in reward prediction. However, such a role for dopamine release in voluntarily initiated action sequences remains to be demonstrated. METHODS Using fast-scan cyclic voltammetry, we monitored phasic mesolimbic dopamine release, in real time, as rats performed a self-initiated sequence of lever presses to earn sucrose rewards. Before testing, rats received either 0 (n = 11), 5 (n = 11), or 10 (n = 8) days of action sequence training. RESULTS For rats acquiring the action sequence task at test, dopamine release was strongly elicited by response-contingent (but unexpected) rewards. With learning, a significant elevation in dopamine release preceded performance of the proximal action and subsequently came to precede the distal action. This predistal dopamine release response was also observed in rats previously trained on the action sequence task, and the amplitude of this signal predicted the latency with which rats completed the action sequence. Importantly, the dopamine response to contingent reward delivery was not observed in rats given extensive pretraining. Pharmacological analysis confirmed that task performance was dopamine-dependent. CONCLUSIONS These data suggest that phasic mesolimbic dopamine release mediates the influence that rewards exert over the performance of self-paced, sequentially-organized behavior and sheds light on how dopamine signaling abnormalities may contribute to disorders of behavioral control.
Collapse
Affiliation(s)
- Kate M Wassum
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
17
|
Kawashima S, Ueki Y, Kato T, Matsukawa N, Mima T, Hallett M, Ito K, Ojika K. Changes in striatal dopamine release associated with human motor-skill acquisition. PLoS One 2012; 7:e31728. [PMID: 22355391 PMCID: PMC3280327 DOI: 10.1371/journal.pone.0031728] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/12/2012] [Indexed: 11/30/2022] Open
Abstract
The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition.
Collapse
Affiliation(s)
- Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, Japan
| | - Yoshino Ueki
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, Japan
- * E-mail:
| | - Takashi Kato
- Department of Brain Science and Molecular Imaging, Research Institute, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi Prefecture, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mark Hallett
- Human Motor Control Section, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kengo Ito
- Department of Brain Science and Molecular Imaging, Research Institute, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi Prefecture, Japan
| | - Kosei Ojika
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
18
|
Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res 2011; 226:579-91. [PMID: 22004979 DOI: 10.1016/j.bbr.2011.09.044] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
Abstract
When learning a new motor sequence, we must execute the correct order of movements while simultaneously optimizing sensorimotor parameters such as trajectory, timing, velocity and force. Neurophysiological studies in animals and humans have identified the major brain regions involved in sequence learning, including the motor cortex (M1), basal ganglia (BG) and cerebellum. Current models link these regions to different stages of learning (early vs. late) or different components of performance (spatial vs. sensorimotor). At the same time, research in motor control has given rise to the concept that internal models at different levels of the motor system may contribute to learning. The goal of this review is to develop a new framework for motor sequence learning that combines stage and component models within the context of internal models. To do this, we review behavioral and neuroimaging studies in humans and neurophysiological studies in animals. Based on this evidence, we present a model proposing that sequence learning is underwritten by parallel, interacting processes, including internal model formation and sequence representation, that are instantiated in specific cerebellar, BG or M1 mechanisms depending on task demands and the stage of learning. The striatal system learns predictive stimulus-response associations and is critical for motor chunking. The role of the cerebellum is to acquire the optimal internal model for sequence performance in a particular context, and to contribute to error correction and control of on-going movement. M1 acts to store the representation of a learned sequence, likely as part of a distributed network including the parietal lobe and premotor cortex.
Collapse
Affiliation(s)
- Virginia B Penhune
- Laboratory for Motor Learning and Neural Plasticity, Department of Psychology, Concordia University, Canada.
| | | |
Collapse
|
19
|
Clerget E, Poncin W, Fadiga L, Olivier E. Role of Broca's area in implicit motor skill learning: evidence from continuous theta-burst magnetic stimulation. J Cogn Neurosci 2011; 24:80-92. [PMID: 21812572 DOI: 10.1162/jocn_a_00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor sequences. To address this issue, we investigated the inhibitory effects of a continuous theta-burst TMS (cTBS) applied over left BA 44 in healthy subjects, just before they performed a serial RT task (SRTT). SRTT has been widely used to study motor skill learning and is also of interest because, for complex structured sequences, subjects spontaneously organize them into smaller subsequences, referred to as chunks. As a control, cTBS was applied over the vertex in another group, which underwent the same experiment. Control subjects showed both a general practice learning effect, evidenced by a progressive decrease in RT across blocks and a sequence-specific learning effect, demonstrated by a significant RT increase in a pseudorandom sequence. In contrast, when cTBS was applied over left BA 44, subjects lacked both the general practice and sequence-specific learning effects. However, surprisingly, their chunking pattern was preserved and remained indistinguishable from controls. The present study indicates that left BA 44 plays a role in motor sequence learning, but without being involved in elementary chunking. This dissociation between chunking and sequence learning could be explained if we postulate that left BA 44 intervenes in high hierarchical level processing, possibly to integrate elementary chunks together.
Collapse
Affiliation(s)
- Emeline Clerget
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Orban P, Peigneux P, Lungu O, Debas K, Barakat M, Bellec P, Benali H, Maquet P, Doyon J. Functional neuroanatomy associated with the expression of distinct movement kinematics in motor sequence learning. Neuroscience 2011; 179:94-103. [DOI: 10.1016/j.neuroscience.2011.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/25/2022]
|
21
|
Tremblay PL, Bedard MA, Langlois D, Blanchet PJ, Lemay M, Parent M. Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson's disease. Exp Brain Res 2010; 205:375-85. [PMID: 20680249 DOI: 10.1007/s00221-010-2372-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
Chunking of single movements into integrated sequences has been described during motor learning, and we have recently demonstrated that this process involves a dopamine-dependant mechanism in animal (Levesque et al. in Exp Brain Res 182:499-508, 2007; Tremblay et al. in Behav Brain Res 198:231-239, 2009). However, there is no such evidence in human. The aim of the present study was to assess this question in Parkinson's disease (PD), a neurological condition known for its dopamine depletion in the striatum. Eleven PD patients were tested under their usual levodopa medication (ON state), and following a 12-h levodopa withdrawal (OFF state). Patients were compared with 12 healthy participants on a motor learning sequencing task, requiring pressing fourteen buttons in the correct order, which was determined by visual stimuli presented on a computer screen. Learning was assessed from three blocks of 20 trials administered successively. Chunks of movements were intrinsically created by each participant during this learning period. Then, the sequence was shuffled according to the participant's own chunks, generating two new sequences, with either preserved or broken chunks. Those new motor sequences had to be performed separately in a fourth and fifth blocks of 20 trials. Results showed that execution time improved in every group during the learning period (from blocks 1 to 3). However, while motor chunking occurred in healthy controls and ON-PD patients, it did not in OFF-PD patients. In the shuffling conditions, a significant difference was seen between the preserved and the broken chunks conditions for both healthy participants and ON-PD patients, but not for OFF-PD patients. These results suggest that movement chunking during motor sequence learning is a dopamine-dependent process in human.
Collapse
Affiliation(s)
- Pierre-Luc Tremblay
- Department of Psychology, University of Quebec in Montreal (UQAM), Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Desmurget M, Turner RS. Motor sequences and the basal ganglia: kinematics, not habits. J Neurosci 2010; 30:7685-90. [PMID: 20519543 PMCID: PMC2906391 DOI: 10.1523/jneurosci.0163-10.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/10/2010] [Accepted: 04/19/2010] [Indexed: 11/21/2022] Open
Abstract
Despite a lack of definitive evidence, it is frequently proposed that the basal ganglia (BG) motor circuit plays a critical role in the storage and execution of movement sequences (or motor habits). To test this hypothesis directly, we inactivated the sensorimotor territory of the globus pallidus internus (sGPi, the main BG motor output) in two monkeys trained to perform overlearned and random sequences of four out-and-back reaching movements directed to visual targets. Infusion of muscimol (a GABA(A) agonist) into sGPi caused dysmetria and slowing of individual movements, but these impairments were virtually identical for overlearned and random sequences. The fluid predictive execution of learned sequences and the animals' tendency to reproduce the sequence pattern in random trials was preserved following pallidal blockade. These results suggest that the BG motor circuit contributes to motor execution, but not to motor sequencing or the storage of overlearned serial skills.
Collapse
Affiliation(s)
- Michel Desmurget
- Centre for Cognitive Neuroscience, UMR5229, Centre National de la Recherche Scientifique, 69500 Bron, France, and
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California 94143
| | - Robert S. Turner
- Departments of Neurobiology and
- Bioengineering, Center for the Neural Basis of Cognition and Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
23
|
Tremblay PL, Bedard MA, Levesque M, Chebli M, Parent M, Courtemanche R, Blanchet PJ. Motor sequence learning in primate: role of the D2 receptor in movement chunking during consolidation. Behav Brain Res 2008; 198:231-9. [PMID: 19041898 DOI: 10.1016/j.bbr.2008.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/29/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
Abstract
Motor learning disturbances have been shown in diseases involving dopamine insufficiency such as Parkinson's disease and schizophrenic patients under antipsychotic drug treatment. In non-human primates, motor learning deficits have also been observed following systemic administration of raclopride, a selective D2-receptor antagonist. These deficits were characterized by persistent fluctuations of performance from trial to trial, and were described as difficulties in consolidating movements following a learning period. Moreover, it has been suggested that these raclopride-induced fluctuations can result from impediments in grouping separate movements into one fluent sequence. In the present study, we explore the hypothesis that such fluctuations during movement consolidation can be prevented through the use of sumanirole - a highly selective D2 agonist - if administered before raclopride. Two monkeys were trained to execute a well known sequence of movements, which was later recalled under three pharmacological conditions: (1) no drug, (2) raclopride, and (3) sumanirole+raclopride. The same three pharmacological conditions were repeated with the two monkeys, trained this time to learn new sequences of movements. Results show that raclopride has no deleterious effect on the well known sequence, nor the sumanirole+raclopride co-administration. However, results on the new sequence to be learned revealed continuous fluctuations of performances in the raclopride condition, but not in the sumanirole+raclopride condition. These fluctuations occurred concurrently with a difficulty in merging separate movement components, known as a "chunking deficit". D2 receptors seem therefore to be involved in the consolidation of new motor skills, and this might involve the chunking of separate movements into integrated motor sequences.
Collapse
|
24
|
Current world literature. Trauma and rehabilitation. Curr Opin Neurol 2008; 21:762-4. [PMID: 18989123 DOI: 10.1097/wco.0b013e32831cbb85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|