1
|
Cano Porras D, Jacobs JV, Inzelberg R, Bahat Y, Zeilig G, Plotnik M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J Neuroeng Rehabil 2021; 18:75. [PMID: 33957953 PMCID: PMC8101216 DOI: 10.1186/s12984-021-00836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falls commonly occur due to losses of balance associated with vertical body movements (e.g. reacting to uneven ground, street curbs). Research, however, has focused on horizontal perturbations, such as forward and backward translations of the standing surface. This study describes and compares muscle activation patterns following vertical and horizontal perturbations during standing and walking, and investigates the role of vision during standing postural responses. METHODS Fourteen healthy participants (ten males; 27±4 years-old) responded to downward, upward, forward, and backward perturbations while standing and walking in a virtual reality (VR) facility containing a moveable platform with an embedded treadmill; participants were also exposed to visual perturbations in which only the virtual scenery moved. We collected bilateral surface electromyography (EMG) signals from 8 muscles (tibialis anterior, rectus femoris, rectus abdominis, external oblique, gastrocnemius, biceps femoris, paraspinals, deltoids). Parameters included onset latency, duration of activation, and activation magnitude. Standing perturbations comprised dynamic-camera (congruent), static-camera (incongruent) and eyes-closed sensory conditions. ANOVAs were used to compare the effects of perturbation direction and sensory condition across muscles. RESULTS Vertical perturbations induced longer onset latencies and shorter durations of activation with lower activation magnitudes in comparison to horizontal perturbations (p<0.0001). Downward perturbations while standing generated earlier activation of anterior muscles to facilitate flexion (for example, p=0.0005 and p=0.0021 when comparing the early activators, rectus femoris and tibialis anterior, to a late activator, the paraspinals), whereas upward perturbations generated earlier activation of posterior muscles to facilitate extension (for example, p<0.0001 and p=0.0004, when comparing the early activators, biceps femoris and gastrocnemius, to a late activator, the rectus abdominis). Static-camera conditions induced longer onset latencies (p=0.0085 and p<0.0001 compared to eyes-closed and dynamic-camera conditions, respectively), whereas eyes-closed conditions induced longer durations of activation (p=0.0001 and p=0.0008 compared to static-camera and dynamic-camera, respectively) and larger activation magnitudes. During walking, downward perturbations promptly activated contralateral trunk and deltoid muscles (e.g., p=0.0036 for contralateral deltoid versus a late activator, the ipsilateral tibialis anterior), and upward perturbations triggered early activation of trunk flexors (e.g., p=0.0308 for contralateral rectus abdominis versus a late activator, the ipsilateral gastrocnemius). Visual perturbations elicited muscle activation in 67.7% of trials. CONCLUSION Our results demonstrate that vertical (vs. horizontal) perturbations generate unique balance-correcting muscle activations, which were consistent with counteracting vertical body extension induced by downward perturbations and vertical body flexion induced by upward perturbations. Availability of visual input appears to affect response efficiency, and incongruent visual input can adversely affect response triggering. Our findings have clinical implications for the design of robotic exoskeletons (to ensure user safety in dynamic balance environments) and for perturbation-based balance and gait rehabilitation.
Collapse
Affiliation(s)
- Desiderio Cano Porras
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Perception and Action in Complex Environments, Marie Curie International Training Network, European Union's Horizons 2020 Research and Innovation Program, Brussels, Belgium.,Brightlands Institute for Smart Society-BISS, Maastricht University, Maastricht, The Netherlands
| | - Jesse V Jacobs
- Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA
| | - Rivka Inzelberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Gabriel Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Tokur D, Grimmer M, Seyfarth A. Review of balance recovery in response to external perturbations during daily activities. Hum Mov Sci 2020; 69:102546. [DOI: 10.1016/j.humov.2019.102546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/12/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
|
3
|
Naidu A, Graham SA, Brown DA. Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed. J Neuroeng Rehabil 2019; 16:111. [PMID: 31492156 PMCID: PMC6731616 DOI: 10.1186/s12984-019-0577-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Background Past studies have utilized external interfaces like resistive bands and motor-generated pulling systems to increase limb propulsion during walking on a motorized treadmill. However, assessing changes in limb propulsion against increasing resistance demands during self-controlled walking has not been undertaken. Purpose We assessed limb propulsion against increasing fore-aft loading demands by applying graded fore-aft (FA) resistance at the center of mass during walking in a novel, intent-driven treadmill environment that allowed participants to control their walking speeds. We hypothesized that to maintain a target speed against progressively increasing resistance, participants would proportionately increase their limb propulsion without increasing vertical force production, with accompanying increases in trailing limb angle and positive joint work. Methods Seventeen healthy-nonimpaired participants (mean age 52 yrs., SD = 11) walked at a target, self-controlled speed of 1.0 m/s against 10, 15, 20, and 25% (% body weight) FA resistance levels. We primarily assessed linear slope values across FA resistance levels for mean propulsive force and impulse and vertical impulse of the dominant limb using one-sample t-tests. We further assessed changes in trailing and leading limb angles and joint work using one-way ANOVAs. Results Participants maintained their target velocity within an a priori defined acceptable range of 1.0 m/s ± 0.2. They significantly increased propulsion proportional to FA resistance (propulsive force mean slope = 2.45, SD = 0.7, t (16) =14.44, p < 0.01; and propulsive impulse mean slope = 0.7, SD = 0.25, t (16) = 11.84, p < 0.01), but had no changes in vertical impulse (mean slope = − 0.04, SD =0.17, p > 0.05) across FA resistance levels. Mean trailing limb angle increased from 24.3° at 10% resistance to 27.4° at 25% (p < 0.05); leading limb angle decreased from − 18.4° to − 12.6° (p < 0.05). We also observed increases in total positive limb work (F (1.7, 26) = 16.88, p ≤ 0.001, η2 = 0.5), primarily attributed to the hip and ankle joints. Conclusions FA resistance applied during self-driven walking resulted in increased propulsive-force output of healthy-nonimpaired individuals with accompanying biomechanical changes that facilitated greater limb propulsion. Future rehabilitation interventions for neurological populations may be able to utilize this principle to design task-specific interventions like progressive strength training and workload manipulation during aerobic training for improving walking function. Electronic supplementary material The online version of this article (10.1186/s12984-019-0577-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Avantika Naidu
- Program in Rehabilitation Sciences, Departments of Physical & Occupational Therapy, School of Health Professions, University of Alabama at Birmingham, 1716 9th Avenue South, Birmingham, AL, 35233, USA. .,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Avenue, Boston, MA, 02129, 1575 Cambridge St, Cambridge, MA, 02138, USA.
| | - Sarah A Graham
- University of California San Diego, School of Health Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0012, USA
| | - David A Brown
- The University of Texas Medical Branch, School of Health Professions, 301 University Blvd, Galveston, TX, 77555-0128, USA
| |
Collapse
|
4
|
Ritzmann R, Freyler K, Helm M, Holubarsch J, Gollhofer A. Stumbling Reactions in Partial Gravity - Neuromechanics of Compensatory Postural Responses and Inter-Limb Coordination During Perturbation of Human Stance. Front Physiol 2019; 10:576. [PMID: 31164834 PMCID: PMC6536696 DOI: 10.3389/fphys.2019.00576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Spontaneous changes in gravity play a significant role in interplanetary space missions. To preserve the astronauts’ capability to execute mission-critical tasks and reduce the risk of injury in transit and on planetary surfaces, a comprehensive understanding of the neuromuscular control of postural responses after balance deterioration in hypo- or hyper-gravity conditions is essential. Therefore, this study aimed to evaluate the effect of acute gravitational variation on postural adjustments in response to perturbations. Gravitational changes were induced using parabolic flight. Postural set was manipulated by randomly providing unilateral left, bilateral or split perturbations which require balance corrections to restore postural stability. In six subjects, postural reactions were recorded after anterior and posterior surface perturbations for progressively increased gravitational conditions spanning from 0.25 to 1.75 g. Ankle and knee joint kinematics and electromyograms (EMG) of eight leg muscles were recorded prior (PRE) and after perturbation onset. Muscle activation onset latencies and amplitudes in the short-, medium-, and long-latency responses (SLR, MLR, LLR) were assessed. Results demonstrate an increased muscle activity (p < 0.05) and co-contraction in the lower extremities (p < 0.05) prior to perturbation in hypo- and hyper-gravity. After perturbation, reduced muscle onset latencies (p < 0.05) and increased muscle activations in the MLR and LLR (p < 0.05), concomitant with an increased co-contraction in the SLR, were manifested with a progressive rise in gravity. Ankle and knee joint deflections remained unaffected, whereas angular velocities increased (p < 0.05) with increasing gravitation. Effects were more pronounced in bi- compared to unilateral or split perturbations (p < 0.05). Neuro-mechanical adaptations to gravity were more distinct and muscle onset latencies were shorter in the displaced compared to the non-displaced leg. In conclusion, the timing and magnitude of postural reflexes involved in stabilization of bipedal stance are gravity-dependent. The approximately linear relationship between gravity and impulse-directed EMG amplitudes or muscle onset latencies after perturbation indicates that the central nervous system correctly predicts the level of gravity. Moreover, it accurately governs contractions in the antigravity musculature to counterbalance the gravitational pull and to regain upright posture after its disturbance. Importantly, unilateral perturbations evoked fast reflex responses in the synergistic muscles of the non-displaced contralateral leg suggesting a synchronized inter-limb coordination mediated by spinal circuitries.
Collapse
Affiliation(s)
- Ramona Ritzmann
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Praxisklinik Rennbahn AG, Muttenz, Switzerland
| | - Kathrin Freyler
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Michael Helm
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Janek Holubarsch
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Gregor RJ, Maas H, Bulgakova MA, Oliver A, English AW, Prilutsky BI. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles. J Neurophysiol 2017; 119:1166-1185. [PMID: 29187556 DOI: 10.1152/jn.00661.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Collapse
Affiliation(s)
- Robert J Gregor
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | | | - Alanna Oliver
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine , Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
6
|
Stevenson AJT, Geertsen SS, Sinkjær T, Nielsen JB, Mrachacz-Kersting N. Interlimb communication following unexpected changes in treadmill velocity during human walking. J Neurophysiol 2015; 113:3151-8. [PMID: 25761957 DOI: 10.1152/jn.00794.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/06/2015] [Indexed: 11/22/2022] Open
Abstract
Interlimb reflexes play an important role in human walking, particularly when dynamic stability is threatened by external perturbations or changes in the walking surface. Interlimb reflexes have recently been demonstrated in the contralateral biceps femoris (cBF) following knee joint rotations applied to the ipsilateral leg (iKnee) during the late stance phase of human gait (Stevenson AJ, Geertsen SS, Andersen JB, Sinkjær T, Nielsen JB, Mrachacz-Kersting N. J Physiol 591: 4921-4935, 2013). This interlimb reflex likely acts to slow the forward progression of the body to maintain dynamic stability following the perturbations. We examined this hypothesis by unexpectedly increasing or decreasing the velocity of the treadmill before (-100 and -50 ms), at the same time, or following (+50 ms) the onset of iKnee perturbations in 12 healthy volunteers. We quantified the cBF reflex amplitude when the iKnee perturbation was delivered alone, the treadmill velocity change was delivered alone, or when the two perturbations were combined. When the treadmill velocity was suddenly increased (or decreased) 100 or 50 ms before the iKnee perturbations, the combined cBF reflex was significantly larger (or smaller) than the algebraic sum of the two perturbations delivered separately. Furthermore, unexpected changes in treadmill velocity increased the incidence of reflexes in other contralateral leg muscles when the iKnee perturbations were elicited alone. These results suggest a context dependency for interlimb reflexes. They also show that the cBF reflex changed in a predictable manner to slow the forward progression of the body and maintaining dynamic stability during walking, thus signifying a functional role for interlimb reflexes.
Collapse
Affiliation(s)
- Andrew J T Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers, Aalborg, Denmark
| | - Svend S Geertsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| | - Thomas Sinkjær
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers, Aalborg, Denmark; Danish National Research Foundation, Copenhagen, Denmark
| | - Jens B Nielsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers, Aalborg, Denmark;
| |
Collapse
|
7
|
Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol 2014; 112:374-83. [PMID: 24790168 PMCID: PMC4064420 DOI: 10.1152/jn.00138.2014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/27/2014] [Indexed: 11/22/2022] Open
Abstract
Stability is an important concern during human walking and can limit mobility in clinical populations. Mediolateral stability can be efficiently controlled through appropriate foot placement, although the underlying neuromechanical strategy is unclear. We hypothesized that humans control mediolateral foot placement through swing leg muscle activity, basing this control on the mechanical state of the contralateral stance leg. Participants walked under Unperturbed and Perturbed conditions, in which foot placement was intermittently perturbed by moving the right leg medially or laterally during the swing phase (by ∼50-100 mm). We quantified mediolateral foot placement, electromyographic activity of frontal-plane hip muscles, and stance leg mechanical state. During Unperturbed walking, greater swing-phase gluteus medius (GM) activity was associated with more lateral foot placement. Increases in GM activity were most strongly predicted by increased mediolateral displacement between the center of mass (CoM) and the contralateral stance foot. The Perturbed walking results indicated a causal relationship between stance leg mechanics and swing-phase GM activity. Perturbations that reduced the mediolateral CoM displacement from the stance foot caused reductions in swing-phase GM activity and more medial foot placement. Conversely, increases in mediolateral CoM displacement caused increased swing-phase GM activity and more lateral foot placement. Under both Unperturbed and Perturbed conditions, humans controlled their mediolateral foot placement by modulating swing-phase muscle activity in response to the mechanical state of the contralateral leg. This strategy may be disrupted in clinical populations with a reduced ability to modulate muscle activity or sense their body's mechanical state.
Collapse
Affiliation(s)
- Bradford L Rankin
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and
| | - Stephanie K Buffo
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and
| | - Jesse C Dean
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
8
|
Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol 2014. [PMID: 24790168 DOI: 10.1152/jn.001 38.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stability is an important concern during human walking and can limit mobility in clinical populations. Mediolateral stability can be efficiently controlled through appropriate foot placement, although the underlying neuromechanical strategy is unclear. We hypothesized that humans control mediolateral foot placement through swing leg muscle activity, basing this control on the mechanical state of the contralateral stance leg. Participants walked under Unperturbed and Perturbed conditions, in which foot placement was intermittently perturbed by moving the right leg medially or laterally during the swing phase (by ∼50-100 mm). We quantified mediolateral foot placement, electromyographic activity of frontal-plane hip muscles, and stance leg mechanical state. During Unperturbed walking, greater swing-phase gluteus medius (GM) activity was associated with more lateral foot placement. Increases in GM activity were most strongly predicted by increased mediolateral displacement between the center of mass (CoM) and the contralateral stance foot. The Perturbed walking results indicated a causal relationship between stance leg mechanics and swing-phase GM activity. Perturbations that reduced the mediolateral CoM displacement from the stance foot caused reductions in swing-phase GM activity and more medial foot placement. Conversely, increases in mediolateral CoM displacement caused increased swing-phase GM activity and more lateral foot placement. Under both Unperturbed and Perturbed conditions, humans controlled their mediolateral foot placement by modulating swing-phase muscle activity in response to the mechanical state of the contralateral leg. This strategy may be disrupted in clinical populations with a reduced ability to modulate muscle activity or sense their body's mechanical state.
Collapse
Affiliation(s)
- Bradford L Rankin
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and
| | - Stephanie K Buffo
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and
| | - Jesse C Dean
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
9
|
Coscia M, Cheung VCK, Tropea P, Koenig A, Monaco V, Bennis C, Micera S, Bonato P. The effect of arm weight support on upper limb muscle synergies during reaching movements. J Neuroeng Rehabil 2014; 11:22. [PMID: 24594139 PMCID: PMC3996016 DOI: 10.1186/1743-0003-11-22] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS.
Collapse
Affiliation(s)
- Martina Coscia
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), BM 3210 Station 17, Lausanne CH-1015, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Murray M, Hardee A, Goldberg RL, Lewek MD. Loading and knee flexion after stroke: Less does not equal more. J Electromyogr Kinesiol 2014; 24:172-7. [DOI: 10.1016/j.jelekin.2013.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/22/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022] Open
|
11
|
Stevenson AJT, Geertsen SS, Andersen JB, Sinkjær T, Nielsen JB, Mrachacz-Kersting N. Interlimb communication to the knee flexors during walking in humans. J Physiol 2013; 591:4921-35. [PMID: 23918771 DOI: 10.1113/jphysiol.2013.257949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A strong coordination between the two legs is important for maintaining a symmetric gait pattern and adapting to changes in the external environment. In humans as well as animals, receptors arising from the quadriceps muscle group influence the activation of ipsilateral muscles. Moreover, strong contralateral spinal connections arising from quadriceps and hamstring afferents have been shown in animal models. Therefore, the aims of the present study were to assess if such connections also exist in humans and to elucidate on the possible pathways. Contralateral reflex responses were investigated in the right leg following unexpected unilateral knee joint rotations during locomotion in either the flexion or extension direction. Strong reflex responses in the contralateral biceps femoris (cBF) muscle with a mean onset latency of 76 ± 6 ms were evoked only from ipsilateral knee extension joint rotations in the late stance phase. To investigate the contribution of a transcortical pathway to this response, transcranial magnetic and electrical stimulation were applied. Motor evoked potentials elicited by transcranial magnetic stimulation, but not transcranial electrical stimulation, were facilitated when elicited at the time of the cBF response to a greater extent than the algebraic sum of the cBF reflex and motor evoked potentials elicited separately, indicating that a transcortical pathway probably contributes to this interlimb reflex. The cBF reflex response may therefore be integrated with other sensory input, allowing for responses that are more flexible. We hypothesize that the cBF reflex response may be a preparation of the contralateral leg for early load bearing, slowing the forward progression of the body to maintain dynamic equilibrium during walking.
Collapse
|
12
|
Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci 2013; 7:48. [PMID: 23653605 PMCID: PMC3641709 DOI: 10.3389/fncom.2013.00048] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/08/2013] [Indexed: 01/08/2023] Open
Abstract
Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations during standing and walking, as well as unperturbed walking at two speeds. We show that most muscle synergies used in perturbations responses during standing were also used in perturbation responses during walking, suggesting common neural mechanisms for reactive balance across different contexts. We also show that most muscle synergies using in reactive balance were also used during unperturbed walking, suggesting that neural circuits mediating locomotion and reactive balance recruit a common set of muscle synergies to achieve task-level goals. Differences in muscle synergies across conditions reflected differences in the biomechanical demands of the tasks. For example, muscle synergies specific to walking perturbations may reflect biomechanical challenges associated with single limb stance, and muscle synergies used during sagittal balance recovery in standing but not walking were consistent with maintaining the different desired center of mass motions in standing vs. walking. Thus, muscle synergies specifying spatial organization of muscle activation patterns may define a repertoire of biomechanical subtasks available to different neural circuits governing walking and reactive balance and may be recruited based on task-level goals. Muscle synergy analysis may aid in dissociating deficits in spatial vs. temporal organization of muscle activity in motor deficits. Muscle synergy analysis may also provide a more generalizable assessment of motor function by identifying whether common modular mechanisms are impaired across the performance of multiple motor tasks.
Collapse
Affiliation(s)
- Stacie A Chvatal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University Atlanta, GA, USA
| | | |
Collapse
|
13
|
Abstract
This chapter addresses the important and undertreated problem of balance disorders. The chapter has a simplified summary of the physiology of balance problems in order to set the scene. The issue of assessment is next addressed with discussion of important tests including the Berg Balance Scale and the Get Up and Go Test, and others. Posturography is discussed as well as assessment of the gravitional vertical. The assessment of vestibular function is of key importance and discussed in some detail. The focus of the chapter is on balance rehabilitation. Re-training of postural alignment and of sensory strategies are key but adaptation of the environment and re-training of cognitive strategies are also helpful in individual cases. Vestibular exercises can also be used. The chapter then critically analyses the efficacy of these treatments in specific balance disorders such as in stroke, Parkinson disease, polyneuropathies, multiple sclerosis, and vestibular disorders. Overall, there is a growing body of evidence that balance rehabilitation improves symptoms, function, and quality of life for those troubled by these disabling problems.
Collapse
|
14
|
Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci 2012; 32:12237-50. [PMID: 22933805 DOI: 10.1523/jneurosci.6344-11.2012] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However, it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications before perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs.
Collapse
|
15
|
Mukherjee M, Siu KC, Katsavelis D, Fayad P, Stergiou N. The influence of visual perception of self-motion on locomotor adaptation to unilateral limb loading. J Mot Behav 2011; 43:101-11. [PMID: 21347952 DOI: 10.1080/00222895.2010.548420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Self-perception of motion through visual stimulation may be important for adapting to locomotor conditions. Unilateral limb loading is a locomotor condition that can improve stability and reduce abnormal limb movement. In the present study, the authors investigated the effect of self-perception of motion through virtual reality (VR) on adaptation to unilateral limb loading. Healthy young adults, assigned to either a VR or a non-VR group, walked on a treadmill in the following 3 locomotor task periods--no load, loaded, and load removed. Subjects in the VR group viewed a virtual corridor during treadmill walking. Exposure to VR reduced cadence and muscle activity. During the loaded period, the swing time of the unloaded limb showed a larger increase in the VR group. When the load was removed, the swing time of the previously loaded limb and the stance time of the previously unloaded limb showed larger decrease and the swing time of the previously unloaded limb showed a smaller increase in the VR group. Lack of visual cues may cause the adoption of cautious strategies (higher muscle activity, shorter and more frequent steps, changes in the swing and stance times) when faced with situations that require adaptations. VR technology, providing such perceptual cues, has an important role in enhancing locomotor adaptation.
Collapse
Affiliation(s)
- Mukul Mukherjee
- Nebraska Biomechanics Core Facility, University of Nebraska, Omaha, NE 68182-0216, USA
| | | | | | | | | |
Collapse
|
16
|
Schmid M, Bottaro A, Sozzi S, Schieppati M. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions. Hum Mov Sci 2011; 30:262-78. [PMID: 21440318 DOI: 10.1016/j.humov.2011.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/18/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
Abstract
We investigated the adaptation of balancing behavior during a continuous, predictable perturbation of stance consisting of 3-min backward and forward horizontal sinusoidal oscillations of the support base. Two visual conditions (eyes-open, EO; eyes-closed, EC) and two oscillation frequencies (LF, 0.2 Hz; HF, 0.6 Hz) were used. Center of Mass (CoM) and Center of Pressure (CoP) oscillations and EMG of Soleus (Sol) and Tibialis Anterior (TA) were recorded. The time course of each variable was estimated through an exponential model. An adaptation index allowed comparison of the degree of adaptation of different variables. Muscle activity pattern was initially prominent under the more challenging conditions (HF, EC and EO; LF, EC) and diminished progressively to reach a steady state. At HF, the behavior of CoM and CoP was almost invariant. The time-constant of EMG adaptation was shorter for TA than for Sol. With EC, the adaptation index showed a larger decay in the TA than Sol activity at the end of the balancing trial, pointing to a different role of the two muscles in the adaptation process. At LF, CoM and CoP oscillations increased during the balancing trial to match the platform translations. This occurred regardless of the different EMG patterns under EO and EC. Contrary to CoM and CoP, the adaptation of the muscle activities had a similar time-course at both HF and LF, in spite of the two frequencies implying a different number of oscillation cycles. During adaptation, under critical balancing conditions (HF), postural muscle activity is tuned to that sufficient for keeping CoM within narrow limits. On the contrary, at LF, when vision permits, a similar decreasing pattern of muscle activity parallels a progressive increase in CoM oscillation amplitude, and the adaptive balancing behavior shifts from the initially reactive behavior to one of passive riding the platform. Adaptive balance control would rely on on-line computation of risk of falling and sensory inflow, while minimizing balance challenge and muscle effort. The results from this study contribute to the understanding of plasticity of the balance control mechanisms under posture-challenging conditions.
Collapse
Affiliation(s)
- Micaela Schmid
- Human Movement Laboratory (CSAM), Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Italy.
| | | | | | | |
Collapse
|
17
|
Rosker J, Markovic G, Sarabon N. Effects of vertical center of mass redistribution on body sway parameters during quiet standing. Gait Posture 2011; 33:452-6. [PMID: 21251831 DOI: 10.1016/j.gaitpost.2010.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 11/28/2010] [Accepted: 12/24/2010] [Indexed: 02/02/2023]
Abstract
Body sway is usually described by center of foot pressure (COP)-derived parameters. Their sensitivity to vertical center of mass (COM) redistribution below its natural position has not yet been examined during quiet stance tasks. We examined the effects of both lowering and raising the COM on the following body sway parameters: cumulative, medial-lateral and anterior-posterior COP average velocity, amplitude and frequency. For this purpose, 13 healthy male subjects performed a quiet stance balance task with feet positioned in parallel stance (PS) at hip width apart and with hands holding a stick across the rear part of the shoulders. Each subject carried out five different modifications of the PS task in a randomized order: no additional load, an additional load of 10 kg and 30 kg suspended from the waist at mid-lower leg height, and an additional load of 10 kg and 30 kg across the rear of the shoulders. The studied body sway parameters proved to be sensitive to these manipulations. Specifically, lowering and raising the COM was mirrored in a systematic decrease/increase of the velocity, amplitude, and frequency parameters, indicating a larger effect in the anterior-posterior direction. These results suggest that the elevation of the body COM from a lower to a higher position systematically decreases the postural control during quiet standing, and consequently, increases the intensity of the balancing task. Thus, this type of physical manipulation could provide the basis for a simple progression in functional resistance training for persons with compromised balance.
Collapse
Affiliation(s)
- Jernej Rosker
- Prevention and Rehabilitation Sports Centre, Smarjeske Toplice, Slovenia
| | | | | |
Collapse
|
18
|
Stubbs PW, Nielsen JF, Sinkjær T, Mrachacz-Kersting N. Phase Modulation of the Short-Latency Crossed Spinal Response in the Human Soleus Muscle. J Neurophysiol 2011; 105:503-11. [DOI: 10.1152/jn.00786.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-latency spinally mediated interlimb reflex pathways were recently reported between the left and right soleus muscles in the human lower-limb during sitting. The aim of the current study was to establish if these pathways were observed during a functional motor task such as human gait and modulated by the gait cycle phase and/or electrical stimulation intensity. The second aim was to elucidate on the afferents involved. Two interventions were investigated. First was ipsilateral tibial nerve (iTN) stimulation at motor threshold (MT), 35% of the maximal peak-to-peak M-wave (M-Max) and 85% M-Max (85M-Max) with stimuli applied at 60×, 70×, 80×, 90×, and 100% of the gait cycle of the ipsilateral leg. Second was ipsilateral sural nerve (SuN) and medial plantar nerve (MpN) stimulation at 1, 2, and 3 perceptual threshold at 90% of the gait cycle. The root mean squared (RMS) of the contralateral soleus (cSOL) responses were analyzed in a time window, 40–55 ms (or 45–60 ms for subjects >50 y/o) following iTN stimulation. The most consistent responses occurred at 90 and 100% of the gait cycle at higher stimulation intensities of the iTN. Significantly inhibitory responses ( P = 0.006) were reported at 60 versus 80% ( P = 0.03), 90% ( P = 0.006), and 100% ( P = 0.002) and 70 versus 90% ( P = 0.02) and 100% ( P = 0.009) of the gait cycle at 85M-Max. The responses became more inhibitory with increasing stimulation intensities at 80% ( P = 0.01), 90% ( P = 0.001), and 100% ( P = 0.004) of the gait cycle. Stimulation of the MpN and SuN at all stimulation intensities demonstrated no short-latency responses. Therefore, it is unlikely that afferents within these nerves contribute to the response. This is the first study to show short-latency spinally mediated responses in the cSOL following iTN stimulation, during walking. It provides evidence for a new spinal pathway contributing to motor control and demonstrates that the response likely has functional relevance.
Collapse
Affiliation(s)
- Peter W. Stubbs
- Hammel Neurorehabilitation Hospital and Research Center, Aarhus University, Hammel
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Aalborg; and
| | - Jørgen F. Nielsen
- Hammel Neurorehabilitation Hospital and Research Center, Aarhus University, Hammel
| | - Thomas Sinkjær
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Aalborg; and
- Danish National Research Foundation, Copenhagen K, Denmark
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Aalborg; and
| |
Collapse
|
19
|
Rogers MW, Hilliard MJ, Martinez KM, Zhang Y, Simuni T, Mille ML. Perturbations of ground support alter posture and locomotion coupling during step initiation in Parkinson's disease. Exp Brain Res 2010; 208:557-67. [PMID: 21153725 DOI: 10.1007/s00221-010-2504-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/20/2010] [Indexed: 01/02/2023]
Abstract
During the initiation of stepping, anticipatory postural adjustments (APAs) for lateral weight transfer and propulsion normally precede the onset of locomotion. In Parkinson's disease (PD), impaired step initiation typically involves altered APA ground force production with delayed step onset and deficits in stepping performance. If, as in stance and gait, sensory information about lower limb load is important for the control of stepping, then perturbations influencing loading conditions could affect the step initiation process. This study investigated the influence of changes in lower limb loading during step initiation in patients with PD and healthy control subjects. Participants performed rapid self-triggered step initiation with the impending single stance limb positioned over a pneumatically actuated platform. In perturbation trials, the stance limb ground support surface was either moved vertically downward (DROP) or upward (ELEVATE) by 1.5 cm shortly after the onset of the APA phase. Overall, PD patients demonstrated a longer APA duration, longer time to first step onset, and slower step speed than controls. In both groups, the DROP perturbation reinforced the intended APA kinetic changes for lateral weight transfer and resulted in a significant reduction in APA duration, increase in peak amplitude, and earlier time to first step onset compared with other conditions. During ELEVATE trials that opposed the intended weight transfer forces both groups rapidly adapted their stepping to preserve standing stability by decreasing step length and duration, and increasing step height and foot placement laterally. The findings suggested that sensory information associated with limb load and/or foot pressure modulates the spatial and temporal parameters of posture and locomotion components of step initiation in interaction with a centrally generated feedforward mode of neural control. Moreover, impaired step initiation in PD may at least acutely be enhanced by augmenting the coupling between posture and locomotion.
Collapse
Affiliation(s)
- Mark W Rogers
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
20
|
af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 2010; 103:2747-56. [PMID: 20237313 DOI: 10.1152/jn.00547.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Walking requires a constant adaptation of locomotor output from sensory afferent feedback mechanisms to ensure efficient and stable gait. We investigated the nature of the sensory afferent feedback contribution to the soleus motoneuronal drive and to the corrective stretch reflex by manipulating body load and ankle joint angle. The volunteers walked on a treadmill ( approximately 3.6 km/h) connected to a body weight support (BWS) system. To manipulate the load sensitive afferents the level of BWS was switched between 5 and 30% of body weight. The effect of transient changes in BWS on the soleus stretch reflex was measured by presenting dorsiflexion perturbations ( approximately 5 degrees, 360-400 degrees/s) in mid and late stances. Short (SLRs) and medium latency reflexes (MLRs) were quantified in a 15 ms analysis window. The MLR decreased with decreased loading (P = 0.045), but no significant difference was observed for the SLR (P = 0.13). Similarly, the effect of the BWS was measured on the unload response, i.e., the depression in soleus activity following a plantar-flexion perturbation ( approximately 5.6 degrees, 203-247 degrees/s), quantified over a 50 ms analysis window. The unload response decreased with decreased load (P > 0.001), but was not significantly affected (P = 0.45) by tizanidine induced depression of the MLR (P = 0.039, n = 6). Since tizanidine is believed to depress the group II afferent pathway, these results are consistent with the idea that force-related afferent feedback contributes both to the background locomotor activity and to the medium latency stretch reflex. In contrast, length-related afferent feedback may contribute to only the medium latency stretch reflex.
Collapse
Affiliation(s)
- Richard af Klint
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
21
|
af Klint R, Cronin NJ, Ishikawa M, Sinkjaer T, Grey MJ. Afferent Contribution to Locomotor Muscle Activity During Unconstrained Overground Human Walking: An Analysis of Triceps Surae Muscle Fascicles. J Neurophysiol 2010; 103:1262-74. [DOI: 10.1152/jn.00852.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plantar flexor series elasticity can be used to dissociate muscle–fascicle and muscle–tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to ±3° in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.
Collapse
Affiliation(s)
- R. af Klint
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
| | - N. J. Cronin
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - M. Ishikawa
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
- Osaka University of Health and Sport Sciences, Osaka, Japan
| | - T. Sinkjaer
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Danish National Research Foundation
| | - M. J. Grey
- Department of Exercise and Sport Sciences and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Stubbs PW, Mrachacz-Kersting N. Short-latency crossed inhibitory responses in the human soleus muscle. J Neurophysiol 2009; 102:3596-605. [PMID: 19812287 DOI: 10.1152/jn.00667.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Even though interlimb coordination is critical in bipedal locomotion, the role of muscle afferent mediated feedback is unknown. The aim of this study was to establish if ipsilateral muscle generated afferent feedback can influence contralateral muscle activation patterns in the human lower limb and to elucidate the mechanisms involved. The effect of ipsilateral tibial nerve stimulation on contralateral soleus (cSOL) responses were quantified. Three interventions were investigated, 1) electrical stimulation applied to the tibial nerve at stimulation intensities from 0 to 100% of maximal M-wave (M-max) with the cSOL contracted from 5 to 15% of maximal voluntary contraction (MVC) and 15 to 30% MVC, 2) ispsilateral tibial nerve stimulation at 75% M-max prior to, during, and following the application of ischemia to the ipsilateral thigh. 3) Electrical stimulation applied to the ipsilateral sural (SuN) and medial plantar nerves at stimulation intensities from 1 to 3 times perceptual threshold. A short-latency depression in the cSOL electromyogram (EMG; onset: 37-41 ms) was observed following ipsilateral tibial nerve stimulation. The magnitude of this depression increased (P = 0.0005 and P = 0.000001) with increasing stimulus intensities. Ischemia delayed the time of the minimum of the cSOL depression (P = 0.04). SuN and medial plantar nerve stimulation evoked a longer latency depression [average; 91.2 ms (SuN); 142 ms (medial plantar nerve)] and therefore do not contribute to the response. This is the first study to demonstrate a short-latency depression in the cSOL following ipsilateral tibial nerve stimulation. Due to its short latency, the response is spinally mediated. The involvement of crossed spinal interneurons receiving input from low-threshold muscle afferents is discussed.
Collapse
Affiliation(s)
- Peter W Stubbs
- Centre for Sensory-Motor Interaction, Department of Health Science and Technology, The University of Aalborg, Aalborg, Denmark
| | | |
Collapse
|
23
|
af Klint R, Nielsen JB, Sinkjaer T, Grey MJ. Sudden Drop in Ground Support Produces Force-Related Unload Response in Human Overground Walking. J Neurophysiol 2009; 101:1705-12. [DOI: 10.1152/jn.91175.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans maneuver easily over uneven terrain. To maintain smooth and efficient gait the motor system needs to adapt the locomotor output to the walking environment. In the present study we investigate the role of sensory feedback in adjusting the soleus muscle activity during overground walking in 19 healthy volunteers. Subjects walked unrestrained over a hydraulically actuated platform. On random trials the platform was accelerated downward at 0.8 g, unloading the plantar flexor muscles in midstance or late stance. The drop of the platform resulted in a significant depression of the soleus muscle activity of −17.9% (SD 2) and −21.4% (SD 2), with an onset latency of 49 ms (SD 1) and 45 ms (SD 1) in midstance and late stance, respectively. Input to the vestibular apparatus (i.e., the head acceleration) occurred at a latency 10.0 ms (SD 2.4) following the drop and ankle dorsiflexion velocity was decreased starting 22 ms (SD 15) after the drop. To investigate the role of length- and velocity-sensitive afferents on the depression in soleus muscle activity, the ankle rotation was arrested by using an ankle foot orthotic as the platform was dropped. Preventing the ankle movement did not significantly change the soleus depression in late stance [−18.2% (SD 15)], whereas the depression in midstance was removed [+4.9% (SD 13)]. It is concluded that force feedback from ankle extensors increases the locomotor output through positive feedback in late stance. In midstance the effect of force feedback was not observed, suggesting that spindle afferents may have a more significant effect on the output during this phase of the step cycle.
Collapse
|