1
|
Geljic M, Mitchell M, Stevens KA, Holbrook H, Darke H, Goodbourn P, Damicoucas C, Asghari-Jafarabadi M, Sundram S, Carter O. Visual integration deficits associated with psychosis are independent of diagnosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:58. [PMID: 40204751 PMCID: PMC11982286 DOI: 10.1038/s41537-025-00606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
Evidence of altered visual processing is well-established in schizophrenia. Visual integration deficits have been highlighted as a potential diagnostic biomarker to distinguish schizophrenia from other psychiatric disorders. Motivated by the current lack of cross-diagnostic assessments of visual integration performance, the current study used the Jittered Orientation Visual Integration (JOVI) task to assess contour integration performance in 85 psychiatric inpatients split into "schizophrenia spectrum" (n = 40) and "other psychiatric disorders" (n = 45), and healthy controls (n = 43). The study also examined attentional and working memory ability using the Digit Span Task. JOVI accuracy scores were found to be significantly impaired relative to healthy controls for both the schizophrenia (p < 0.001) and other psychiatric (p < 0001) patient groups. In line with a transdiagnostic deficit, no differences in JOVI accuracy were seen between the patient groups (p = 0.97) with reduced JOVI accuracy correlating with worsening psychosis regardless of diagnosis (r = -0.32, p < 0.05). Schizophrenia spectrum patients also showed reduced Digit Span Forward (p < 0.001) and Backward scores (p < 0.001). The other psychiatric (p = 0.024) group were similarly found to be impaired in the Digit Span Backward relative to healthy controls, however no differences were seen between the patient groups. The findings indicate that contour integration deficits are not specific to schizophrenia spectrum disorders, and instead the neurobiological underpinnings of visual integration impairment may share commonality with psychosis more generally. The findings are also consistent with cognitive factors playing a potential role in JOVI performance and highlight the difficulty in teasing apart altered perceptual and cognitive function in psychiatric patient groups.
Collapse
Affiliation(s)
- Mia Geljic
- Department of Psychiatry, School of Clinical Sciences, Monash University. Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Matthew Mitchell
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Keri-Anne Stevens
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Henry Holbrook
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Hayley Darke
- Department of Psychiatry, School of Clinical Sciences, Monash University. Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Patrick Goodbourn
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christina Damicoucas
- Department of Psychiatry, School of Clinical Sciences, Monash University. Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Mohammad Asghari-Jafarabadi
- Department of Psychiatry, School of Clinical Sciences, Monash University. Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University. Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Mental Health Program, Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Olivia Carter
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Kamath RS, Weldon KB, Moser HR, Montoya SA, Abdullahi KS, Burton PC, Sponheim SR, Olman CA, Schallmo MP. Impaired Contour Object Perception in Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00378-1. [PMID: 39694464 DOI: 10.1016/j.bpsc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology rather than a specific diagnosis such as schizophrenia. METHODS Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We also measured responses during an analogous task using ultra-high field (7T) functional magnetic resonance imaging (fMRI). RESULTS We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP) (n = 63) compared with healthy control participants (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared with participants with bipolar disorder (n = 18). fMRI showed higher responses in the lateral occipital cortex of PwPP than in control participants. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. CONCLUSIONS Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction and may be linked to impaired functional connectivity across visual regions.
Collapse
Affiliation(s)
- Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Samantha A Montoya
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kamar S Abdullahi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Philip C Burton
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota; Office of the Associate Dean for Research, University of Minnesota, Minneapolis, Minnesota
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota; Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Cheryl A Olman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota; Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Kamath RS, Weldon KB, Moser HR, Montoya S, Abdullahi KS, Burton PC, Sponheim SR, Olman CA, Schallmo MP. Impaired contour object perception in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.02.24309795. [PMID: 39006442 PMCID: PMC11245054 DOI: 10.1101/2024.07.02.24309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology, rather than a specific diagnosis such as schizophrenia. Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP, n = 62) compared to healthy controls (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared to participants with bipolar disorder (n = 18). We also measured responses during an analogous task using ultra-high field (7T) functional MRI and found higher responses in the lateral occipital cortex of PwPP compared to controls. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction, and may be linked to impaired functional connectivity across visual regions.
Collapse
Affiliation(s)
- Rohit S. Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B. Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha Montoya
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kamar S. Abdullahi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Philip C. Burton
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Office of the Associate Dean for Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Cheryl A. Olman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Jayakumar S, Ahmed AO, Butler PD, Silverstein SM, Thompson JL, Seitz AR. Performance on a contour integration task as a function of contour shape in schizophrenia and controls. Vision Res 2024; 219:108394. [PMID: 38579407 DOI: 10.1016/j.visres.2024.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Contour Integration (CI) is the ability to integrate elemental features into objects and is a basic visual process essential for object perception and recognition, and for functioning in visual environments. It is now well documented that people with schizophrenia (SZ), in addition to having cognitive impairments, also have several visual perceptual deficits, including in CI. Here, we retrospectively characterize the performance of both SZ and neurotypical individuals (NT) on a series of contour shapes, made up of Gabor elements, that varied in terms of closure and curvature. Participants in both groups performed a CI training task that included 7 different families of shapes (Lines, Ellipse, Blobs, Squiggles, Spiral, Circle and Letters) for up to 40 sessions. Two parameters were manipulated in the training task: Orientation Jitter (OJ, i.e., orientation deviations of individual Gabor elements from ideal for each shape) and Inducer Number (IN, i.e., number of Gabor elements defining the shape). Results show that both OJ and IN thresholds significantly differed between the groups, with higher (OJ) and lower (IN) thresholds observed in the controls. Furthermore, we found significant effects as a function of the contour shapes, with differences between groups emerging with contours that were considered more complex, e.g., due to having a higher degree of curvature (Blobs, Spiral, Letters). These data can inform future work that aims to characterize visual integration impairments in schizophrenia.
Collapse
Affiliation(s)
- Samyukta Jayakumar
- Department of Psychology, University of California, Riverside, United States.
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medicine, United States.
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, United States.
| | | | | | | |
Collapse
|
5
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. Transl Psychiatry 2024; 14:201. [PMID: 38714650 PMCID: PMC11076514 DOI: 10.1038/s41398-024-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.13.23285774. [PMID: 36896020 PMCID: PMC9996680 DOI: 10.1101/2023.02.13.23285774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception is observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W. Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Andrea N. Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
- Veterans Affairs Medical Center, Minneapolis, MN
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
8
|
Kaliuzhna M, Stein T, Sterzer P, Seymour KJ. Examining motion speed processing in schizophrenia using the flash lag illusion. Schizophr Res Cogn 2020; 19:100165. [PMID: 31832345 PMCID: PMC6890935 DOI: 10.1016/j.scog.2019.100165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 01/29/2023]
Abstract
Research on visual perception in schizophrenia suggests a deficit in motion processing. Specifically, difficulties with discriminating motion speed are commonly reported. However, speed discrimination tasks typically require participants to make judgments about the difference between two stimuli in a two-interval forced choice (2IFC) task. Such tasks not only tap into speed processing mechanisms, but also rely on higher executive functioning including working memory and attention which has been shown to be compromised in schizophrenia. We used the Flash Lag illusion to examine speed processing in patients with schizophrenia. Based on previous research showing a strong dependence between motion speed and the illusion magnitude, we expected a deficit in speed processing to alter this relationship. A motion processing deficit in patients would also predict overall reductions in perceived lag. We found the magnitude and speed dependence of the Flash Lag illusion to be similar in patients and controls. Together, the findings suggest no general abnormality in motion speed processing in schizophrenia.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Group, Department of Psychiatry, University of Geneva, Switzerland
| | - Timo Stein
- Department of Psychology, University of Amsterdam, Netherlands
| | - Philipp Sterzer
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Kiley J. Seymour
- School of Psychology, The MARCS Institute for Brain, Behaviour and Development, Translational Health Research Institute, Western Sydney University, New South Wales, Australia
| |
Collapse
|
9
|
Kaliuzhna M, Stein T, Rusch T, Sekutowicz M, Sterzer P, Seymour KJ. No evidence for abnormal priors in early vision in schizophrenia. Schizophr Res 2019; 210:245-254. [PMID: 30587425 DOI: 10.1016/j.schres.2018.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
Abstract
The predictive coding account of psychosis postulates the abnormal formation of prior beliefs in schizophrenia, resulting in psychotic symptoms. One domain in which priors play a crucial role is visual perception. For instance, our perception of brightness, line length, and motion direction are not merely based on a veridical extraction of sensory input but are also determined by expectation (or prior) of the stimulus. Formation of such priors is thought to be governed by the statistical regularities within natural scenes. Recently, the use of such priors has been attributed to a specific set of well-documented visual illusions, supporting the idea that perception is biased toward what is statistically more probable within the environment. The Predictive Coding account of psychosis proposes that patients form abnormal representations of statistical regularities in natural scenes, leading to altered perceptual experiences. Here we use classical vision experiments involving a specific set of visual illusions to directly test this hypothesis. We find that perceptual judgments for both patients and control participants are biased in accordance with reported probability distributions of natural scenes. Thus, despite there being a suggested link between visual abnormalities and psychotic symptoms in schizophrenia, our results provide no support for the notion that altered formation of priors is a general feature of the disorder. These data call for a refinement in the predictions of quantitative models of psychosis.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia; Clinical and Experimental Psychopathology Group, Department of Psychiatry, University of Geneva, Switzerland
| | - Timo Stein
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany; Department of Psychology, University of Amsterdam, the Netherlands
| | - Tessa Rusch
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maria Sekutowicz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Kiley J Seymour
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia; Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany; School of Social Sciences and Psychology, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
10
|
Keane BP, Paterno D, Kastner S, Krekelberg B, Silverstein SM. Intact illusory contour formation but equivalently impaired visual shape completion in first- and later-episode schizophrenia. JOURNAL OF ABNORMAL PSYCHOLOGY 2018; 128:57-68. [PMID: 30346202 DOI: 10.1037/abn0000384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visual shape completion is a fundamental process that constructs contours and shapes on the basis of the geometric relations between spatially separated edge elements. People with schizophrenia are impaired at distinguishing visually completed shapes, but when does the impairment emerge and how does it evolve with illness duration? The question bears on the debate as to whether cognition declines after illness onset. To address the issue, we tested healthy controls (n = 48), first-episode psychosis patients (n = 23), and chronic schizophrenia patients (n = 49) on a classic psychophysical task in which subjects discriminated the relative orientations of four sectored circles that either formed or did not form visually completed shapes (illusory and fragmented conditions, respectively). Visual shape completion was quantified as the extent to which performance in the illusory condition exceeded that of the fragmented. Half of the trials incorporated wire edge elements, which augment contour salience and improve shape completion. Each patient group exhibited large visual shape completion deficits that could not be explained by differences in age, motivation, or orientation tuning. Patients responded normally to changes in illusory contour salience, indicating that they were forming but not adequately employing such contours for discriminating shapes. Shape completion deficits were most apparent for patients with cognitive disorganization, poor premorbid early adolescent functioning, and normal orientation discrimination. Visual shape completion deficits emerge maximally by the first psychotic episode and arise from higher-level disturbances that are related to premorbid functioning and disorganization. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Brian P Keane
- Department of Psychiatry, Robert Wood Johnson Medical School, University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University
| | | | | | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University
| | - Steven M Silverstein
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
11
|
Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:77-132. [PMID: 27627825 DOI: 10.1007/978-3-319-30596-7_4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Silverstein SM, Harms MP, Carter CS, Gold JM, Keane BP, MacDonald A, Ragland JD, Barch DM. Cortical contributions to impaired contour integration in schizophrenia. Neuropsychologia 2015; 75:469-80. [PMID: 26160288 PMCID: PMC4546547 DOI: 10.1016/j.neuropsychologia.2015.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Visual perceptual organization impairments in schizophrenia (SCZ) are well established, but their neurobiological bases are not. The current study used the previously validated Jittered Orientation Visual Integration (JOVI) task, along with fMRI, to examine the neural basis of contour integration (CI), and its impairment in SCZ. CI is an aspect of perceptual organization in which multiple distinct oriented elements are grouped into a single continuous boundary or shape. METHODS On the JOVI, five levels of orientational jitter were added to non-contiguous closed contour elements embedded in background noise to progressively increase the difficulty in perceiving contour elements as left- or right-pointing ovals. Multi-site fMRI data were analyzed for 56 healthy control subjects and 47 people with SCZ. RESULTS SCZ patients demonstrated poorer CI, and this was associated with increased activation in regions involved in global shape processing and visual attention, namely the lateral occipital complex and superior parietal lobules. There were no brain regions where controls demonstrated more activation than patients. CONCLUSIONS CI impairment in this sample of outpatients with SCZ was related to excessive activation in regions associated with object processing and allocation of visual-spatial attention. There was no evidence for basic impairments in contour element linking in the fMRI data. The latter may be limited to poor outcome patients, where more extensive structural and functional changes in the occipital lobe have been observed.
Collapse
Affiliation(s)
| | | | | | - James M Gold
- University of Maryland, Maryland Psychiatric Research Center, United States
| | - Brian P Keane
- Rutgers, The State University of New Jersey, United States
| | | | | | | |
Collapse
|
13
|
Local and global limits on visual processing in schizophrenia. PLoS One 2015; 10:e0117951. [PMID: 25689281 PMCID: PMC4331538 DOI: 10.1371/journal.pone.0117951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.
Collapse
|
14
|
Keane BP, Erlikhman G, Kastner S, Paterno D, Silverstein SM. Multiple forms of contour grouping deficits in schizophrenia: what is the role of spatial frequency? Neuropsychologia 2014; 65:221-33. [PMID: 25446968 PMCID: PMC4269227 DOI: 10.1016/j.neuropsychologia.2014.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Schizophrenia patients poorly perceive Kanizsa figures and integrate co-aligned contour elements (Gabors). They also poorly process low spatial frequencies (SFs), which presumably reflects dysfunction along the dorsal pathway. Can contour grouping deficits be explained in terms of the spatial frequency content of the display elements? To address the question, we tested patients and matched controls on three contour grouping paradigms in which the SF composition was modulated. In the Kanizsa task, subjects discriminated quartets of sectored circles ("pac-men") that either formed or did not form Kanizsa shapes (illusory and fragmented conditions, respectively). In contour integration, subjects identified the screen quadrant thought to contain a closed chain of co-circular Gabors. In collinear facilitation, subjects attempted to detect a central low-contrast element flanked by collinear or orthogonal high-contrast elements, and facilitation corresponded to the amount by which collinear flankers reduced contrast thresholds. We varied SF by modifying the element features in the Kanizsa task and by scaling the entire stimulus display in the remaining tasks (SFs ranging from 4 to 12 cycles/deg). Irrespective of SF, patients were worse at discriminating illusory, but not fragmented shapes. Contrary to our hypothesis, collinear facilitation and contour integration were abnormal in the clinical group only for the higher SF (>=10 c/deg). Grouping performance correlated with clinical variables, such as conceptual disorganization, general symptoms, and levels of functioning. In schizophrenia, three forms of contour grouping impairments prominently arise and cannot be attributed to poor low SF processing. Neurobiological and clinical implications are discussed.
Collapse
Affiliation(s)
- Brian P Keane
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA; Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA.
| | - Gennady Erlikhman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Danielle Paterno
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA; Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Abstract
The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia.
Collapse
Affiliation(s)
- Joel Frohlich
- Neuroscience Research Program, 1506D Gonda Center, University of California, Los Angeles Box 951761, Los Angeles, CA 90095-1761
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street – SSB1-102, Los Angeles, CA 90032, Phone: (323) 442-7246
| |
Collapse
|
16
|
Keane BP, Joseph J, Silverstein SM. Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia. Neuropsychologia 2014; 56:302-11. [PMID: 24513023 DOI: 10.1016/j.neuropsychologia.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Schizophrenia is a devastating psychiatric disorder characterized by symptoms including delusions, hallucinations, and disorganized thought. Kanizsa shape perception is a basic visual process that builds illusory contour and shape representations from spatially segregated edges. Recent studies have shown that schizophrenia patients exhibit abnormal electrophysiological signatures during Kanizsa shape perception tasks, but it remains unclear how these abnormalities are manifested behaviorally and whether they arise from early or late levels in visual processing. METHOD To address this issue, we had healthy controls and schizophrenia patients discriminate quartets of sectored circles that either formed or did not form illusory shapes (illusory and fragmented conditions, respectively). Half of the trials in each condition incorporated distractor lines, which are known to disrupt illusory contour formation and thereby worsen illusory shape discrimination. RESULTS Relative to their respective fragmented conditions, patients performed worse than controls in the illusory discrimination. Conceptually disorganized patients-characterized by their incoherent manner of speaking-were primarily driving the effect. Regardless of patient status or disorganization levels, distractor lines worsened discrimination more in the illusory than the fragmented condition, indicating that all groups could form illusory contours. CONCLUSION People with schizophrenia form illusory contours but are less able to utilize those contours to discern global shape. The impairment is especially related to the ability to think and speak coherently. These results suggest that Kanizsa shape perception incorporates an early illusory contour formation stage and a later, conceptually-mediated shape integration stage, with the latter being compromised in schizophrenia.
Collapse
Affiliation(s)
- Brian P Keane
- Rutgers - Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA; Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA; Rutgers University Center for Cognitive Science, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | - Jamie Joseph
- Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA; Rutgers University Graduate School of Biomedical Sciences, Piscataway, NJ 08854, USA
| | - Steven M Silverstein
- Rutgers - Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA; Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Schallmo MP, Sponheim SR, Olman CA. Abnormal contextual modulation of visual contour detection in patients with schizophrenia. PLoS One 2013; 8:e68090. [PMID: 23922637 PMCID: PMC3688981 DOI: 10.1371/journal.pone.0068090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/25/2013] [Indexed: 11/19/2022] Open
Abstract
Schizophrenia patients demonstrate perceptual deficits consistent with broad dysfunction in visual context processing. These include poor integration of segments forming visual contours, and reduced visual contrast effects (e.g. weaker orientation-dependent surround suppression, ODSS). Background image context can influence contour perception, as stimuli near the contour affect detection accuracy. Because of ODSS, this contextual modulation depends on the relative orientation between the contour and flanking elements, with parallel flankers impairing contour perception. However in schizophrenia, the impact of abnormal ODSS during contour perception is not clear. It is also unknown whether deficient contour perception marks genetic liability for schizophrenia, or is strictly associated with clinical expression of this disorder. We examined contour detection in 25 adults with schizophrenia, 13 unaffected first-degree biological relatives of schizophrenia patients, and 28 healthy controls. Subjects performed a psychophysics experiment designed to quantify the effect of flanker orientation during contour detection. Overall, patients with schizophrenia showed poorer contour detection performance than relatives or controls. Parallel flankers suppressed and orthogonal flankers enhanced contour detection performance for all groups, but parallel suppression was relatively weaker for schizophrenia patients than healthy controls. Relatives of patients showed equivalent performance with controls. Computational modeling suggested that abnormal contextual modulation in schizophrenia may be explained by suppression that is more broadly tuned for orientation. Abnormal flanker suppression in schizophrenia is consistent with weaker ODSS and/or broader orientation tuning. This work provides the first evidence that such perceptual abnormalities may not be associated with a genetic liability for schizophrenia.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
18
|
Bressan P, Kramer P. The relation between cognitive-perceptual schizotypal traits and the Ebbinghaus size-illusion is mediated by judgment time. Front Psychol 2013; 4:343. [PMID: 23781212 PMCID: PMC3679511 DOI: 10.3389/fpsyg.2013.00343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/27/2013] [Indexed: 12/01/2022] Open
Abstract
In the Ebbinghaus illusion, a circle surrounded by smaller circles is perceived as larger than an identical one surrounded by larger circles. The illusion is reportedly weaker in individuals with (disorganized) schizophrenia or schizotypy than in controls, a finding that has been interpreted as evidence that both schizophrenia and schizotypy involve reduced contextual integration. In support of this view, we show that the Ebbinghaus illusion also decreases, in the general population, with cognitive-perceptual schizotypal traits (measured with both the cognitive-perceptual subscale of the Schizotypal Personality Questionnaire-Brief and the Magical Ideation scale). Our results were strong and separately replicable in different within-subjects and between-subjects conditions. However, a mediation analysis revealed that the reduction of the Ebbinghaus illusion was (statistically, hence without implying a causal relationship) entirely due to increased judgment time, i.e., the time subjects took to complete size comparisons. Judgment time increased with the strength of cognitive-perceptual schizotypal traits, but subjects with longer judgment times had smaller illusions regardless of these traits. We argue that there are at least two possible accounts of our results. Reduced contextual integration might be due to a reduced ability to integrate context, as previously suggested; alternatively, it could be due to a reduced tendency to integrate context—that is, to a detail-oriented processing style. We offer predictions for future research, testable with a deadline experiment that pits these two accounts against one another. Regardless of which account proves to be best, our results show that contextual integration decreases with cognitive-perceptual schizotypal traits, and that this relationship is mediated by judgment time. Future studies should thus consider either manipulating or measuring this time.
Collapse
Affiliation(s)
- Paola Bressan
- Department of General Psychology, University of Padua Padua, Italy
| | | |
Collapse
|
19
|
Butler PD, Abeles IY, Silverstein SM, Dias EC, Weiskopf NG, Calderone DJ, Sehatpour P. An event-related potential examination of contour integration deficits in schizophrenia. Front Psychol 2013; 4:132. [PMID: 23519476 PMCID: PMC3604636 DOI: 10.3389/fpsyg.2013.00132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/03/2013] [Indexed: 11/23/2022] Open
Abstract
Perceptual organization, which refers to the ability to integrate fragments of stimuli to form a representation of a whole edge, part, or object, is impaired in schizophrenia. A contour integration paradigm, involving detection of a set of Gabor patches forming an oval contour pointing to the right or left embedded in a field of randomly oriented Gabors, has been developed for use in clinical trials of schizophrenia. The purpose of the present study was to assess contributions of early and later stages of processing to deficits in contour integration, as well as to develop an event-related potential (ERP) analog of this task. Twenty-one patients with schizophrenia and 28 controls participated. The Gabor elements forming the contours were given a low or high degree of orientational jitter, making it either easy or difficult to identify the direction in which the contour was pointing. ERP results showed greater negative peaks at ~165 (N1 component) and ~270 ms for the low-jitter versus the high-jitter contours, with a much greater difference between jitter conditions at 270 ms. This later ERP component was previously termed Ncl for closure negativity. Source localization identified the Ncl in the lateral occipital object recognition area. Patients showed a significant decrease in the Ncl, but not N1, compared to controls, and this was associated with impaired behavioral ability to identify contours. In addition, an earlier negative peak was found at ~120 ms (termed N120) that differentiated jitter conditions, had a dorsal stream source, and differed between patients and controls. Patients also showed a deficit in the dorsal stream sensory P1 component. These results are in accord with impairments in distributed circuitry contributing to perceptual organization deficits and provide an ERP analog to the behavioral contour integration task.
Collapse
Affiliation(s)
- Pamela D Butler
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA ; Department of Psychiatry, NYU School of Medicine New York, NY, USA ; Department of Psychology, City University of New York New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|