1
|
Chen J, Zhou G, Han J, Su P, Zhang H, Tang D. The Effect of Perceived Groove in Music on Effective Brain Connectivity during Cycling: An fNIRS Study. Med Sci Sports Exerc 2025; 57:857-866. [PMID: 39809245 DOI: 10.1249/mss.0000000000003609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Perceived groove, a complex and integrated musical characteristic, is considered a core factor in inducing synchronization between movement and music. This study aimed to use functional near-infrared spectroscopy to explore the effective connectivity (EC) changes among brain regions during cycling activities under different perceived groove conditions. METHODS In a randomized crossover design, 18 university students performed 3-min cycling tasks under high (HG) and low (LG) perceived groove music conditions. Revolutions per minute, coefficient of variation of pedaling cadence, and sensorimotor coupling index were measured. Granger causality analyses were performed on the functional near-infrared spectroscopy data from the cycling task to obtain EC matrices at the brain region and channel (Ch) levels. RESULTS The revolution per minute was significantly higher, and coefficient of variation of pedaling cadence and sensorimotor coupling index were significantly lower in HG than in LG. The EC values of the Brodmann area (BA) 8→the left prefrontal cortex (lPFC), the superior portion of BA 6 (BA 6_Sup)→lPFC, and BA 1-3→lPFC were significantly higher in HG than in LG. Channel analyses indicated that the EC values of Ch 14→Ch 9, Ch 41→Ch 9, Ch 14→Ch 10, Ch 41→Ch 10, Ch 31→Ch 10, and Ch 35→Ch 23 were significantly higher in HG than in LG. Correlation analysis revealed that the EC values of the channels included in BA 6_Sup→lPFC were significantly correlated with cycling performance metrics. CONCLUSIONS The EC changes from BA 6_Sup to lPFC may play a critical role in the process through which perceived groove affects the synchronization of cycling to music.
Collapse
Affiliation(s)
- Jiangang Chen
- College of Physical Education and Sport, Beijing Normal University, Beijing, CHINA
| | - Gaoquan Zhou
- College of Physical Education and Sport, Beijing Normal University, Beijing, CHINA
| | - Junbo Han
- College of Physical Education and Sport, Beijing Normal University, Beijing, CHINA
| | - Pei Su
- College of Physical Education and Sport, Beijing Normal University, Beijing, CHINA
| | - Hongli Zhang
- College of Art, Beijing Sport University, Beijing, CHINA
| | - Donghui Tang
- College of Physical Education and Sport, Beijing Normal University, Beijing, CHINA
| |
Collapse
|
2
|
Błaszczyszyn M, Piechota K, Borysiuk Z, Kręcisz K, Zmarzły D. Correlation analysis of upper limb muscle activation in the frequency domain in wheelchair fencers. Front Hum Neurosci 2025; 19:1523358. [PMID: 40070488 PMCID: PMC11893813 DOI: 10.3389/fnhum.2025.1523358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background The study includes a correlation analysis of EMG signals of upper limb muscle activity in wheelchair fencers. The aim of the study was to investigate neuromuscular conduction in wheelchair fencers using the EMG signal from their upper limb muscles. Methods Wavelet transform analysis was used to examine the biosignals. The recorded EMG signals were subjected to time-frequency transformations. The scalograms were determined using the continuous wavelet transform. Based on the analysis, time-frequency coherence maps were extracted to determine validation in the frequency bands: 2-16 Hz, 17-30 Hz, and 31-60 Hz. The study participants were 16 wheelchair fencers, members of the Polish Paralympic Team, in two disability categories: 7 in category A and 9 in category B. Coherence was calculated for frequencies up to 60 Hz. Results The analysis revealed the individual time-dependent coherence between two signals for different frequencies during the work cycle of the antagonist muscles of the arm (biceps/triceps) and forearm (flexor/extensor carpi radialis). A significant difference in alpha coherence (2-16 Hz) occurred in the group of forearm muscles in the frequency band of 2-16 Hz, both for G (p = 0.042) and M (p = 0.031) parameters (G: A - 0.08 Hz, B - 0.04 Hz; M: A - 0.51 and B - 0.42). Its peaks were observed during the fencing action cycle. Some differences in gamma coherence were also found in the EMG signals of the forearm muscles in the 31-60 Hz frequency band were statistically significant (p = 0.031): 0.43 in group A and 0.36 in group B. Conclusion The results showed the neuromuscular conduction, where alpha coherence reflects the reticulospinal tract responsible for the excitation of the distal muscles of the wrist and hand, while gamma coherence results from cortical signals. It is related to efferent conduction and reflects corticomuscular coupling. Frequency domain coherence analysis determines the strength of intermuscular synchronization, allowing a comprehensive investigation of the neural mechanisms underlying motor recovery. It maps separate neural pathways for arm and hand control.
Collapse
Affiliation(s)
- Monika Błaszczyszyn
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Katarzyna Piechota
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Krzysztof Kręcisz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Dariusz Zmarzły
- Faculty of Electrical Engineering, Automatics and Computer Science, Opole University of Technology, Opole, Poland
| |
Collapse
|
3
|
Chen J, Han J, Su P, Wang M, Shi W, Tang D. Effects of perceived groove in music on cycling performance and intermuscular coherence between trunk and lower limb muscles. J Sci Med Sport 2025:S1440-2440(25)00033-7. [PMID: 40011097 DOI: 10.1016/j.jsams.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES This study investigated the effects of perceived groove on cycling performance and explored underlying neuromuscular control mechanisms. DESIGN Repeated-measures design. METHODS Twenty-four university students completed the cycling task under three conditions: metronome, low-groove music, and high-groove music. Each task included 3 min of low-torque and 3 min of high-torque cycling. Measurements included pedal cadence, pedal cadence variability, work output, and intermuscular coherence between the trunk and lower limbs. RESULTS In low-torque cycling, pedal cadence variability was significantly lower in metronome than in low-groove music and high-groove music; coherence areas (AZ) in the γ band for the erector spinae and soleus were significantly higher in high-groove music than in low-groove music (ps < 0.05). In high-torque cycling, pedal cadence was significantly higher in high-groove music than in low-groove music and metronome, and higher in low-groove music than in metronome, pedal cadence variability was significantly lower in high-groove music and metronome than in low-groove music, and work output was significantly higher in high-groove music than in low-groove music and metronome (ps < 0.05). The AZ values in the α and γ bands for the rectus abdominis and gastrocnemius lateralis and the erector spinae and gastrocnemius medialis and in the γ band for the erector spinae and gastrocnemius lateralis were significantly higher in high-groove music than in low-groove music (ps < 0.05). CONCLUSIONS Perceived groove during high-torque cycling increased pedal cadence and work output, potentially due to increased cortical and subcortical drive shared between trunk and lower limb muscles.
Collapse
Affiliation(s)
- Jiangang Chen
- Beijing Normal University, College of Physical Education and Sport, China
| | - Junbo Han
- Beijing Normal University, College of Physical Education and Sport, China
| | - Pei Su
- Beijing Normal University, College of Physical Education and Sport, China
| | - Mengyue Wang
- Beijing Normal University, College of Physical Education and Sport, China
| | - Wenxia Shi
- Beijing Normal University, College of Physical Education and Sport, China
| | - Donghui Tang
- Beijing Normal University, College of Physical Education and Sport, China.
| |
Collapse
|
4
|
Ortega-Auriol P, Byblow WD, Ren AX, Besier T, McMorland AJC. The role of muscle synergies and task constraints on upper limb motor impairment after stroke. Exp Brain Res 2025; 243:40. [PMID: 39775868 PMCID: PMC11706858 DOI: 10.1007/s00221-024-06953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025]
Abstract
This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task. Electromyographic data from 16 upper limb muscles were collected during each task, alongside intermuscular coherence (IMC) measurements during the pinch task to assess neuromuscular connectivity. The findings confirm that motor impairment is inversely related to the diversity of muscle synergies, with fewer synergies and more stereotypical synergy structures observed post-stroke. The study further reveals that the nature of motor tasks significantly affects the number of identifiable muscle synergies, with less constrained tasks revealing a broader array of synergies. These findings highlight the importance of carefully selecting motor tasks in the context of clinical research and assessments to understand a patient's motor impairment, thus aiding in developing tailored rehabilitation strategies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - April Xiaoge Ren
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Liu Y, Liu R, Wan X, Chen C, Wang Y, Yu W, OuYang J, Qian L, Liu G. The Effect of Short-Term Kinesiology Taping on Neuromuscular Controls in Hallux Valgus During Gait: A Study of Muscle and Kinematic Synergy. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3199-3209. [PMID: 39208038 DOI: 10.1109/tnsre.2024.3451651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To investigate the biomechanical mechanisms underlying the pathogenesis and explore the effects of kinesiology taping (KT) on neuromuscular control in HV patients. The study population consisted of 16 young controls (YC group) and 15 patients with hallux valgus (HV group). All subjects underwent a natural velocity gait assessment. Additionally, 11 patients from the HV group received KT intervention over a period of one month, consisting of 15 sessions administered every other day. After the one-month intervention, these patients underwent a gait assessment and were included in the HV-KT group. The electromyography (EMG) and joint motion were evaluated using non-negative matrix factorization (NNMF) to compare the difference in muscle and kinematic synergy among the three groups. The center of plantar pressure (COP) and ground reaction force (GRF) were measured by the force platform. The number of synergies did not differ within the three groups, but the structure of muscle synergies and kinematic synergies differed in the HV group. The KT intervention (HV-KT group) altered the structure of synergies. The correlation between kinematic synergies and muscular synergies was lower in the HV group than in the YC group, whereas the correlation between the two increased after the KT intervention in the HV group. During gait, the HV group tended to activate more muscles around foot joints to maintain body stability. The visual analogue scale (VAS) scores, hallux valgus angle (HVA), and COP were significantly decreased after the intervention ( [Formula: see text]). HV patients exhibited altered kinematic and muscular synergies structures as well as muscle activation. Also, it weakened the balance and athletic ability of HV patients. KT intervention improved neuromuscular control to provide a better gait performance.
Collapse
|
6
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
7
|
Chen X, Feng Y, Chang Q, Yu J, Chen J, Xie P. Muscle Synergy during Wrist Movements Based on Non-Negative Tucker Decomposition. SENSORS (BASEL, SWITZERLAND) 2024; 24:3225. [PMID: 38794079 PMCID: PMC11125592 DOI: 10.3390/s24103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Modular control of the muscle, which is called muscle synergy, simplifies control of the movement by the central nervous system. The purpose of this study was to explore the synergy in both the frequency and movement domains based on the non-negative Tucker decomposition (NTD) method. Surface electromyography (sEMG) data of 8 upper limb muscles in 10 healthy subjects under wrist flexion (WF) and wrist extension (WE) were recorded. NTD was selected for exploring the multi-domain muscle synergy from the sEMG data. The results showed two synergistic flexor pairs, Palmaris longus-Flexor Digitorum Superficialis (PL-FDS) and Extensor Carpi Radialis-Flexor Carpi Radialis (ECR-FCR), in the WF stage. Their spectral components are mainly in the respective bands 0-20 Hz and 25-50 Hz. And the spectral components of two extensor pairs, Extensor Digitorum-Extensor Carpi Ulnar (ED-ECU) and Extensor Carpi Radialis-Brachioradialis (ECR-B), are mainly in the respective bands 0-20 Hz and 7-45 Hz in the WE stage. Additionally, further analysis showed that the Biceps Brachii (BB) muscle was a shared muscle synergy module of the WE and WF stage, while the flexor muscles FCR, PL and FDS were the specific synergy modules of the WF stage, and the extensor muscles ED, ECU, ECR and B were the specific synergy modules of the WE stage. This study showed that NTD is a meaningful method to explore the multi-domain synergistic characteristics of multi-channel sEMG signals. The results can help us to better understand the frequency features of muscle synergy and shared and specific synergies, and expand the study perspective related to motor control in the nervous system.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; (X.C.); (Y.F.); (Q.C.); (J.Y.)
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yange Feng
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; (X.C.); (Y.F.); (Q.C.); (J.Y.)
| | - Qingya Chang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; (X.C.); (Y.F.); (Q.C.); (J.Y.)
| | - Jinxu Yu
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; (X.C.); (Y.F.); (Q.C.); (J.Y.)
| | - Jie Chen
- School of Physical Education, Yanshan University, Qinhuangdao 066004, China;
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; (X.C.); (Y.F.); (Q.C.); (J.Y.)
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Iranzo S, Belda-Lois JM, Martinez-de-Juan JL, Prats-Boluda G. Assessment of Muscle Coordination Changes Caused by the Use of an Occupational Passive Lumbar Exoskeleton in Laboratory Conditions. SENSORS (BASEL, SWITZERLAND) 2023; 23:9631. [PMID: 38139478 PMCID: PMC10747114 DOI: 10.3390/s23249631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The introduction of exoskeletons in industry has focused on improving worker safety. Exoskeletons have the objective of decreasing the risk of injury or fatigue when performing physically demanding tasks. Exoskeletons' effect on the muscles is one of the most common focuses of their assessment. The present study aimed to analyze the muscle interactions generated during load-handling tasks in laboratory conditions with and without a passive lumbar exoskeleton. The electromyographic data of the muscles involved in the task were recorded from twelve participants performing load-handling tasks. The correlation coefficient, coherence coefficient, mutual information, and multivariate sample entropy were calculated to determine if there were significant differences in muscle interactions between the two test conditions. The results showed that muscle coordination was affected by the use of the exoskeleton. In some cases, the exoskeleton prevented changes in muscle coordination throughout the execution of the task, suggesting a more stable strategy. Additionally, according to the directed Granger causality, a trend of increasing bottom-up activation was found throughout the task when the participant was not using the exoskeleton. Among the different variables analyzed for coordination, the most sensitive to changes was the multivariate sample entropy.
Collapse
Affiliation(s)
- Sofía Iranzo
- Instituto de Biomecánica de Valencia, Universitat Politècnica de València, 46022 Valencia, Spain; (S.I.); (J.-M.B.-L.)
| | - Juan-Manuel Belda-Lois
- Instituto de Biomecánica de Valencia, Universitat Politècnica de València, 46022 Valencia, Spain; (S.I.); (J.-M.B.-L.)
| | - Jose Luis Martinez-de-Juan
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
9
|
Ortega-Auriol P, Byblow WD, Besier T, McMorland AJC. Muscle synergies are associated with intermuscular coherence and cortico-synergy coherence in an isometric upper limb task. Exp Brain Res 2023; 241:2627-2643. [PMID: 37737925 PMCID: PMC10635925 DOI: 10.1007/s00221-023-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorisation (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy-preferred directions (PDs). A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Overall, we were able to identify four different synergies from the multidirectional task. A significant alpha band IMC was consistently present in all extracted synergies. Moreover, IMC alpha band was higher between muscles with higher weights within a synergy. Interestingly, CSC alpha band was also significantly higher across muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. The presence of a shared input onto synergistic muscles within a synergy supports the idea of neurally derived muscle synergies that build human movement. Our findings suggest cortical modulation of some of the synergies and the consequential existence of shared input between muscles within cortically modulated synergies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Santos PDG, Vaz JR, Correia J, Neto T, Pezarat-Correia P. Long-Term Neurophysiological Adaptations to Strength Training: A Systematic Review With Cross-Sectional Studies. J Strength Cond Res 2023; 37:2091-2105. [PMID: 37369087 DOI: 10.1519/jsc.0000000000004543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Santos, PDG, Vaz, JR, Correia, J, Neto, T, and Pezarat-Correia, P. Long-term neurophysiological adaptations to strength training: a systematic review with cross-sectional studies. J Strength Cond Res 37(10): 2091-2105, 2023-Neuromuscular adaptations to strength training are an extensively studied topic in sports sciences. However, there is scarce information about how neural mechanisms during force production differ between trained and untrained individuals. The purpose of this systematic review is to better understand the differences between highly trained and untrained individuals to establish the long-term neural adaptations to strength training. Three databases were used for the article search (PubMed, Web of Science, and Scopus). Studies were included if they compared groups of resistance-trained with untrained people, aged 18-40 year, and acquired electromyography (EMG) signals during strength tasks. Twenty articles met the eligibility criteria. Generally, strength-trained individuals produced greater maximal voluntary activation, while reducing muscle activity in submaximal tasks, which may affect the acute response to strength training. These individuals also presented lower co-contraction of the antagonist muscles, although it depends on the specific training background. Global intermuscular coordination may be another important mechanism of adaptation in response to long-term strength training; however, further research is necessary to understand how it develops over time. Although these results should be carefully interpreted because of the great disparity of analyzed variables and methods of EMG processing, chronic neural adaptations seem to be decisive to greater force production. It is crucial to know the timings at which these adaptations stagnate and need to be stimulated with advanced training methods. Thus, training programs should be adapted to training status because the same stimulus in different training stages will lead to different responses.
Collapse
Affiliation(s)
- Paulo D G Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - João R Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz-Cooperativa de Ensino Superior, Monte da Caparica, Portugal; and
| | - Joana Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - Tiago Neto
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
| |
Collapse
|
11
|
Vila-Dieguez O, Heindel MD, Awokuse D, Kulig K, Michener LA. Exercise for rotator cuff tendinopathy: Proposed mechanisms of recovery. Shoulder Elbow 2023; 15:233-249. [PMID: 37325389 PMCID: PMC10268139 DOI: 10.1177/17585732231172166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Rotator cuff (RC) tendinopathy is a common recurrent cause of shoulder pain, and resistance exercise is the first-line recommended intervention. Proposed causal mechanisms of resistance exercise for patients with RC tendinopathy consist of four domains: tendon structure, neuromuscular factors, pain and sensorimotor processing, and psychosocial factors. Tendon structure plays a role in RC tendinopathy, with decreased stiffness, increased thickness, and collagen disorganization. Neuromuscular performance deficits of altered kinematics, muscle activation, and force are present in RC tendinopathy, but advanced methods of assessing muscle performance are needed to fully assess these factors. Psychological factors of depression, anxiety, pain catastrophizing, treatment expectations, and self-efficacy are present and predict patient-reported outcomes. Central nervous system dysfunctions also exist, specifically altered pain and sensorimotor processing. Resisted exercise may normalize these factors, but limited evidence exists to explain the relationship of the four proposed domains to trajectory of recovery and defining persistent deficits limiting outcomes. Clinicians and researchers can use this model to understand how exercise mediates change in patient outcomes, develop subgroups to deliver patient-specific approach for treatment and define metrics to track recovery over time. Supporting evidence is limited, indicating the need for future studies characterizing mechanisms of recovery with exercise for RC tendinopathy.
Collapse
Affiliation(s)
- Oscar Vila-Dieguez
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Matthew D. Heindel
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Daniel Awokuse
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Kornelia Kulig
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Lori A. Michener
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Ma G, Cao C, Zhang T, Zheng H, Song Q, Zhang C, Sun W, Wang J. The Lower Limb Stiffness, Moments, and Work Mode During Stair Descent Among the Older Adults. Am J Phys Med Rehabil 2023; 102:222-228. [PMID: 35944085 DOI: 10.1097/phm.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Lower limb stiffness strategies and work mode changes between young and older adults during stair descent are unclear. This study investigated the effect of aging on the lower limb stiffness, moments, and joint work mode during stair descent. DESIGN Twenty young adults and 20 older adults were recruited from the local community for stair descent test. Kinematics and kinetics data were collected by Vicon system and Kistler force plate. The lower limb stiffness, moments, and work mode were calculated and assess between groups. RESULTS No significant differences in gait parameters were detected between groups. Compared with young adults, older adults have decreased leg stiffness, knee and ankle stiffness, increased peak hip extension moment, hip stiffness, and ankle work contribution. CONCLUSIONS The older adults actively reduce the lower limb stiffness to reduce the risk of injury during stair descent. The hip joint strategy reduces the risk of forwarding falls and ankle joint compensation work mode to make up for the lack of knee extension strength. This provides a reference for the focus of exercise intervention and rehabilitation strategies for older adults.
Collapse
Affiliation(s)
- Gang Ma
- From the Logistics University of Chinese People's Armed Police Forces, Tianjin, China (GM); Hebei Sport University, Shijiazhuang, China (CC); Harbin Sport University, Harbin, China (TZ); Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China (HZ); Shandong Sport University, Jinan, China (QS, WS, JW); and Shandong Institute of Sport Science, Jinan, China (CZ)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cruz-Montecinos C, García-Massó X, Maas H, Cerda M, Ruiz-Del-Solar J, Tapia C. Detection of intermuscular coordination based on the causality of empirical mode decomposition. Med Biol Eng Comput 2023; 61:497-509. [PMID: 36527531 DOI: 10.1007/s11517-022-02736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Considering the stochastic nature of electromyographic (EMG) signals, nonlinear methods may be a more accurate approach to study intermuscular coordination than the linear approach. The aims of this study were to assess the coordination between two ankle plantar flexors using EMG by applying the causal decomposition approach and assessing whether the intermuscular coordination is affected by the slope of the treadmill. The medial gastrocnemius (MG) and soleus muscles (SOL) were analyzed during the treadmill walking at inclinations of 0°, 5°, and 10°. The coordination was evaluated using ensemble empirical mode decomposition, and the causal interaction was encoded by the instantaneous phase dependence of time series bi-directional causality. To estimate the mutual predictability between MG and SOL, the cross-approximate entropy (XApEn) was assessed. The maximal causal interaction was observed between 40 and 75 Hz independent of inclination. XApEn showed a significant decrease between 0° and 5° (p = 0.028), between 5° and 10° (p = 0.038), and between 0° and 10° (p = 0.014), indicating an increase in coordination. Thus, causal decomposition is an appropriate methodology to study intermuscular coordination. These results indicate that the variation of loading through the change in treadmill inclination increases the interaction of the shared input between MG and SOL, suggesting increased intermuscular coordination.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Xavier García-Massó
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain.,Human Movement Analysis Group, University of Valencia, Valencia, Spain
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | | | - Claudio Tapia
- Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile. .,Departamento de Kinesiología, Facultad de Artes Y Educación Física, Universidad Metropolitana de Ciencias de La Educación, Santiago, Chile.
| |
Collapse
|
14
|
Estimation of Time-Frequency Muscle Synergy in Wrist Movements. ENTROPY 2022; 24:e24050707. [PMID: 35626589 PMCID: PMC9140749 DOI: 10.3390/e24050707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
Muscle synergy analysis is a kind of modularized decomposition of muscles during exercise controlled by the central nervous system (CNS). It can not only extract the synergistic muscles in exercise, but also obtain the activation states of muscles to reflect the coordination and control relationship between muscles. However, previous studies have mainly focused on the time-domain synergy without considering the frequency-specific characteristics within synergy structures. Therefore, this study proposes a novel method, named time-frequency non-negative matrix factorization (TF-NMF), to explore the time-varying regularity of muscle synergy characteristics of multi-channel surface electromyogram (sEMG) signals at different frequency bands. In this method, the wavelet packet transform (WPT) is used to transform the time-scale signals into time-frequency dimension. Then, the NMF method is calculated in each time-frequency window to extract the synergy modules. Finally, this method is used to analyze the sEMG signals recorded from 8 muscles during the conversion between wrist flexion (WF stage) and wrist extension (WE stage) movements in 12 healthy people. The experimental results show that the number of synergy modules in wrist flexion transmission to wrist extension (Motion Conversion, MC stage) is more than that in the WF stage and WE stage. Furthermore, the number of flexor and extensor muscle synergies in the frequency band of 0–125 Hz during the MC stage is more than that in the frequency band of 125–250 Hz. Further analysis shows that the flexion muscle synergies mostly exist in the frequency band of 140.625–156.25 Hz during the WF stage, and the extension muscle synergies appear in the frequency band of 125–156.25 Hz during the WE stage. These results can help to better understand the time-frequency features of muscle synergy, and expand study perspective related to motor control in nervous system.
Collapse
|
15
|
Liu H, Gao Y, Huang W, Li R, Houston M, Benoit JS, Roh J, Zhang Y. Inter-muscular coherence and functional coordination in the human upper extremity after stroke. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4506-4525. [PMID: 35430825 DOI: 10.3934/mbe.2022208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscle coordination and motor function of stroke patients are weakened by stroke-related motor impairments. Our earlier studies have determined alterations in inter-muscular coordination patterns (muscle synergies). However, the functional connectivity of these synergistically paired or unpaired muscles is still unclear in stroke patients. The goal of this study is to quantify the alterations of inter-muscular coherence (IMC) among upper extremity muscles that have been shown to be synergistically or non-synergistically activated in stroke survivors. In a three-dimensional isometric force matching task, surface EMG signals are collected from 6 age-matched, neurologically intact healthy subjects and 10 stroke patients, while the target force space is divided into 8 subspaces. According to the results of muscle synergy identification with non-negative matrix factorization algorithm, muscle pairs are classified as synergistic and non-synergistic. In both control and stroke groups, IMC is then calculated for all available muscle pairs. The results show that synergistic muscle pairs have higher coherence in both groups. Furthermore, anterior and middle deltoids, identified as synergistic muscles in both groups, exhibited significantly weaker IMC at alpha band in stroke patients. The anterior and posterior deltoids, identified as synergistic muscles only in stroke patients, revealed significantly higher IMC in stroke group at low gamma band. On the contrary, anterior deltoid and pectoralis major, identified as synergistic muscles in control group only, revealed significantly higher IMC in control group in alpha band. The results of muscle synergy and IMC analyses provide congruent and complementary information for investigating the mechanism that underlies post-stroke motor recovery.
Collapse
Affiliation(s)
- Hongming Liu
- Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou 310018, China
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunyuan Gao
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
- Key labortory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 311247, China
| | - Wei Huang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rihui Li
- Department of Biomedical Engineering, University of Houston, Houston 75835, United States
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston 75835, United States
| | - Julia S Benoit
- Texas Institute for Measurement Evaluation and Statistics, University of Houston, Houston 75835, United States
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston 75835, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston 75835, United States
| |
Collapse
|
16
|
Time-dependent directional intermuscular coherence analysis reveals that forward and backward arm swing equally drive the upper leg muscles during gait initiation. Gait Posture 2022; 92:290-293. [PMID: 34896841 DOI: 10.1016/j.gaitpost.2021.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Human bipedal gait benefits from arm swing, as it drives and shapes lower limb muscle activity in healthy participants as well as patients suffering from neurological impairment. Also during gait initiation, arm swing instructions were found to facilitate leg muscle recruitment. RESEARCH QUESTION The aim of the present study is to exploit the directional decomposition of coherence to examine to what extent forward and backward arm swing contribute to leg muscle recruitment during gait initiation. METHODS Ambulant electromyography (EMG) from shoulder muscles (deltoideus anterior and posterior) and upper leg muscles (biceps femoris and rectus femoris) was analysed during gait initiation in nineteen healthy participants (median age of 67 ± 12 (IQR) years). To assess to what extent either deltoideus anterior or posterior muscles were able to drive upper leg muscle activity during distinct stages of the gait initiation process, time dependent intermuscular coherence was decomposed into directional components based on their time lag (i.e. forward, reverse and zero-lag). RESULTS Coherence from the forward directed components, representing shoulder muscle signals leading leg muscle signals, revealed that deltoideus anterior (i.e. forward arm swing) and deltoideus posterior (i.e. backward arm swing) equally drive upper leg muscle activity during the gait initiation process. SIGNIFICANCE The presently demonstrated time dependent directional intermuscular coherence analysis could be of use for future studies examining directional coupling between muscles or brain areas relative to certain gait (or other time) events. In the present study, this analysis provided neural underpinning that both forward and backward arm swing can provide neuronal support for leg muscle recruitment during gait initiation and can therefore both serve as an effective gait rehabilitation method in patients with gait initiation difficulties.
Collapse
|
17
|
Krauskopf T, Lauck TB, Klein L, Beusterien ML, Mueller M, Von Tscharner V, Mehring C, Herget GW, Stieglitz T, Pasluosta C. Unilateral transfemoral amputees exhibit altered strength and dynamics of muscular co-activation modulated by visual feedback. J Neural Eng 2022; 19. [PMID: 35100571 DOI: 10.1088/1741-2552/ac5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Somatosensory perception is disrupted in patients with a lower limb amputation. This increases the difficulty to maintain balance and leads to the development of neuromuscular adjustments. We investigated how these adjustments are reflected in the co-activation of lower body muscles and are modulated by visual feedback. APPROACH We measured electromyography (EMG) signals of muscles from the trunk (erector spinae and obliquus external), and the lower intact/dominant leg (tibialis anterior and medial gastrocnemius) in eleven unilateral transfemoral amputees and eleven age-matched able-bodied controls during 30 seconds of upright standing with and without visual feedback. Muscle synergies involved in balance control were investigated using wavelet coherence analysis. We focused on 7 frequencies grouped in three frequency bands, a low-frequency band (7.56 and 19.86 Hz) representing more sub-cortical and spinal inputs to the muscles, a mid-frequency band (38.26 and 62.63 Hz) representing more cortical inputs, and a high-frequency band (92.90, 129 and 170.90 Hz) associated with synchronizing motor unit action potentials. Further, the dynamics of changes in intermuscular coupling over time were quantified using the Entropic Half-Life. MAIN RESULTS Amputees exhibited lower coherency values when vision was removed at 7.56 Hz for the muscle pair of the lower leg. At this frequency, the coherency values of the amputee group also differed from controls for the eyes closed condition. Controls and amputees exhibited opposite coherent behaviors with visual feedback at 7.56 Hz. For the eyes open condition at 129 Hz, the coherency values of amputees and controls differed for the muscle pair of the trunk, and at 170.90 Hz for the muscle pair of the lower leg. Amputees exhibited different dynamics of muscle co-activation at the low frequency band when vision was available. SIGNIFICANCE Altogether, these findings point to the development of neuromuscular adaptations reflected in the strength and dynamics of muscular co-activation.
Collapse
Affiliation(s)
- Thomas Krauskopf
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Torben B Lauck
- Laboratory for Biomedical Microtechnology, Department of Microsystem Engineering (IMTEK) , University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Lukas Klein
- Department of Orthopaedics and Trauma Surgery, Medical Center-University of Freiburg, Hugstetter Straße 55, Freiburg, Baden-Württemberg, 79106, GERMANY
| | - Marvin L Beusterien
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Marc Mueller
- Sanitaetshaus Pfaender, Munzinger Straße 5c, Freiburg, 79111, GERMANY
| | | | - Carsten Mehring
- Institute of Biology III & Bernstein Centre , University of Freiburg, Hansastr. 9a, Freiburg im Breisgau, Baden-Württemberg, 79098, GERMANY
| | - Georg W Herget
- Department of Orthopaedics and Trauma Surgery, Medical Center-University of Freiburg, Hugstetter Straße 55, Freiburg, Baden-Württemberg, 79106, GERMANY
| | - Thomas Stieglitz
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cristian Pasluosta
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| |
Collapse
|
18
|
The Changes of Motor Control Strategies in Non-specific Chronic Low Back Pain During Spinal Manipulation and Muscle Energy Techniques: A Beta-band Intermuscular Pair-Wise Coherence Analysis. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Until now, a variety of techniques have been introduced to address the adverse effects of NS-CLBP, including spinal manipulation technique (SMT) and muscle energy technique (MET). However, most of these techniques have focused on pain assessment and disability. In other words, the intermuscular synchronization between the co-contracting muscles was not considered, and hence, the effectiveness of these techniques on the corticospinal tract function was not studied. Objectives: This study aimed to compare the effects of SMT and MET on corticospinal tract function during four phases of standing, flexion, relaxation, and extension in flexion-extension task (F-ET) in NS-CLBP using pair-wise coherence of Beta-band intermuscular coherence (Bb-IMC). Methods: Twenty volunteer healthy male subjects and twenty-four male subjects with NS-CLBP (20 - 45 years of age) participated in this work. The patients had continuous or recurrent symptoms for three months or more without any referral pain to the lower extremities. The patients were randomly assigned to two equal intervention groups (SMT and MET), and the techniques were applied as described by Greenman. Surface electromyography (sEMGs) from lumbopelvic muscles was recorded for all participants (i.e., healthy group and the patient groups), while they performed three trials of F-ET, and the pair-wise coherence for all muscles was calculated using Bb-IMC analysis. Besides, in the patient's groups, sEMGs from the muscles were recorded before and after the interventional techniques (i.e., SMT and MET), while they performed three trials of F-ET, and the pair-wise coherence was calculated. Multivariate analysis of variance test was used to compare the healthy subjects and patient groups before the interventions in A and B muscle cross at different phases of F-ET task. Furthermore, in the NS-CLBP patients, comparisons were made before and after the interventions in each group (i.e., SMT and MET groups) as well as between the two groups in A and B muscle cross at different phases of the F-ET task. Results: In the standing phase of F-ET, there were no significant differences in the SMT and MET group before and after the intervention in PWC of A muscle cross and B muscle cross (P < 0.05). Considering the flexion phase, there were significant differences in the SMT group in all pair muscles as PWC (M1-M4), PWE (M1-M6), PWC (M4-M6) (P < 0.05), whereas there was one significantly in PWC (M4-M6) in the MET group (P < 0.05). In the relaxation phase, the SMT had significantly in PWC (M2-M5), whereas there was one significantly in PWC (M4-M6) in MET group (P < 0.05). In the extension phase, although the SMT was not significant (P < 0.05) in the MET intervention group, there were significant differences in the PWC (M2-M3) and PWC muscles (M2-M5). Conclusions: This study provided some pieces of evidence about the effects of one of the common manual therapy techniques on the primary motor cortex and corticospinal drive in the NS-CLBP patients. The results showed that, by increasing the pair-wise coherence in all phases of FE-T, SMT intervention was more effective than MET intervention. Therefore, the pair-wise coherence of Bb-IMC can be considered an approach for clinicians when designing the rehabilitation protocol to ensure optimal treatment.
Collapse
|
19
|
Laine CM, Cohn BA, Valero-Cuevas FJ. Temporal control of muscle synergies is linked with alpha-band neural drive. J Physiol 2021; 599:3385-3402. [PMID: 33963545 DOI: 10.1113/jp281232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS It is theorized that the nervous system controls groups of muscles together as functional units, or 'synergies', resulting in correlated electromyographic (EMG) signals among muscles. However, such correlation does not necessarily imply group-level neural control. Oscillatory synchronization (coherence) among EMG signals implies neural coupling, but it is not clear how this relates to control of muscle synergies. EMG was recorded from seven arm muscles of 10 adult participants rotating an upper limb ergometer, and EMG-EMG coherence, EMG amplitude correlations and their relationship with each other were characterized. A novel method to derive multi-muscle synergies from EMG-EMG coherence is presented and these are compared with classically defined synergies. Coherent alpha-band (8-16 Hz) drive was strongest among muscles whose gross activity levels are well correlated within a given task. The cross-muscle distribution and temporal modulation of coherent alpha-band drive suggests a possible role in the neural coordination/monitoring of synergies. ABSTRACT During movement, groups of muscles may be controlled together by the nervous system as an adaptable functional entity, or 'synergy'. The rules governing when (or if) this occurs during voluntary behaviour in humans are not well understood, at least in part because synergies are usually defined by correlated patterns of muscle activity without regard for the underlying structure of their neural control. In this study, we investigated the extent to which comodulation of muscle output (i.e. correlation of electromyographic (EMG) amplitudes) implies that muscles share intermuscular neural input (assessed via EMG-EMG coherence analysis). We first examined this relationship among pairs of upper limb muscles engaged in an arm cycling task. We then applied a novel multidimensional EMG-EMG coherence analysis allowing synergies to be characterized on the basis of shared neural drive. We found that alpha-band coherence (8-16 Hz) is related to the degree to which overall muscle activity levels correlate over time. The extension of this coherence analysis to describe the cross-muscle distribution and temporal modulation of alpha-band drive revealed a close match to the temporal and structural features of traditionally defined muscle synergies. Interestingly, the coherence-derived neural drive was inversely associated with, and preceded, changes in EMG amplitudes by ∼200 ms. Our novel characterization of how alpha-band neural drive is dynamically distributed among muscles is a fundamental step forward in understanding the neural origins and correlates of muscle synergies.
Collapse
Affiliation(s)
- Christopher M Laine
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Brian A Cohn
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Comparison of the Beta-Band Intermuscular Pool Coherence Between Chronic Non-specific Low Back Pain and Healthy Subjects. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: The current study aimed to compare between the chronic non-specific low back pain (CNSLBP) and healthy subjects during four phases of the trunk flexion-extension task (standing, flexion, relaxation, and extension phases) by using pool coherence as well as pairwise coherence of Beta band Intermuscular coherence (Bb-IMC) and flexion relaxation phenomena. Methods: Twenty-four men with CNSLBP and 20 healthy men voluntarily participated in this study. All subjects performed three tests of Flexion-extension task (F-ET) while the surface electromyography (sEMGs) were recorded from the right erector spinal muscle of the lumbar region “1”, left erector spinal muscle of the lumbar region “2”, right gluteus maximus muscle”3”, left gluteus maximus muscle”4”, right hamstring muscle”5” and left hamstring muscle”6”. Accordingly, group A contains muscles 1, 4, and 6 and group B consists of muscles 2, 3, and 5. The pool coherence (PC) and the pairwise coherence (PWC) for all the above-mentioned muscles were calculated using Beta-band intermuscular coherence analysis. Thereafter, the mean pool coherence (mPC) was considered for group A and group B for four phases of F-ET in three groups as following: CNSLBP patients group, healthy subjects group and the third group included all subjects that participated in this study, whether patients or healthy and it was called the general group. Moreover, the mean pairwise coherence (mPWC) among each pair of group A and B muscles was calculated for four phases of F-ET using Bb-IMC in CNSLBP patients and healthy subjects. Results: These results indicated a high value of A mPC in the general group and healthy subjects in the flexion phase, whereas the same A mPC in CNSLBP patients was high in all phases of F-ET. On the other hand, while B mPC was high in the general group and healthy subjects in the extension phase; it was high in all phases of F-ET in CNSLBP patients; B mPC in CNSLBP patients was high in extension, standing, and flexion phases. A mPWC and B mPWC were not significantly different between CNSLBP patients and healthy subjects in all phases of F-ET. However, only A mPWC “1 - 4” and the A mPWC “4 - 6” were significantly smaller in CNSLBP patients compared to the healthy subjects in the relaxation and flexion phases, respectively. Hence, we suggest pool coherence of Bb-IMC, not pairwise coherence of Bb-IMC, to compare CNSLBP patients and healthy subjects. Conclusions: According to the present findings, we suggest using the pool coherence of Bb-IMC in the clinical examination for CNSLBP patients and studying the probable cortical effects and the effectiveness of various treatments on corticospinal tract function in CNSLBP.
Collapse
|
21
|
Turpin NA, Uriac S, Dalleau G. How to improve the muscle synergy analysis methodology? Eur J Appl Physiol 2021; 121:1009-1025. [PMID: 33496848 DOI: 10.1007/s00421-021-04604-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023]
Abstract
Muscle synergy analysis is increasingly used in domains such as neurosciences, robotics, rehabilitation or sport sciences to analyze and better understand motor coordination. The analysis uses dimensionality reduction techniques to identify regularities in spatial, temporal or spatio-temporal patterns of multiple muscle activation. Recent studies have pointed out variability in outcomes associated with the different methodological options available and there was a need to clarify several aspects of the analysis methodology. While synergy analysis appears to be a robust technique, it remain a statistical tool and is, therefore, sensitive to the amount and quality of input data (EMGs). In particular, attention should be paid to EMG amplitude normalization, baseline noise removal or EMG filtering which may diminish or increase the signal-to-noise ratio of the EMG signal and could have major effects on synergy estimates. In order to robustly identify synergies, experiments should be performed so that the groups of muscles that would potentially form a synergy are activated with a sufficient level of activity, ensuring that the synergy subspace is fully explored. The concurrent use of various synergy formulations-spatial, temporal and spatio-temporal synergies- should be encouraged. The number of synergies represents either the dimension of the spatial structure or the number of independent temporal patterns, and we observed that these two aspects are often mixed in the analysis. To select a number, criteria based on noise estimates, reliability of analysis results, or functional outcomes of the synergies provide interesting substitutes to criteria solely based on variance thresholds.
Collapse
Affiliation(s)
- Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France.
| | - Stéphane Uriac
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| | - Georges Dalleau
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| |
Collapse
|
22
|
Kenville R, Maudrich T, Vidaurre C, Maudrich D, Villringer A, Ragert P, Nikulin VV. Intermuscular coherence between homologous muscles during dynamic and static movement periods of bipedal squatting. J Neurophysiol 2020; 124:1045-1055. [PMID: 32816612 PMCID: PMC7742219 DOI: 10.1152/jn.00231.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coordination of functionally coupled muscles is a key aspect of movement execution. Demands on coordinative control increase with the number of involved muscles and joints, as well as with differing movement periods within a given motor sequence. While previous research has provided evidence concerning inter- and intramuscular synchrony in isolated movements, compound movements remain largely unexplored. With this study, we aimed to uncover neural mechanisms of bilateral coordination through intermuscular coherence (IMC) analyses between principal homologous muscles during bipedal squatting (BpS) at multiple frequency bands (alpha, beta, and gamma). For this purpose, participants performed bipedal squats without additional load, which were divided into three distinct movement periods (eccentric, isometric, and concentric). Surface electromyography (EMG) was recorded from four homologous muscle pairs representing prime movers during bipedal squatting. We provide novel evidence that IMC magnitudes differ between movement periods in beta and gamma bands, as well as between homologous muscle pairs across all frequency bands. IMC was greater in the muscle pairs involved in postural and bipedal stability compared with those involved in muscular force during BpS. Furthermore, beta and gamma IMC magnitudes were highest during eccentric movement periods, whereas we did not find movement-related modulations for alpha IMC magnitudes. This finding thus indicates increased integration of afferent information during eccentric movement periods. Collectively, our results shed light on intermuscular synchronization during bipedal squatting, as we provide evidence that central nervous processing of bilateral intermuscular functioning is achieved through task-dependent modulations of common neural input to homologous muscles. NEW & NOTEWORTHY It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.
Collapse
Affiliation(s)
- Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Carmen Vidaurre
- Department of Statistics, Informatics and Mathematics, Public University of Navarre, Pamplona, Spain.,Machine Learning Group, Faculty of EE and Computer Science, TU Berlin, Berlin, Germany
| | - Dennis Maudrich
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.,MindBrainBody Institute at Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Vadim V Nikulin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation.,Neurophysics Group, Department of Neurology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
23
|
Kerkman JN, Bekius A, Boonstra TW, Daffertshofer A, Dominici N. Muscle Synergies and Coherence Networks Reflect Different Modes of Coordination During Walking. Front Physiol 2020; 11:751. [PMID: 32792967 PMCID: PMC7394052 DOI: 10.3389/fphys.2020.00751] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
When walking speed is increased, the frequency ratio between the arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether these switches are accompanied by changes in functional connectivity between multiple muscles. Subjects walked on a treadmill with their arms swinging along their body while kinematics and surface electromyography (EMG) of 26 bilateral muscles across the body were recorded. Walking speed was varied from very slow to normal. We decomposed EMG envelopes and intermuscular coherence spectra using non-negative matrix factorization (NMF), and the resulting modes were combined into multiplex networks and analyzed for their community structure. We found five relevant muscle synergies that significantly differed in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition period between them. The corresponding multiplex network contained a single module indicating pronounced muscle co-activation patterns across the whole body during a gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands: 4-8, 8-22, and 22-60 Hz. The community structure of the multiplex network revealed four modules, which clustered functional and anatomical linked muscles across modes of coordination. Intermuscular coherence at 4-22 Hz between upper and lower body and within the legs was particularly pronounced for 1:1 arm-leg coordination and was diminished when switching between modes of coordination. These findings suggest that the stability of arm-leg coordination is associated with modulations in long-distant neuromuscular connectivity.
Collapse
Affiliation(s)
- Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Annike Bekius
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Tjeerd W. Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
24
|
Severini G, Zych M. Characterization of the Adaptation to Visuomotor Rotations in the Muscle Synergies Space. Front Bioeng Biotechnol 2020; 8:605. [PMID: 32656195 PMCID: PMC7324537 DOI: 10.3389/fbioe.2020.00605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/18/2020] [Indexed: 11/20/2022] Open
Abstract
The adaptation to visuomotor rotations is one of the most studied paradigms of motor learning. Previous literature has presented evidence of a dependency between the process of adaptation to visuomotor rotations and the constrains dictated by the workspace of the biological actuators, the muscles, and their co-activation strategies, modeled using muscle synergies analysis. To better understand this relationship, we asked a sample of healthy individuals (N = 7) to perform two experiments aiming at characterizing the adaptation to visuomotor rotations in terms of rotations of the activation space of the muscle synergies during isometric reaching tasks. In both experiments, subjects were asked to adapt to visual rotations altering the position mapping between the force exerted on a fixed manipulandum and the movement of a cursor on a screen. In the first experiment subjects adapted to three different visuomotor rotation angles (30°, 40°, and 50° clockwise) applied to the whole experimental workspace. In the second experiment subjects adapted to a single visuomotor rotation angle (45° clockwise) applied to eight different sub-spaces of the whole workspace, while also performing movements in the rest of the unperturbed workspace. The results from the first experiment confirmed the hypothesis that visuomotor rotations induce rotations in the synergies activation workspace that are proportional to the visuomotor rotation angle. The results from the second experiment showed that rotations affecting limited sub-spaces of the whole workspace are adapted for by rotating only the synergies involved in the movement, with an angle proportional to the distance between the preferred angle of the synergy and the sub-space covered by the rotation. Moreover, we show that the activation of a synergy is only rotated when the sub-space covered by the visual perturbation is applied at the boundaries of the workspace of the synergy. We found these results to be consistent across subjects, synergies and sub-spaces. Moreover, we found a correlation between synergies and muscle rotations further confirming that the adaptation process can be well described, at the neuromuscular level, using the muscle synergies model. These results provide information on how visuomotor rotations can be used to induce a desired neuromuscular response.
Collapse
Affiliation(s)
- Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.,Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland.,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Magdalena Zych
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Laine CM, Valero-Cuevas FJ. Parkinson's Disease Exhibits Amplified Intermuscular Coherence During Dynamic Voluntary Action. Front Neurol 2020; 11:204. [PMID: 32308641 PMCID: PMC7145888 DOI: 10.3389/fneur.2020.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is typically diagnosed and evaluated on the basis of overt motor dysfunction, however, subtle changes in the frequency spectrum of neural drive to muscles have been reported as well. During dynamic actions, coactive muscles of healthy adults often share a common source of 6-15 Hz (alpha-band) neural drive, creating synchronous alpha-band activity in their EMG signals. Individuals with PD commonly exhibit kinetic action tremor at similar frequencies, but the potential relationship between the intermuscular alpha-band neural drive seen in healthy adults and the action tremor associated with PD is not well-understood. A close relationship is most tenable during voluntary dynamic tasks where alpha-band neural drive is strongest in healthy adults, and where neural circuits affected by PD are most engaged. In this study, we characterized the frequency spectrum of EMG synchronization (intermuscular coherence) in 16 participants with PD and 15 age-matched controls during two dynamic motor tasks: (1) rotation of a dial between the thumb and index finger, and (2) dynamic scaling of isometric precision pinch force. These tasks produce different profiles of coherence between the first dorsal interosseous and abductor pollicis brevis muscles. We sought to determine if alpha-band intermuscular coherence would be amplified in participants with PD relative to controls, if such differences would be task-specific, and if they would correlate with symptom severity. We found that relative to controls, the PD group displayed amplified, but similarly task-dependent, coherence in the alpha-band. The magnitude of coherence during the rotation task correlated with overall symptom severity as per the UPDRS rating scale. Finally, we explored the potential for our coherence measures, with no additional information, to discriminate individuals with PD from controls. The area under the Receiver Operating Characteristic curve (AUC) indicated a clear separation between groups (AUC = 0.96), even though participants with PD were on their typical medication and displayed only mild-moderate symptoms. We conclude that a task-dependent, intermuscular neural drive within the alpha-band is amplified in PD. Its quantification via intermuscular coherence analysis may provide a useful tool for detecting the presence of PD, or assessing its progression.
Collapse
Affiliation(s)
- Christopher M Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Coordination amongst quadriceps muscles suggests neural regulation of internal joint stresses, not simplification of task performance. Proc Natl Acad Sci U S A 2020; 117:8135-8142. [PMID: 32205442 DOI: 10.1073/pnas.1916578117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.
Collapse
|
27
|
Corticomuscular control of walking in older people and people with Parkinson's disease. Sci Rep 2020; 10:2980. [PMID: 32076045 PMCID: PMC7031238 DOI: 10.1038/s41598-020-59810-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
Changes in human gait resulting from ageing or neurodegenerative diseases are multifactorial. Here we assess the effects of age and Parkinson’s disease (PD) on corticospinal activity recorded during treadmill and overground walking. Electroencephalography (EEG) from 10 electrodes and electromyography (EMG) from bilateral tibialis anterior muscles were acquired from 22 healthy young, 24 healthy older and 20 adults with PD. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence were assessed for EEG from bilateral sensorimotor cortices and EMG during the double-support phase of the gait cycle. CMC and EMG power at low beta frequencies (13–21 Hz) was significantly decreased in older and PD participants compared to young people, but there was no difference between older and PD groups. Older and PD participants spent shorter time in the swing phase than young individuals. These findings indicate age-related changes in the temporal coordination of gait. The decrease in low-beta CMC suggests reduced cortical input to spinal motor neurons in older people during the double-support phase. We also observed multiple changes in electrophysiological measures at low-gamma frequencies during treadmill compared to overground walking, indicating task-dependent differences in corticospinal locomotor control. These findings may be affected by artefacts and should be interpreted with caution.
Collapse
|
28
|
Muscle coordination analysis by time-varying muscle synergy extraction during cycling across various mechanical conditions. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Esmaeili J, Maleki A. Comparison of muscle synergies extracted from both legs during cycling at different mechanical conditions. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:827-838. [PMID: 31161596 DOI: 10.1007/s13246-019-00767-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
Muscle synergies are the building blocks for generating movement by the central nervous system (CNS). According to this hypothesis, CNS decreases the complexity of motor control by combination of a small number of muscle synergies. The aim of this work is to investigate similarity of muscle synergies during cycling across various mechanical conditions. Twenty healthy subjects performed three 6- min cycling tasks at over a range of rotational speed (40, 50, and 60 rpm) and resistant torque (3, 5, and 7 N/m). Surface electromyography (sEMG) signals were recorded during pedaling from eight muscles of the right and left legs. We extracted four synchronous muscle synergies by using the non-negative matrix factorization (NMF) method. Mean and standard deviation of the goodness of the signal reconstruction (R2) for all subjects was obtained 0.9898 ± 0.0535. We investigated the functional roles of both leg muscles during cycling by synchronous muscle synergy extraction. We compared the muscle synergies extracted from all subjects in all mechanical conditions. The total mean and standard deviation of the similarity of synergy vectors for all subjects in all mechanical conditions was obtained 0.8788 ± 0.0709. We found the high degrees of similarity among the sets of synchronous muscle synergies across mechanical conditions and also across different subjects. Our results demonstrated that different subjects at different mechanical conditions use the same motor control strategies for cycling, despite inter-individual variability of muscle patterns.
Collapse
Affiliation(s)
- Javad Esmaeili
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Ali Maleki
- Biomedical Engineering Department, Semnan University, Semnan, Iran.
| |
Collapse
|
30
|
Mohr M, von Tscharner V, Whittaker JL, Emery CA, Nigg BM. Quadriceps-hamstrings intermuscular coherence during single-leg squatting 3-12 years following a youth sport-related knee injury. Hum Mov Sci 2019; 66:273-284. [PMID: 31078946 DOI: 10.1016/j.humov.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to determine the degree of co-contraction as per electromyographic gamma-band intermuscular coherence of the quadricep (Q) and hamstring (H) muscles during single-leg squatting (SLS), and to assess the influence of sex and self-reported knee complaints on the association between knee injury history and medial and lateral Q-H intermuscular coherence. Participants included 34 individuals who suffered a youth sport-related intra-articular knee injury 3-12 years previously, and 37 individuals with no knee injury history. Surface electromyographic signals were recorded from medial and lateral thigh muscles bilaterally to determine the gamma-band (30-60 Hz) intermuscular coherence between medial and lateral Q-H muscle pairs during SLS. Multivariable linear regression (α = 0.05) was performed to investigate the relationship between knee injury history (main exposure) and medial and lateral Q-H coherence (outcome) while accounting for the influence of sex and self-reported knee pain and symptoms (covariates). The median age of participants was 25 (range 18-30) and 67% were female. Q-H gamma-band coherence was present for 60-90% of legs. Medial and lateral Q-H coherence was higher in females compared to males. There was no evidence for an association between medial Q-H coherence, knee injury history, knee pain, or symptoms. There was evidence for an association between knee injury history and lateral Q-H coherence, which was modified by sex such that previously injured males demonstrated reduced Q-H coherence compared to uninjured males. These finding suggest that females demonstrate a more pronounced Q-H co-contraction strategy during a SLS than males regardless of knee injury history. Further, that male who suffered a youth sport-related knee injury 3-12 years previously demonstrate less Q-H co-contraction during a SLS than uninjured males. The mechanisms behind differences in neuromuscular control between males and females as well as previously injured and uninjured males require further investigation.
Collapse
Affiliation(s)
- Maurice Mohr
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Alberta, Canada.
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Jackie L Whittaker
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Alberta, Canada; The Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Carolyn A Emery
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Alberta, Canada; The Alberta Children's Hospital Research Institute and McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
31
|
Zych M, Rankin I, Holland D, Severini G. Temporal and spatial asymmetries during stationary cycling cause different feedforward and feedback modifications in the muscular control of the lower limbs. J Neurophysiol 2019; 121:163-176. [DOI: 10.1152/jn.00482.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Motor adaptations are useful for studying the way in which the lower limbs are controlled by the brain. However, motor adaptation paradigms for the lower limbs are typically based on locomotion tasks, where the necessity of maintaining postural stability is the main driver of adaptation and could possibly mask other underlying processes. In this study we investigated whether small temporal or spatial asymmetries can trigger motor adaptations during stationary cycling, where stability is not directly compromised. Fourteen healthy individuals participated in two experiments: in one of the experiments, the angle between the crank arms of the pedals was altered by 10° to induce a temporal asymmetry; in the other experiment, the length of the right pedal was shortened by 2.4 cm to induce a spatial asymmetry. We recorded the acceleration of the crank arms and the electromographic signals of 16 muscles (8 per leg). The analysis of the accelerometer data was used to investigate the presence of motor adaptations. Muscle synergy analysis was performed on each side to quantify changes in neuromuscular control. We found that motor adaptations are present in response to temporal asymmetries and are obtained by progressively shifting the activation patterns of two synergies on the right leg. Spatial asymmetries, on the other hand, appear to trigger a feedback-driven response that does not present an aftereffect. This response is characterized by a steplike decrease in activity in the right gastrocnemius when the asymmetry is present and likely reflects the altered task demands. NEW & NOTEWORTHY The processes driving lower limb motor adaptations are not fully clear, and previous research appears to indicate that adaptations are mainly driven by stability. We show that lower limb adaptations can be obtained also in the absence of an explicit balance threat. We also show that adaptations are present when kinematic error cannot be compensated for, suggesting the presence of intrinsic error measures regulating the timing of activation of the two legs.
Collapse
Affiliation(s)
- Magdalena Zych
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Ian Rankin
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Donal Holland
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
32
|
Hu G, Yang W, Chen X, Qi W, Li X, Du Y, Xie P. Estimation of Time-Varying Coherence Amongst Synergistic Muscles During Wrist Movements. Front Neurosci 2018; 12:537. [PMID: 30131672 PMCID: PMC6090894 DOI: 10.3389/fnins.2018.00537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) controls the limb movement by modulating multiple skeletal muscles with synergistic modules and neural oscillations with different frequencies between the activated muscles. Several researchers have found intermuscular coherence existing within the synergistic muscle pairs, and pointed out that the intermuscular synchronization existed when functional forces were generated. However, few studies involved the time-varying characteristics of the intermuscular coherence in each synergy module though all activated muscles keep in a dynamic and varying process. Therefore, this study aims to explore the time-varying coherence amongst synergistic muscles during movements based on the combination of the non-negative matrix factorization (NMF) method and the time-frequency coherence (TFC) method. We applied these methods into the electromyogram (EMG) signals recorded from eight muscles involved in the sequence of the wrist movements [wrist flexion (WF), wrist flexion transmission to wrist extension (MC) and wrist extension (WE)] in 12 healthy people. The results showed three synergistic flexor pairs (FCR-PL, FCR-FDS, and PL-FDS) in the WF stage and three extensor pairs (ECU-ECR, ECU-B, and ECR-B) in both MC and WE stages. Further analysis showed intermuscular coherence between each pairwise synergistic muscles. The intermuscular coherence between the flexor muscle pairs was mainly observed in the beta band (15-35 Hz) during the WF stage, and that amongst the extensor muscle pairs was also observed in the beta band during the WE stage. However, the intermuscular coherence between the extensor muscle pairs mainly on gamma band during the MC stage. Additionally, compared to the flexor muscle pairs, the intermuscular coherence of the extensor muscle pairs were lower in the WF stage, and higher in both MC and WE stages. These results demonstrated the time-varying mechanisms of the synergistic modulation and synchronous oscillation in motor-control system. This study contributes to expanded researches for motor control.
Collapse
Affiliation(s)
- Guiting Hu
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Wenjuan Yang
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoling Chen
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Wenjing Qi
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Xinxin Li
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Yihao Du
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Ping Xie
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
33
|
Effect of Task Failure on Intermuscular Coherence Measures in Synergistic Muscles. Appl Bionics Biomech 2018; 2018:4759232. [PMID: 29967654 PMCID: PMC6008706 DOI: 10.1155/2018/4759232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/21/2018] [Indexed: 12/01/2022] Open
Abstract
The term “task failure” describes the point when a person is not able to maintain the level of force required by a task. As task failure approaches, the corticospinal command to the muscles increases to maintain the required level of force in the face of a decreased mechanical efficacy. Nevertheless, most motor tasks require the synergistic recruitment of several muscles. How this recruitment is affected by approaching task failure is still not clear. The increase in the corticospinal drive could be due to an increase in synergistic recruitment or to overlapping commands sent to the muscles individually. Herein, we investigated these possibilities by combining intermuscular coherence and synergy analysis on signals recorded from three muscles of the quadriceps during dynamic leg extension tasks. We employed muscle synergy analysis to investigate changes in the coactivation of the muscles. Three different measures of coherence were used. Pooled coherence was used to estimate the command synchronous to all three muscles, pairwise coherence the command shared across muscle pairs and residual coherence the command peculiar to each couple of muscles. Our analysis highlights an overall decrease in synergistic command at task failure and an intensification of the contribution of the nonsynergistic shared command.
Collapse
|
34
|
Ortega-Auriol PA, Besier TF, Byblow WD, McMorland AJC. Fatigue Influences the Recruitment, but Not Structure, of Muscle Synergies. Front Hum Neurosci 2018; 12:217. [PMID: 29977197 PMCID: PMC6021531 DOI: 10.3389/fnhum.2018.00217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/09/2018] [Indexed: 01/18/2023] Open
Abstract
The development of fatigue elicits multiple adaptations from the neuromuscular system. Muscle synergies are common patterns of neuromuscular activation that have been proposed as the building blocks of human movement. We wanted to identify possible adaptations of muscle synergies to the development of fatigue in the upper limb. Recent studies have reported that synergy structure remains invariant during the development of fatigue, but these studies did not examine isolated synergies. We propose a novel approach to characterise synergy adaptations to fatigue by taking advantage of the spatial tuning of synergies. This approach allows improved identification of changes to individual synergies that might otherwise be confounded by changing contributions of overlapping synergies. To analyse upper limb synergies, we applied non-negative matrix factorization to 14 EMG signals from muscles of 11 participants performing isometric contractions. A preliminary multidirectional task was used to identify synergy directional tuning. A subsequent fatiguing task was designed to fatigue the participants in their synergies’ preferred directions. Both tasks provided virtual reality feedback of the applied force direction and magnitude, and were performed at 40% of each participant’s maximal voluntary force. Five epochs were analysed throughout the fatiguing task to identify progressive changes of EMG amplitude, median frequency, synergy structure, and activation coefficients. Three to four synergies were sufficient to account for the variability contained in the original data. Synergy structure was conserved with fatigue, but interestingly synergy activation coefficients decreased on average by 24.5% with fatigue development. EMG amplitude did not change systematically with fatigue, whereas EMG median frequency consistently decreased across all muscles. These results support the notion of a neuromuscular modular organisation as the building blocks of human movement, with adaptations to synergy recruitment occurring with fatigue. When synergy tuning properties are considered, the reduction of activation of muscle synergies may be a reliable marker to identify fatigue.
Collapse
Affiliation(s)
- Pablo A Ortega-Auriol
- Movement Neuroscience Laboratory, Department of Exercise Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor F Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Movement Neuroscience Laboratory, Department of Exercise Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Mohr M, Schön T, von Tscharner V, Nigg BM. Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations. Front Physiol 2018; 9:566. [PMID: 29867587 PMCID: PMC5966566 DOI: 10.3389/fphys.2018.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction: The vasti muscles have to work in concert to control knee joint motion during movements like walking, running, or squatting. Coherence analysis between surface electromyography (EMG) signals is a common technique to study muscle synchronization during such movements and gain insight into strategies of the central nervous system to optimize neuromuscular performance. However, different assessment methods related to EMG data acquisition, e.g., different electrode configurations or amplifier technologies, have produced inconsistent observations. Therefore, the aim of this study was to elucidate the effect of different EMG acquisition techniques (monopolar vs. bipolar electrode configuration, potential vs. current amplifier) on the magnitude, reliability, and sensitivity of intermuscular coherence between two vasti muscles during stable and unstable squatting exercises. Methods: Surface EMG signals from vastus lateralis (VL) and medialis (VM) were obtained from eighteen adults while performing series of stable und unstable bipedal squats. The EMG signals were acquired using three different recording techniques: (1) Bipolar with a potential amplifier, (2) monopolar with a potential amplifier, and (3) monopolar electrodes with a current amplifier. VL-VM coherence between the respective raw EMG signals was determined during two trials of stable squatting and one trial of unstable squatting to compare the coherence magnitude, reliability, and sensitivity between EMG recording techniques. Results: VL-VM coherence was about twice as high for monopolar recordings compared to bipolar recordings for all squatting exercises while coherence was similar between monopolar potential and current recordings. Reliability measures were comparable between recording systems while the sensitivity to an increase in intermuscular coherence during unstable vs. stable squatting was lowest for the monopolar potential system. Discussion and Conclusion: The choice of electrode configuration can have a significant effect on the magnitude of EMG-EMG coherence, which may explain previous inconsistencies in the literature. A simple simulation of cross-talk could not explain the large differences in intermuscular coherence. It is speculated that inevitable errors in the alignment of the bipolar electrodes with the muscle fiber direction leads to a reduction of information content in the differential EMG signals and subsequently to a lower resolution for the detection of intermuscular coherence.
Collapse
Affiliation(s)
- Maurice Mohr
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Tanja Schön
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Comparison of Initialization Techniques for the Accurate Extraction of Muscle Synergies from Myoelectric Signals via Nonnegative Matrix Factorization. Appl Bionics Biomech 2018; 2018:3629347. [PMID: 29853993 PMCID: PMC5964491 DOI: 10.1155/2018/3629347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 11/29/2022] Open
Abstract
The main goal of this work was to assess the performance of different initializations of matrix factorization algorithms for an accurate identification of muscle synergies. Currently, nonnegative matrix factorization (NNMF) is the most commonly used method to identify muscle synergies. However, it has been shown that NNMF performance might be affected by different kinds of initialization. The present study aims at optimizing the traditional NNMF initialization for data with partial or complete temporal dependencies. For this purpose, three different initializations are used: random, SVD-based, and sparse. NNMF was used to identify muscle synergies from simulated data as well as from experimental surface EMG signals. Simulated data were generated from synthetic independent and dependent synergy vectors (i.e., shared muscle components), whose activation coefficients were corrupted by simulating controlled degrees of correlation. Similarly, EMG data were artificially modified, making the extracted activation coefficients temporally dependent. By measuring the quality of identification of the original synergies underlying the data, it was possible to compare the performance of different initialization techniques. Simulation results demonstrate that sparse initialization performs significantly better than all other kinds of initialization in reconstructing muscle synergies, regardless of the correlation level in the data.
Collapse
|
37
|
Charissou C, Amarantini D, Baurès R, Berton E, Vigouroux L. Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers. Eur J Appl Physiol 2017; 117:2309-2320. [PMID: 28932987 DOI: 10.1007/s00421-017-3718-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE The mechanisms governing the control of musculoskeletal redundancy remain to be fully understood. The hand is highly redundant, and shows different functional role of extensors according to its configuration for a same functional task of finger flexion. Through intermuscular coherence analysis combined with hand musculoskeletal modelling during maximal isometric hand contractions, our aim was to better understand the neural mechanisms underlying the control of muscle force coordination and agonist-antagonist co-contraction. METHODS Thirteen participants performed maximal isometric flexions of the fingers in two configurations: power grip (Power) and finger-pressing on a surface (Press). Hand kinematics and force/moment measurements were used as inputs in a musculoskeletal model of the hand to determine muscular tensions and co-contraction. EMG-EMG coherence analysis was performed between wrist and finger flexors and extensor muscle pairs in alpha, beta and gamma frequency bands. RESULTS Concomitantly with tailored muscle force coordination and increased co-contraction between Press and Power (mean difference: 48.08%; p < 0.05), our results showed muscle-pair-specific modulation of intermuscular coupling, characterized by pair-specific modulation of EMG-EMG coherence between Power and Press (p < 0.05), and a negative linear association between co-contraction and intermuscular coupling for the ECR/FCR agonist-antagonist muscle pair (r = - 0.65; p < 0.05). CONCLUSIONS This study brings new evidence that pair-specific modulation of EMG-EMG coherence is related to modulation of muscle force coordination during hand contractions. Our results highlight the functional importance of intermuscular coupling as a mechanism contributing to the control of muscle force synergies and agonist-antagonist co-contraction.
Collapse
Affiliation(s)
- Camille Charissou
- CNRS, ISM UMR 7287, Aix-Marseille Université, Marseille, France. .,ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, Toulouse, France. .,Institut des Sciences du Mouvement-Etienne-Jules Marey, CP 910, 163 av. de Luminy, 13288, Marseille Cedex 9, France.
| | - David Amarantini
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Robin Baurès
- CerCo, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eric Berton
- CNRS, ISM UMR 7287, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
38
|
Laine CM, Valero-Cuevas FJ. Intermuscular coherence reflects functional coordination. J Neurophysiol 2017; 118:1775-1783. [PMID: 28659460 DOI: 10.1152/jn.00204.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Coherence analysis has the ability to identify the presence of common descending drive shared by motor unit pools and reveals its spectral properties. However, the link between spectral properties of shared neural drive and functional interactions among muscles remains unclear. We assessed shared neural drive between muscles of the thumb and index finger while participants executed two mechanically distinct precision pinch tasks, each requiring distinct functional coordination among muscles. We found that shared neural drive was systematically reduced or enhanced at specific frequencies of interest (~10 and ~40 Hz). While amplitude correlations between surface EMG signals also exhibited changes across tasks, only their coherence has strong physiological underpinnings indicative of neural binding. Our results support the use of intermuscular coherence as a tool to detect when coactivated muscles are members of a functional group or synergy of neural origin. Furthermore, our results demonstrate the advantages of considering neural binding at 10, ~20, and >30 Hz, as indicators of task-dependent neural coordination strategies.NEW & NOTEWORTHY It is often unclear whether correlated activity among muscles reflects their neural binding or simply reflects the constraints defining the task. Using the fact that high-frequency coherence between EMG signals (>6 Hz) is thought to reflect shared neural drive, we demonstrate that coherence analysis can reveal the neural origin of distinct muscle coordination patterns required by different tasks.
Collapse
Affiliation(s)
- Christopher M Laine
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| |
Collapse
|
39
|
Frère J. Spectral properties of multiple myoelectric signals: New insights into the neural origin of muscle synergies. Neuroscience 2017; 355:22-35. [PMID: 28483469 DOI: 10.1016/j.neuroscience.2017.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
It is still unclear if muscle synergies reflect neural strategies or mirror the underlying mechanical constraints. Therefore, this study aimed to verify the consistency of muscle groupings between the synergies based on the linear envelope (LE) of muscle activities and those incorporating the time-frequency (TF) features of the electromyographic (EMG) signals. Twelve healthy participants performed six 20-m walking trials at a comfort and fast self-selected speed, while the activity of eleven lower limb muscles was recorded by means of surface EMG. Wavelet-transformed EMG was used to obtain the TF pattern and muscle synergies were extracted by non-negative matrix factorization. When five muscle synergies were extracted, both methods defined similar muscle groupings whatever the walking speed. When accounting the reconstruction level of the initial dataset, a new TF synergy emerged. This new synergy dissociated the activity of the rectus femoris from those of the vastii muscles (synergy #1) and from the one of the tensor fascia latae (synergy #5). Overall, extracting TF muscle synergies supports the neural origin of muscle synergies and provides an opportunity to distinguish between prescriptive and descriptive muscle synergies.
Collapse
Affiliation(s)
- Julien Frère
- University of Lorraine, Laboratory "Development, Adaption and Disability" (EA 3450), Faculty of Sports Sciences, 30 rue du Jardin Botanique, CS 30156, F-54603 Villers-lès-Nancy, France.
| |
Collapse
|
40
|
Pizzamiglio S, De Lillo M, Naeem U, Abdalla H, Turner DL. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Front Physiol 2017; 7:668. [PMID: 28119620 PMCID: PMC5220015 DOI: 10.3389/fphys.2016.00668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Adaptation of arm reaching in a novel force field involves co-contraction of upper limb muscles, but it is not known how the co-ordination of multiple muscle activation is orchestrated. We have used intermuscular coherence (IMC) to test whether a coherent intermuscular coupling between muscle pairs is responsible for novel patterns of activation during adaptation of reaching in a force field. Subjects (N = 16) performed reaching trials during a null force field, then during a velocity-dependent force field and then again during a null force field. Reaching trajectory error increased during early adaptation to the force-field and subsequently decreased during later adaptation. Co-contraction in the majority of all possible muscle pairs also increased during early adaptation and decreased during later adaptation. In contrast, IMC increased during later adaptation and only in a subset of muscle pairs. IMC consistently occurred in frequencies between ~40–100 Hz and during the period of arm movement, suggesting that a coherent intermuscular coupling between those muscles contributing to adaptation enable a reduction in wasteful co-contraction and energetic cost during reaching.
Collapse
Affiliation(s)
- Sara Pizzamiglio
- Neuroplasticity and Neurorehabilitation Doctoral Training Programme, Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East LondonLondon, UK; Department of Computer Science, School of Architecture, Computing and Engineering, University of East LondonLondon, UK
| | - Martina De Lillo
- Neuroplasticity and Neurorehabilitation Doctoral Training Programme, Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East London London, UK
| | - Usman Naeem
- Department of Computer Science, School of Architecture, Computing and Engineering, University of East London London, UK
| | - Hassan Abdalla
- Department of Computer Science, School of Architecture, Computing and Engineering, University of East London London, UK
| | - Duncan L Turner
- Neuroplasticity and Neurorehabilitation Doctoral Training Programme, Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East LondonLondon, UK; University College London Partners Centre for NeurorehabilitationLondon, UK
| |
Collapse
|
41
|
Sawers A, Pai YCC, Bhatt T, Ting LH. Neuromuscular responses differ between slip-induced falls and recoveries in older adults. J Neurophysiol 2016; 117:509-522. [PMID: 27832608 DOI: 10.1152/jn.00699.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022] Open
Abstract
How does the robust control of walking and balance break down during a fall? Here, as a first step in identifying the neuromuscular determinants of falls, we tested the hypothesis that falls and recoveries are characterized by differences in neuromuscular responses. Using muscle synergy analysis, conventional onset latencies, and peak activity, we identified differences in muscle coordination between older adults who fell and those who recovered from a laboratory-induced slip. We found that subjects who fell recruited fewer muscle synergies than those who recovered, suggesting a smaller motor repertoire. During slip trials, compared with subjects who recovered, subjects who fell had delayed knee flexor and extensor onset times in the leading/slip leg, as well as different muscle synergy structure involving those muscles. Therefore, the ability to coordinate muscle activity around the knee in a timely manner may be critical to avoiding falls from slips. Unique to subjects who fell during slip trials were greater bilateral (interlimb) muscle activation and the recruitment of a muscle synergy with excessive coactivation. These differences in muscle coordination between subjects who fell and those who recovered could not be explained by differences in gait-related variables at slip onset (i.e., initial motion state) or variations in slip difficulty, suggesting that differences in muscle coordination may reflect differences in neural control of movement rather than biomechanical constraints imposed by perturbation or initial walking mechanics. These results are the first step in determining the causation of falls from the perspective of muscle coordination. They suggest that there may be a neuromuscular basis for falls that could provide new insights into treatment and prevention. Further research comparing the muscle coordination and mechanics of falls and recoveries within subjects is necessary to establish the neuromuscular causation of falls. NEW & NOTEWORTHY A central question relevant to the prevention of falls is: How does the robust control of walking and balance break down during a fall? Previous work has focused on muscle coordination during successful balance recoveries or the kinematics and kinetics of falls. Here, for the first time, we identified differences in the spatial and temporal coordination of muscles among older adults who fell and those who recovered from an unexpected slip.
Collapse
Affiliation(s)
- Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, Illinois;
| | - Yi-Chung Clive Pai
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Lena H Ting
- W. H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia; and.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
42
|
Ishii T, Narita N, Endo H. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects. Physiol Behav 2016; 160:35-42. [PMID: 27059322 DOI: 10.1016/j.physbeh.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/25/2016] [Accepted: 03/17/2016] [Indexed: 02/07/2023]
Abstract
This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG transfer function and EMG-EMG coherence function analyses may also be useful to diagnose the pathologically in-coordinated features in jaw and neck muscle activities in temporomandibular disorders and whiplash-associated disorders during critical chewing performance.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Nihon University School of Dentistry at Matsudo, Department of Removable Prosthodontics, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | - Noriyuki Narita
- Nihon University School of Dentistry at Matsudo, Department of Removable Prosthodontics, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | - Hiroshi Endo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
43
|
Charissou C, Vigouroux L, Berton E, Amarantini D. Fatigue- and training-related changes in ‘beta’ intermuscular interactions between agonist muscles. J Electromyogr Kinesiol 2016; 27:52-9. [DOI: 10.1016/j.jelekin.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
|