1
|
Taga M, Hong YNG, Charalambous CC, Raju S, Hayes L, Lin J, Zhang Y, Shao Y, Houston M, Zhang Y, Mazzoni P, Roh J, Schambra HM. Corticospinal and corticoreticulospinal projections have discrete but complementary roles in chronic motor behaviors after stroke. J Neurophysiol 2024; 132:1917-1936. [PMID: 39503588 PMCID: PMC11687835 DOI: 10.1152/jn.00301.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
After corticospinal tract (CST) stroke, several motor deficits can emerge in the upper extremity (UE), including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE, but their relationship to motor behaviors after stroke remains uncertain. In this cross-sectional study of 14 chronic stroke and 27 healthy subjects, we examined two questions: whether the ipsilesional CST and contralesional CReST differentially relate to chronic motor behaviors in the paretic arm and hand and whether the severity of motor deficits differs by proximal versus distal location. In the paretic biceps and first dorsal interosseous muscles, we used transcranial magnetic stimulation to measure the projection strengths of the ipsilesional CST and contralesional CReST. We also used quantitative testing to measure strength, motor control, and muscle individuation in each muscle. We found that stroke subjects had muscle strength comparable to healthy subjects but poorer motor control and muscle individuation. In both paretic muscles, stronger ipsilesional CST projections related to better motor control, whereas stronger contralesional CReST projections related to better muscle strength. Stronger CST projections related to better individuation in the biceps alone. The severity of motor control and individuation deficits was comparable in the arm and hand. These findings suggest that the ipsilesional CST and contralesional CReST have specialized but complementary roles in motor behaviors of the paretic arm and hand. They also suggest that deficits in motor control and muscle individuation are not segmentally biased, underscoring the functional extent and efficacy of these pathways.NEW & NOTEWORTHY The corticospinal (CST) and corticoreticulospinal (CReST) tracts are two major descending motor pathways. We examined their relationships to motor behaviors in paretic arm and hand muscles in chronic stroke. Stronger ipsilesional CST projections related to better motor control, whereas stronger contralesional CReST projections related to better muscle strength. Stronger CST projections are also uniquely related to better biceps individuation. These findings support the notion of specialized but complementary contributions of these pathways to human motor function.
Collapse
Affiliation(s)
- Myriam Taga
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Yoon N G Hong
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Charalambos C Charalambous
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sharmila Raju
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Leticia Hayes
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jing Lin
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Yian Zhang
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Pietro Mazzoni
- Department of Neurology, Ohio State University, Columbus, Ohio, United States
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Heidi M Schambra
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
2
|
Taga M, Hong YNG, Charalambous CC, Raju S, Hayes L, Lin J, Zhang Y, Shao Y, Houston M, Zhang Y, Mazzoni P, Roh J, Schambra HM. Corticospinal and corticoreticulospinal projections benefit motor behaviors in chronic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588112. [PMID: 38645144 PMCID: PMC11030245 DOI: 10.1101/2024.04.04.588112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
After corticospinal tract (CST) stroke, several motor deficits in the upper extremity (UE) emerge, including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE and may have different innervation patterns for the proximal and distal UE segments. These patterns may underpin distinct pathway relationships to separable motor behaviors. In this cross-sectional study of 15 chronic stroke patients and 28 healthy subjects, we examined two key questions: (1) whether segmental motor behaviors differentially relate to ipsilesional CST and contralesional CReST projection strengths, and (2) whether motor behaviors segmentally differ in the paretic UE. We measured strength, motor control, and muscle individuation in a proximal (biceps, BIC) and distal muscle (first dorsal interosseous, FDI) of the paretic UE. We measured the projection strengths of the ipsilesional CST and contralesional CReST to these muscles using transcranial magnetic stimulation (TMS). Stroke subjects had abnormal motor control and muscle individuation despite strength comparable to healthy subjects. In stroke subjects, stronger ipsilesional CST projections were linked to superior motor control in both UE segments, whereas stronger contralesional CReST projections were linked to superior muscle strength and individuation in both UE segments. Notably, both pathways also shared associations with behaviors in the proximal segment. Motor control deficits were segmentally comparable, but muscle individuation was worse for distal motor performance. These results suggest that each pathway has specialized contributions to chronic motor behaviors but also work together, with varying levels of success in supporting chronic deficits. Key points summary Individuals with chronic stroke typically have deficits in strength, motor control, and muscle individuation in their paretic upper extremity (UE). It remains unclear how these altered behaviors relate to descending motor pathways and whether they differ by proximal and distal UE segment.In this study, we used transcranial magnetic stimulation (TMS) to examine projection strengths of the ipsilesional corticospinal tract (CST) and contralesional corticoreticulospinal tract (CReST) with respect to quantitated motor behaviors in chronic stroke.We found that stronger ipsilesional CST projections were associated with better motor control in both UE segments, whereas stronger contralesional CReST projections were associated with better strength and individuation in both UE segments. In addition, projections of both pathways shared associations with motor behaviors in the proximal UE segment.We also found that deficits in strength and motor control were comparable across UE segments, but muscle individuation was worse with controlled movement in the distal UE segment.These results suggest that the CST and CReST have specialized contributions to chronic motor behaviors and also work together, although with different degrees of efficacy.
Collapse
|
3
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
4
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Akalu Y, Frazer AK, Howatson G, Pearce AJ, Siddique U, Rostami M, Tallent J, Kidgell DJ. Identifying the role of the reticulospinal tract for strength and motor recovery: A scoping review of nonhuman and human studies. Physiol Rep 2023; 11:e15765. [PMID: 37474275 PMCID: PMC10359156 DOI: 10.14814/phy2.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
In addition to the established postural control role of the reticulospinal tract (RST), there has been an increasing interest on its involvement in strength, motor recovery, and other gross motor functions. However, there are no reviews that have systematically assessed the overall motor function of the RST. Therefore, we aimed to determine the role of the RST underpinning motor function and recovery. We performed a literature search using Ovid Medline, Embase, CINAHL Plus, and Scopus to retrieve papers using key words for RST, strength, and motor recovery. Human and animal studies which assessed the role of RST were included. Studies were screened and 32 eligible studies were included for the final analysis. Of these, 21 of them were human studies while the remaining were on monkeys and rats. Seven experimental animal studies and four human studies provided evidence for the involvement of the RST in motor recovery, while two experimental animal studies and eight human studies provided evidence for strength gain. The RST influenced gross motor function in two experimental animal studies and five human studies. Overall, the RST has an important role for motor recovery, gross motor function and at least in part, underpins strength gain. The role of RST for strength gain in healthy people and its involvement in spasticity in a clinical population has been limitedly described. Further studies are required to ascertain the role of the RST's role in enhancing strength and its contribution to the development of spasticity.
Collapse
Affiliation(s)
- Yonas Akalu
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- Department of Human PhysiologySchool of MedicineUniversity of GondarGondarEthiopia
| | - Ashlyn K. Frazer
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Glyn Howatson
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Alan J. Pearce
- College of Science, Health and EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Mohamad Rostami
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Sánchez N, Winstein CJ. Lost in Translation: Simple Steps in Experimental Design of Neurorehabilitation-Based Research Interventions to Promote Motor Recovery Post-Stroke. Front Hum Neurosci 2021; 15:644335. [PMID: 33958994 PMCID: PMC8093777 DOI: 10.3389/fnhum.2021.644335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Stroke continues to be a leading cause of disability. Basic neurorehabilitation research is necessary to inform the neuropathophysiology of impaired motor control, and to develop targeted interventions with potential to remediate disability post-stroke. Despite knowledge gained from basic research studies, the effectiveness of research-based interventions for reducing motor impairment has been no greater than standard of practice interventions. In this perspective, we offer suggestions for overcoming translational barriers integral to experimental design, to augment traditional protocols, and re-route the rehabilitation trajectory toward recovery and away from compensation. First, we suggest that researchers consider modifying task practice schedules to focus on key aspects of movement quality, while minimizing the appearance of compensatory behaviors. Second, we suggest that researchers supplement primary outcome measures with secondary measures that capture emerging maladaptive compensations at other segments or joints. Third, we offer suggestions about how to maximize participant engagement, self-direction, and motivation, by embedding the task into a meaningful context, a strategy more likely to enable goal-action coupling, associated with improved neuro-motor control and learning. Finally, we remind the reader that motor impairment post-stroke is a multidimensional problem that involves central and peripheral sensorimotor systems, likely influenced by chronicity of stroke. Thus, stroke chronicity should be given special consideration for both participant recruitment and subsequent data analyses. We hope that future research endeavors will consider these suggestions in the design of the next generation of intervention studies in neurorehabilitation, to improve translation of research advances to improved participation and quality of life for stroke survivors.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Adam R, Schaeffer DJ, Johnston K, Menon RS, Everling S. Structural alterations in cortical and thalamocortical white matter tracts after recovery from prefrontal cortex lesions in macaques. Neuroimage 2021; 232:117919. [PMID: 33652141 DOI: 10.1016/j.neuroimage.2021.117919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.
Collapse
Affiliation(s)
- Ramina Adam
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, PA, United States
| | - Kevin Johnston
- The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
| |
Collapse
|
8
|
Rahimi M, Swann Z, Honeycutt CF. Does exposure to startle impact voluntary reaching movements in individuals with severe-to-moderate stroke? Exp Brain Res 2021; 239:745-753. [PMID: 33392695 PMCID: PMC7943527 DOI: 10.1007/s00221-020-06005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
When movements of individuals with stroke (iwS) are elicited by startling acoustic stimulus (SAS), reaching movements are faster, further, and directed away from the body. However, these startle-evoked movements also elicit task-inappropriate flexor activity, raising concerns that chronic exposure to startle might also induce heightened flexor activity during voluntarily elicited movement. The objective of this study is to evaluate the impact of startle exposure on voluntary movements during point-to-point reaching in individuals with moderate and severe stroke. We hypothesize that startle exposure will increase task-inappropriate activity in flexor muscles, which will be associated with worse voluntarily initiated reaching performance (e.g. decreased distance, displacement, and final accuracy). Eleven individuals with moderate-to-severe stroke (UEFM = 8–41/66 and MAS = 0–4/4) performed voluntary point-to-point reaching with 1/3 of trials elicited by an SAS. We used electromyography to measure activity in brachioradialis (BR), biceps (BIC), triceps lateral head (TRI), pectoralis (PEC), anterior deltoid (AD), and posterior deltoid (PD). Conversely to our hypothesis, exposure to startle did not increase abnormal flexion but rather antagonist activity in the elbow flexors and shoulder horizontal adductors decreased, suggesting that abnormal flexor/extensor co-contraction was reduced. This reduction of flexion led to increased reaching distance (18.2% farther), movement onset (8.6% faster), and final accuracy (16.1% more accurate) by the end of the session. This study offers the first evidence that exposure to startle in iwS does not negatively impact voluntary movement; moreover, exposure may improve volitionally activated reaching movements by decreasing abnormal flexion activity.
Collapse
Affiliation(s)
- Marziye Rahimi
- Ira A. Fulton Schools of Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Arizona State University, Mailcode 9709, 611 E Orange St, Tempe, AZ, 85281, USA.
| | - Zoe Swann
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Claire F Honeycutt
- School of Biological and Health Science Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287, USA
| |
Collapse
|
9
|
Wilkins KB, Dewald JPA, Yao J. Intervention-induced changes in neural connectivity during motor preparation may affect cortical activity at motor execution. Sci Rep 2020; 10:7326. [PMID: 32355238 PMCID: PMC7193567 DOI: 10.1038/s41598-020-64179-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Effective interventions have demonstrated the ability to improve motor function by reengaging ipsilesional resources, which appears to be critical and feasible for hand function recovery even in individuals with severe chronic stroke. However, previous studies focus on changes in brain activity related to motor execution. How changes in motor preparation may facilitate these changes at motor execution is still unclear. To address this question, 8 individuals with severe chronic hemiparetic stroke participated in a device-assisted intervention for seven weeks. We then quantified changes in both coupling between regions during motor preparation and changes in topographical cortical activity at motor execution for both hand opening in isolation and together with the shoulder using high-density EEG. We hypothesized that intervention-induced changes in cortico-cortico interactions during motor preparation would lead to changes in activity at motor execution specifically towards an increased reliance on the ipsilesional hemisphere. In agreement with this hypothesis, we found that, following the intervention, individuals displayed a reduction in coupling from ipsilesional M1 to contralesional M1 within gamma frequencies during motor preparation for hand opening. This was followed by a reduction in activity in the contralesional primary sensorimotor cortex during motor execution. Similarly, during lifting and opening, a shift to negative coupling within ipsilesional M1 from gamma to beta frequencies was accompanied by an increase in ipsilesional primary sensorimotor cortex activity following the intervention. Together, these results show that intervention-induced changes in coupling within or between motor regions during motor preparation may affect cortical activity at execution.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
- Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
- Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
- Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
10
|
Wilkins KB, Yao J, Owen M, Karbasforoushan H, Carmona C, Dewald JPA. Limited capacity for ipsilateral secondary motor areas to support hand function post-stroke. J Physiol 2020; 598:2153-2167. [PMID: 32144937 DOI: 10.1113/jp279377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Ipsilateral-projecting corticobulbar pathways, originating primarily from secondary motor areas, innervate the proximal and even distal portions, although they branch more extensively at the spinal cord. It is currently unclear to what extent these ipsilateral secondary motor areas and subsequent cortical projections may contribute to hand function following stroke-induced damage to one hemisphere. In the present study, we provide both structural and functional evidence indicating that individuals increasingly rely on ipsilateral secondary motor areas, although at the detriment of hand function. Increased activity in ipsilateral secondary motor areas was associated with increased involuntary coupling between shoulder abduction and finger flexion, most probably as a result of the low resolution of these pathways, making it increasingly difficult to open the hand. These findings suggest that, although ipsilateral secondary motor areas may support proximal movements, they do not have the capacity to support distal hand function, particularly for hand opening. ABSTRACT Recent findings have shown connections of ipsilateral cortico-reticulospinal tract (CRST), predominantly originating from secondary motor areas to not only proximal, but also distal muscles of the arm. Following a unilateral stroke, CRST from the ipsilateral side remains intact and thus has been proposed as a possible backup system for post-stroke rehabilitation even for the hand. We argue that, although CRST from ipsilateral secondary motor areas can provide control for proximal joints, it is insufficient to control either hand or coordinated shoulder and hand movements as a result of its extensive spinal branching compared to contralateral corticospinal tract. To address this issue, we combined magnetic resonance imaging, high-density EEG, and robotics in 17 individuals with severe chronic hemiparetic stroke and 12 age-matched controls. We tested for changes in structural morphometry of the sensorimotor cortex and found that individuals with stroke demonstrated higher grey matter density in secondary motor areas ipsilateral to the paretic arm compared to controls. We then measured cortical activity when participants were attempting to generate hand opening either supported on a table or when lifting against a shoulder abduction load. The addition of shoulder abduction during hand opening increased reliance on ipsilateral secondary motor areas in stroke, but not controls. Crucially, the increased use of ipsilateral secondary motor areas was associated with decreased hand opening ability when lifting the arm as a result of involuntary coupling between the shoulder and wrist/finger flexors. Taken together, this evidence implicates a compensatory role for ipsilateral (i.e. contralesional) secondary motor areas post-stroke, although with no apparent capacity to support hand function.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Meriel Owen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Haleh Karbasforoushan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, USA.,Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, USA
| |
Collapse
|
11
|
Possible Contributions of Ipsilateral Pathways From the Contralesional Motor Cortex to the Voluntary Contraction of the Spastic Elbow Flexors in Stroke Survivors: A TMS Study. Am J Phys Med Rehabil 2020; 98:558-565. [PMID: 30672773 DOI: 10.1097/phm.0000000000001147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The contribution of the contralesional motor cortex to the impaired limbs is still controversial. The aim of this study was to investigate the role of descending projections from the contralesional hemisphere during voluntary elbow flexion on the paretic side. DESIGN Eleven healthy and 10 stroke subjects performed unilateral isometric elbow flexion tasks at various submaximal levels. Transcranial magnetic stimulation was delivered to the hotspot of biceps muscles ipsilateral to the target side (paretic side in stroke subjects or right side in controls) at rest and during elbow flexion tasks. Motor-evoked potential amplitudes of the contralateral resting biceps muscles, transcranial magnetic stimulation-induced ipsilateral force increment, and reflex torque and weakness of spastic elbow flexors were quantified. RESULTS The normalized motor-evoked potential amplitude increased with force level in both healthy and stroke subjects. However, stroke subjects exhibited significantly higher force increment compared with healthy subjects only at low level of elbow flexion but similar at moderate to high levels. The greater force increment significantly correlated with reflex torque of the spastic elbow flexors, but not weakness. CONCLUSIONS These results provide novel evidence that ipsilateral projections are not likely to contribute to strength but are correlated to spasticity of spastic-paretic elbow flexors after stroke.
Collapse
|
12
|
Adam R, Johnston K, Menon RS, Everling S. Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys. Neuroimage 2020; 207:116339. [DOI: 10.1016/j.neuroimage.2019.116339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
|
13
|
Beauchamp JA, Patterson JR, Heckman CJ, Dewald JPA. Experimentally Modifiable Parameters and Their Relation to the Tonic Vibration Reflex in Chronic Hemiparetic Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2302-2306. [PMID: 31946360 DOI: 10.1109/embc.2019.8857014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tonic vibration reflex (TVR), a reflexive muscle contraction resulting from muscle or tendon vibration, is a useful tool in assessing spinal motoneuron excitability, particularly in hyperexcitable conditions, such as in chronic hemiparetic stroke. The influence of experimental parameters, for example the type of vibratory stimulus and limb configuration, and their interactions on the TVR response in chronic stroke is unknown, yet this knowledge is crucial for designing experiments with reliable TVR responses. Therefore, we conducted a screening experiment of six potential driving factors affecting the TVR response, with a D-optimal split plot fractional design matrix consisting of thirty-two combinations for each of the four participants with chronic hemiparetic stroke. Our results suggest that pre-vibration muscle activation level, vibration frequency, and stimulus application force, are all significant contributors to the TVR response in chronic hemiparetic stroke, along with an interaction between elbow flexion angle and muscle activity level. This investigation highlights the sensitivity of the TVR response in chronic hemiparetic stroke and motivates future designed experiments in understanding this reflex as it relates to motoneuron excitability.
Collapse
|
14
|
Runnalls KD, Ortega-Auriol P, McMorland AJC, Anson G, Byblow WD. Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Exp Brain Res 2019; 237:3391-3408. [PMID: 31728596 DOI: 10.1007/s00221-019-05687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
To better understand how arm weight support (WS) can be used to alleviate upper limb impairment after stroke, we investigated the effects of WS on muscle activity, muscle synergy expression, and corticomotor excitability (CME) in 13 chronic stroke patients and 6 age-similar healthy controls. For patients, lesion location and corticospinal tract integrity were assessed using magnetic resonance imaging. Upper limb impairment was assessed using the Fugl-Meyer upper extremity assessment with patients categorised as either mild or moderate-severe. Three levels of WS were examined: low = 0, medium = 50 and high = 100% of full support. Surface EMG was recorded from 8 upper limb muscles, and muscle synergies were decomposed using non-negative matrix factorisation from data obtained during reaching movements to an array of 14 targets using the paretic or dominant arm. Interactions between impairment level and WS were found for the number of targets hit, and EMG measures. Overall, greater WS resulted in lower EMG levels, although the degree of modulation between WS levels was less for patients with moderate-severe compared to mild impairment. Healthy controls expressed more synergies than patients with moderate-severe impairment. Healthy controls and patients with mild impairment showed more synergies with high compared to low weight support. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) to which stimulus-response curves were fitted as a measure of corticomotor excitability (CME). The effect of WS on CME varied between muscles and across impairment level. These preliminary findings demonstrate that WS has direct and indirect effects on muscle activity, synergies, and CME and warrants further study in order to reduce upper limb impairment after stroke.
Collapse
Affiliation(s)
- Keith D Runnalls
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pablo Ortega-Auriol
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Greg Anson
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Remapping in Cerebral and Cerebellar Cortices Is Not Restricted by Somatotopy. J Neurosci 2019; 39:9328-9342. [PMID: 31611305 PMCID: PMC6867820 DOI: 10.1523/jneurosci.2599-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance, and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g., arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n = 26) across multiple terminals of the sensorimotor pathway. We first report that, in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the native representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous findings, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems. SIGNIFICANCE STATEMENT When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body parts, a phenomenon termed remapping. It is commonly thought that only body parts whose information is processed in regions neighboring the hand region could “take up” the resources of this now deprived region. Here we demonstrate that information from multiple body parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body parts have varying levels of overlap with the hand regions of the cerebral cortex and cerebellum, and do not necessarily neighbor the hand regions. We therefore propose that proximity between brain regions does not limit brain remapping.
Collapse
|
16
|
Brainstem and spinal cord MRI identifies altered sensorimotor pathways post-stroke. Nat Commun 2019; 10:3524. [PMID: 31388003 PMCID: PMC6684621 DOI: 10.1038/s41467-019-11244-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Damage to the corticospinal tract is widely studied following unilateral subcortical stroke, whereas less is known about changes to other sensorimotor pathways. This may be due to the fact that many studies investigated morphological changes in the brain, where the majority of descending and ascending brain pathways are overlapping, and did not investigate the brainstem where they separate. Moreover, these pathways continue passing through separate regions in the spinal cord. Here, using a high-resolution structural MRI of both the brainstem and the cervical spinal cord, we were able to identify a number of microstructurally altered pathways, in addition to the corticospinal tract, post stroke. Moreover, decreases in ipsi-lesional corticospinal tract integrity and increases in contra-lesional medial reticulospinal tract integrity were correlated with motor impairment severity in individuals with stroke. There are few studies of structural changes in ascending and descending sensorimotor pathways after stroke, beyond the corticospinal tract, in the brain. Here the authors identify changes in white matter structure in brainstem and spinal cord following stroke, and show its relationship to motor impairment.
Collapse
|
17
|
Adam R, Johnston K, Everling S. Recovery of contralesional saccade choice and reaction time deficits after a unilateral endothelin-1-induced lesion in the macaque caudal prefrontal cortex. J Neurophysiol 2019; 122:672-690. [DOI: 10.1152/jn.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The caudal primate prefrontal cortex (PFC) is involved in target selection and visually guided saccades through both covert attention and overt orienting eye movements. Unilateral damage to the caudal PFC often leads to decreased awareness of a contralesional target alone, referred to as “neglect,” or when it is presented simultaneously with an ipsilesional target, referred to as “extinction.” In the current study, we examined whether deficits in contralesional target selection were due to contralesional oculomotor deficits, such as slower reaction times. We experimentally induced a focal ischemic lesion in the right caudal PFC of 4 male macaque monkeys using the vasoconstrictor endothelin-1 and measured saccade choice and reaction times on double-stimulus free-choice tasks and single-stimulus trials before and after the lesion. We found that 1) endothelin-1-induced lesions in the caudal PFC produced contralesional target selection deficits that varied in severity and duration based on lesion volume and location; 2) contralesional neglect-like deficits were transient and recovered by week 4 postlesion; 3) contralesional extinction-like deficits were longer lasting and recovered by weeks 8–16 postlesion; 4) contralesional reaction time returned to baseline well before the contralesional choice deficit had recovered; and 5) neither the mean reaction times nor the reaction time distributions could account for the degree of contralesional extinction on the free-choice task throughout recovery. These findings demonstrate that the saccade choice bias observed after a right caudal PFC lesion is not exclusively due to contralesional motor deficits, but instead reflects a combination of impaired motor and attentional processing. NEW & NOTEWORTHY Unilateral damage to the caudal prefrontal cortex in macaque monkeys results in impaired contralesional target selection during the simultaneous presentation of an ipsilesional target. We show that the recovery of contralesional target selection cannot be explained by the recovery of prolonged contralesional saccadic reaction times alone. This indicates that an impairment in contralesional attentional processing contributes to the magnitude of the saccade choice bias in the weeks following a unilateral caudal prefrontal cortex lesion.
Collapse
Affiliation(s)
- Ramina Adam
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Kevin Johnston
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Ejaz N, Xu J, Branscheidt M, Hertler B, Schambra H, Widmer M, Faria AV, Harran MD, Cortes JC, Kim N, Celnik PA, Kitago T, Luft AR, Krakauer JW, Diedrichsen J. Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study. Brain 2019; 141:837-847. [PMID: 29394326 PMCID: PMC5837497 DOI: 10.1093/brain/awx384] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/23/2017] [Indexed: 01/23/2023] Open
Abstract
Following a stroke, mirror movements are unintended movements that appear in the non-paretic hand when the paretic hand voluntarily moves. Mirror movements have previously been linked to overactivation of sensorimotor areas in the non-lesioned hemisphere. In this study, we hypothesized that mirror movements might instead have a subcortical origin, and are the by-product of subcortical motor pathways upregulating their contributions to the paretic hand. To test this idea, we first characterized the time course of mirroring in 53 first-time stroke patients, and compared it to the time course of activities in sensorimotor areas of the lesioned and non-lesioned hemispheres (measured using functional MRI). Mirroring in the non-paretic hand was exaggerated early after stroke (Week 2), but progressively diminished over the year with a time course that parallelled individuation deficits in the paretic hand. We found no evidence of cortical overactivation that could explain the time course changes in behaviour, contrary to the cortical model of mirroring. Consistent with a subcortical origin of mirroring, we predicted that subcortical contributions should broadly recruit fingers in the non-paretic hand, reflecting the limited capacity of subcortical pathways in providing individuated finger control. We therefore characterized finger recruitment patterns in the non-paretic hand during mirroring. During mirroring, non-paretic fingers were broadly recruited, with mirrored forces in homologous fingers being only slightly larger (1.76 times) than those in non-homologous fingers. Throughout recovery, the pattern of finger recruitment during mirroring for patients looked like a scaled version of the corresponding control mirroring pattern, suggesting that the system that is responsible for mirroring in controls is upregulated after stroke. Together, our results suggest that post-stroke mirror movements in the non-paretic hand, like enslaved movements in the paretic hand, are caused by the upregulation of a bilaterally organized subcortical system.
Collapse
Affiliation(s)
- Naveed Ejaz
- Brain and Mind Institute, Western University, London, Canada
| | - Jing Xu
- Department of Neurology, Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Meret Branscheidt
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, USA
| | - Benjamin Hertler
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Heidi Schambra
- Department of Neurology, New York University, New York, USA
| | - Mario Widmer
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Andreia V Faria
- Department of Radiology, Johns Hopkins University, Baltimore, USA
| | - Michelle D Harran
- Department of Neurology, Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Juan C Cortes
- Department of Neurology, Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Nathan Kim
- Department of Neurology, Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, USA
| | - Tomoko Kitago
- Burke Medical Research Insititute, Weill Cornell Medicine, New York, USA
| | - Andreas R Luft
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - John W Krakauer
- Department of Neurology, Neuroscience, Johns Hopkins University, Baltimore, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
19
|
Schambra HM, Xu J, Branscheidt M, Lindquist M, Uddin J, Steiner L, Hertler B, Kim N, Berard J, Harran MD, Cortes JC, Kitago T, Luft A, Krakauer JW, Celnik PA. Differential Poststroke Motor Recovery in an Arm Versus Hand Muscle in the Absence of Motor Evoked Potentials. Neurorehabil Neural Repair 2019; 33:568-580. [PMID: 31170880 DOI: 10.1177/1545968319850138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background. After stroke, recovery of movement in proximal and distal upper extremity (UE) muscles appears to follow different time courses, suggesting differences in their neural substrates. Objective. We sought to determine if presence or absence of motor evoked potentials (MEPs) differentially influences recovery of volitional contraction and strength in an arm muscle versus an intrinsic hand muscle. We also related MEP status to recovery of proximal and distal interjoint coordination and movement fractionation, as measured by the Fugl-Meyer Assessment (FMA). Methods. In 45 subjects in the year following ischemic stroke, we tracked the relationship between corticospinal tract (CST) integrity and behavioral recovery in the biceps (BIC) and first dorsal interosseous (FDI) muscle. We used transcranial magnetic stimulation to probe CST integrity, indicated by MEPs, in BIC and FDI. We used electromyography, dynamometry, and UE FMA subscores to assess muscle-specific contraction, strength, and inter-joint coordination, respectively. Results. Presence of MEPs resulted in higher likelihood of muscle contraction, greater strength, and higher FMA scores. Without MEPs, BICs could more often volitionally contract, were less weak, and had steeper strength recovery curves than FDIs; in contrast, FMA recovery curves plateaued below normal levels for both the arm and hand. Conclusions. There are shared and separate substrates for paretic UE recovery. CST integrity is necessary for interjoint coordination in both segments and for overall recovery. In its absence, alternative pathways may assist recovery of volitional contraction and strength, particularly in BIC. These findings suggest that more targeted approaches might be needed to optimize UE recovery.
Collapse
Affiliation(s)
- Heidi M Schambra
- 1 New York University School of Medicine, New York, NY, USA.,2 Columbia University, New York, NY, USA
| | - Jing Xu
- 3 Johns Hopkins University, Baltimore, MD, USA
| | - Meret Branscheidt
- 3 Johns Hopkins University, Baltimore, MD, USA.,4 University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Levke Steiner
- 4 University Hospital of Zurich, Zurich, Switzerland
| | | | - Nathan Kim
- 3 Johns Hopkins University, Baltimore, MD, USA
| | | | - Michelle D Harran
- 2 Columbia University, New York, NY, USA.,3 Johns Hopkins University, Baltimore, MD, USA
| | - Juan C Cortes
- 2 Columbia University, New York, NY, USA.,3 Johns Hopkins University, Baltimore, MD, USA
| | | | - Andreas Luft
- 4 University Hospital of Zurich, Zurich, Switzerland.,5 cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | | |
Collapse
|
20
|
The effects of conditioning startling acoustic stimulation (SAS) on the corticospinal motor system: a SAS-TMS study. Exp Brain Res 2019; 237:1973-1980. [PMID: 31143970 DOI: 10.1007/s00221-019-05569-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/27/2019] [Indexed: 12/25/2022]
Abstract
A startling acoustic stimulus (SAS) could cause transient effects on the primary motor cortex and its descending tracts after habituation of reflex responses. In the literature, there is evidence that the effects of SAS depend on the status of M1 excitability and delivery time of SAS. In this study, we aimed to comprehensively investigate the effects of SAS on the excitability of primary motor cortex. Eleven healthy subjects participated in this study. Transcranial magnetic stimulation (TMS) was delivered to the hot spot for left biceps at rest and during isometric right elbow flexion (10, 30, and 60% of their maximum voluntary contraction, MVC). There were three SAS conditions: (1) No SAS; (2) SAS was delivered 50 ms prior to TMS (SAS50); (3) SAS 90 ms prior to TMS (SAS90). For each subject, the induced MEP amplitude was normalized to the largest response at rest with No SAS. Two-way ANOVAs (4 force levels × 3 SAS conditions) with repeated measures were used to determine the differences under different conditions. For the MEP amplitude, there were significant force level effect and FORCE LEVEL × SAS interactions. Specifically, the MEP amplitude increased with force level. Furthermore, post hoc analysis showed that the MEP amplitude reduced during SAS50 and SAS90 compared to No SAS only at rest. Our results provide evidence that a conditioning SAS causes a transient suppression of the corticospinal excitability at rest when it is delivered 50 ms and 90 ms prior to TMS. However, a conditioning SAS has no effect when the corticospinal excitability is already elevated with an external visual target.
Collapse
|
21
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
22
|
Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ. A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control. Front Neurol 2019; 10:468. [PMID: 31133971 PMCID: PMC6524557 DOI: 10.3389/fneur.2019.00468] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | | |
Collapse
|
23
|
Abstract
Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience and Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
24
|
Chen YT, Li S, Zhou P, Li S. A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects. J Neurol Sci 2019; 399:82-88. [PMID: 30782527 DOI: 10.1016/j.jns.2019.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Reticulospinal (RS) hyperexcitability is observed in stroke survivors with spastic hemiparesis. Habituated startle acoustic stimuli (SAS) can be used to stimulate the RS pathways non-reflexively. However, the role of RS pathways in motor function and its interactions with the corticospinal system after stroke still remain unclear. Therefore, the purpose of this study was to investigate the effects of conditioning SAS on the corticospinal system in healthy subjects and in stroke subjects with spastic hemiparesis. An established conditioning SAS- transcranial magnetic stimulation (TMS) paradigm was used to test the interactions between the RS pathways and the corticospinal system. TMS was delivered to the right hemisphere of eleven healthy subjects and the contralesional hemisphere of eleven stroke subjects during isometric elbow flexor contraction on the non-impaired (or left) side. Conditioning SAS had similar effects on the corticospinal motor system in both healthy and stroke subjects, including similar SAS-induced motor evoked potential (MEP) reduction at rest, but not during voluntary contraction tasks; similar magnitudes of TMS-induced MEP and force increment and shortening of the silent period during voluntary elbow flexor contraction. This study provides evidence that RS excitability on the contralesional side in stroke subjects with spastic hemiparesis is not abnormal, and suggests that RS projections are likely to be primarily unilateral in humans.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States.
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| |
Collapse
|
25
|
Iskra DA, Kovalenko AP, Koshkarev MA, Dyskin DE. [Spasticity: from pathophysiology to treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:108-114. [PMID: 30499506 DOI: 10.17116/jnevro2018118101108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article presents modern views on the pathophysiology of spasticity, which is a frequent disabling consequence to the upper motor neuron (UMN) damage. Morphological and functional system of motion organization and the changes after the UMN damage is considered. The authors analyze existing definitions of spasticity. Stages of spasticity development are described in the context of neuroplasticity as well as in the framework of pathogenesis and sanogenesis. Existing ideas of its pathogenesis are compared with the typical clinical symptoms. The occurring pathological processes in muscles, tendons and joints that can aggravate the development of spasticity and complicate the diagnosis are considered. In addition, the main pathological spasticity patterns are described and the current development of diagnostic techniques is estimated. A review of main methods of spasticity treatment is presented. Special attention is paid to the botulinum neurotoxin type A (BoNT) preparations and central action muscle relaxants. The pathophysiological basement for complex treatment of spasticity as a part of the general rehabilitation process is given, so that the BoNT can be considered as the obligatory element of standard rehabilitation programs.
Collapse
Affiliation(s)
- D A Iskra
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - A P Kovalenko
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - M A Koshkarev
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - D E Dyskin
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| |
Collapse
|
26
|
Chen YT, Li S, Magat E, Zhou P, Li S. Motor Overflow and Spasticity in Chronic Stroke Share a Common Pathophysiological Process: Analysis of Within-Limb and Between-Limb EMG-EMG Coherence. Front Neurol 2018; 9:795. [PMID: 30356703 PMCID: PMC6189334 DOI: 10.3389/fneur.2018.00795] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
The phenomenon of exaggerated motor overflow is well documented in stroke survivors with spasticity. However, the mechanism underlying the abnormal motor overflow remains unclear. In this study, we aimed to investigate the possible mechanisms behind abnormal motor overflow and its possible relations with post-stroke spasticity. 11 stroke patients (63.6 ± 6.4 yrs; 4 women) and 11 healthy subjects (31.18 ± 6.18 yrs; 2 women) were recruited. All of them were asked to perform unilateral isometric elbow flexion at submaximal levels (10, 30, and 60% of maximum voluntary contraction). Electromyogram (EMG) was measured from the contracting biceps (iBiceps) muscle and resting contralateral biceps (cBiceps), ipsilateral flexor digitorum superficialis (iFDS), and contralateral FDS (cFDS) muscles. Motor overflow was quantified as the normalized EMG of the resting muscles. The severity of motor impairment was quantified through reflex torque (spasticity) and weakness. EMG-EMG coherence was calculated between the contracting muscle and each of the resting muscles. During elbow flexion on the impaired side, stroke subjects exhibited significant higher motor overflow to the iFDS muscle compared with healthy subjects (ipsilateral or intralimb motor overflow). Stroke subjects exhibited significantly higher motor overflow to the contralateral spastic muscles (cBiceps and cFDS) during elbow flexion on the non-impaired side (contralateral or interlimb motor overflow), compared with healthy subjects. Moreover, there was significantly high EMG-EMG coherence in the alpha band (6–12 Hz) between the contracting muscle and all other resting muscles during elbow flexion on the non-impaired side. Our results of diffuse ipsilateral and contralateral motor overflow with EMG-EMG coherence in the alpha band suggest subcortical origins of motor overflow. Furthermore, correlation between contralateral motor overflow to contralateral spastic elbow and finger flexors and their spasticity was consistently at moderate to high levels. A high correlation suggests that diffuse motor overflow to the impaired side and spasticity likely share a common pathophysiological process. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| |
Collapse
|
27
|
StartReact during gait initiation reveals differential control of muscle activation and inhibition in patients with corticospinal degeneration. J Neurol 2018; 265:2531-2539. [PMID: 30155740 PMCID: PMC6182706 DOI: 10.1007/s00415-018-9027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
Abstract
Corticospinal lesions cause impairments in voluntary motor control. Recent findings suggest that some degree of voluntary control may be taken over by a compensatory pathway involving the reticulospinal tract. In humans, evidence for this notion mainly comes from StartReact studies. StartReact is the acceleration of reaction times by a startling acoustic stimulus (SAS) simultaneously presented with the imperative stimulus. As previous StartReact studies mainly focused on isolated single-joint movements, the question remains whether the reticulospinal tract can also be utilized for controlling whole-body movements. To investigate reticulospinal control, we applied the StartReact paradigm during gait initiation in 12 healthy controls and 12 patients with ‘pure’ hereditary spastic paraplegia (HSP; i.e., retrograde axonal degeneration of corticospinal tract). Participants performed three consecutive steps in response to an imperative visual stimulus. In 25% of 16 trials a SAS was applied. We determined reaction times of muscle (de)activation, anticipatory postural adjustments (APA) and steps. Without SAS, we observed an overall delay in HSP patients compared to controls. Administration of the SAS accelerated tibialis anterior and rectus femoris onsets in both groups, but more so in HSP patients, resulting in (near-)normal latencies. Soleus offsets were accelerated in controls, but not in HSP patients. The SAS also accelerated APA and step reaction times in both groups, yet these did not normalize in the HSP patients. The reticulospinal tract is able to play a compensatory role in voluntary control of whole-body movements, but seems to lack the capacity to inhibit task-inappropriate muscle activity in patients with corticospinal lesions.
Collapse
|
28
|
Fregosi M, Contestabile A, Badoud S, Borgognon S, Cottet J, Brunet JF, Bloch J, Schwab ME, Rouiller EM. Changes of motor corticobulbar projections following different lesion types affecting the central nervous system in adult macaque monkeys. Eur J Neurosci 2018; 48:2050-2070. [PMID: 30019432 PMCID: PMC6175012 DOI: 10.1111/ejn.14074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 01/03/2023]
Abstract
Functional recovery from central nervous system injury is likely to be partly due to a rearrangement of neural circuits. In this context, the corticobulbar (corticoreticular) motor projections onto different nuclei of the ponto-medullary reticular formation (PMRF) were investigated in 13 adult macaque monkeys after either, primary motor cortex injury (MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's disease-like lesions of the nigro-striatal dopaminergic system (PD). A subgroup of animals in both MCI and SCI groups was treated with neurite growth promoting anti-Nogo-A antibodies, whereas all PD animals were treated with autologous neural cell ecosystems (ANCE). The anterograde tracer BDA was injected either in the premotor cortex (PM) or in the primary motor cortex (M1) to label and quantify corticobulbar axonal boutons terminaux and en passant in PMRF. As compared to intact animals, after MCI the density of corticobulbar projections from PM was strongly reduced but maintained their laterality dominance (ipsilateral), both in the presence or absence of anti-Nogo-A antibody treatment. In contrast, the density of corticobulbar projections from M1 was increased following opposite hemi-section of the cervical cord (at C7 level) and anti-Nogo-A antibody treatment, with maintenance of contralateral laterality bias. In PD monkeys, the density of corticobulbar projections from PM was strongly reduced, as well as that from M1, but to a lesser extent. In conclusion, the densities of corticobulbar projections from PM or M1 were affected in a variable manner, depending on the type of lesion/pathology and the treatment aimed to enhance functional recovery.
Collapse
Affiliation(s)
- Michela Fregosi
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Alessandro Contestabile
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Badoud
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Borgognon
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jérôme Cottet
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jean-François Brunet
- Cell production center (CPC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Eric M Rouiller
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| |
Collapse
|
29
|
Martinez SA, Nguyen ND, Bailey E, Doyle-Green D, Hauser HA, Handrakis JP, Knezevic S, Marett C, Weinman J, Romero AF, Santiago TM, Yang AH, Yung L, Asselin PK, Weir JP, Kornfeld SD, Bauman WA, Spungen AM, Harel NY. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One 2018; 13:e0202130. [PMID: 30092092 PMCID: PMC6084979 DOI: 10.1371/journal.pone.0202130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Spared fibers after spinal cord injury (SCI) tend to consist predominantly of subcortical circuits that are not under volitional (cortical) control. We aim to improve function after SCI by using targeted physical exercises designed to simultaneously stimulate cortical and spared subcortical neural circuits. METHODS Participants with chronic motor-incomplete SCI enrolled in a single-center, prospective interventional crossover study. Participants underwent 48 sessions each of weight-supported robotic-assisted treadmill training and a novel combination of balance and fine hand exercises, in randomized order, with a 6-week washout period. Change post-intervention was measured for lower extremity motor score, soleus H-reflex facilitation; seated balance function; ambulation; spasticity; and pain. RESULTS Only 9 of 21 enrolled participants completed both interventions. Thirteen participants completed at least one intervention. Although there were no statistically significant differences, multimodal training tended to increase short-interval H-reflex facilitation, whereas treadmill training tended to improve dynamic seated balance. DISCUSSION The low number of participants who completed both phases of the crossover intervention limited the power of this study to detect significant effects. Other potential explanations for the lack of significant differences with multimodal training could include insufficient engagement of lower extremity motor cortex using skilled upper extremity exercises; and lack of skill transfer from upright postural stability during multimodal training to seated dynamic balance during testing. To our knowledge, this is the first published study to report seated posturography outcomes after rehabilitation interventions in individuals with SCI. CONCLUSION In participants with chronic incomplete SCI, a novel mix of multimodal exercises incorporating balance exercises with skilled upper extremity exercises showed no benefit compared to an active control program of body weight-supported treadmill training. To improve participant retention in long-term rehabilitation studies, subsequent trials would benefit from a parallel group rather than crossover study design.
Collapse
Affiliation(s)
| | - Nhuquynh D. Nguyen
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Eric Bailey
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Denis Doyle-Green
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Henry A. Hauser
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - John P. Handrakis
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Steven Knezevic
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Casey Marett
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Jennifer Weinman
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Angelica F. Romero
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Tiffany M. Santiago
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Ajax H. Yang
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lok Yung
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Pierre K. Asselin
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Joseph P. Weir
- University of Kansas, Lawrence, Kansas, United States of America
| | - Stephen D. Kornfeld
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - William A. Bauman
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ann M. Spungen
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Noam Y. Harel
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hand Motor Recovery Following Extensive Frontoparietal Cortical Injury Is Accompanied by Upregulated Corticoreticular Projections in Monkey. J Neurosci 2018; 38:6323-6339. [PMID: 29899028 DOI: 10.1523/jneurosci.0403-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
We tested the hypothesis that arm/hand motor recovery after injury of the lateral sensorimotor cortex is associated with upregulation of the corticoreticular projection (CRP) from the supplementary motor cortex (M2) to the gigantocellular reticular nucleus of the medulla (Gi). Three groups of rhesus monkeys of both genders were studied: five controls, four cases with lesions of the arm/hand area of the primary motor cortex (M1) and the lateral premotor cortex (LPMC; F2 lesion group), and five cases with lesions of the arm/hand area of M1, LPMC, S1, and anterior parietal cortex (F2P2 lesion group). CRP strength was assessed using high-resolution anterograde tracers injected into the arm/hand area of M2 and stereology to estimate of the number of synaptic boutons in the Gi. M2 projected bilaterally to the Gi, primarily targeting the medial Gi subsector and, to a lesser extent, lateral, dorsal, and ventral subsectors. Total CRP bouton numbers were similar in controls and F2 lesion cases but F2P2 lesion cases had twice as many boutons as the other two groups (p = 0.0002). Recovery of reaching and fine hand/digit function was strongly correlated with estimated numbers of CRP boutons in the F2P2 lesion cases. Because we previously showed that F2P2 lesion cases experience decreased strength of the M2 corticospinal projection (CSP), whereas F2 lesion monkeys experienced increased strength of the M2 CSP, these results suggest one mechanism underlying arm/hand motor recovery after F2P2 injury is upregulation of the M2 CRP. This M2-CRP response may influence an important reticulospinal tract contribution to upper-limb motor recovery following frontoparietal injury.SIGNIFICANCE STATEMENT We previously showed that after brain injury affecting the lateral motor cortex controlling arm/hand motor function, recovery is variable and closely associated with increased strength of corticospinal projection (CSP) from an uninjured medial cortical motor area. Hand motor recovery also varies after brain injury affecting the lateral sensorimotor cortex, but medial motor cortex CSP strength decreases and cannot account for recovery. Here we observed that motor recovery following sensorimotor cortex injury is closely associated with increased strength of the descending projection from an uninjured medial cortical motor area to a brainstem reticular nucleus involved in control of arm/hand function, suggesting an enhanced corticoreticular projection may compensate for injury to the sensorimotor cortex to enable recovery of arm/hand motor function.
Collapse
|
31
|
Li S, Bhadane M, Gao F, Zhou P. The Reticulospinal Pathway Does Not Increase Its Contribution to the Strength of Contralesional Muscles in Stroke Survivors as Compared to Ipsilesional Side or Healthy Controls. Front Neurol 2017; 8:627. [PMID: 29230191 PMCID: PMC5712067 DOI: 10.3389/fneur.2017.00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Objective Startling acoustic stimulation (SAS), via activation of reticulospinal (RS) pathways, has shown to increase muscle strength in healthy subjects. We hypothesized that, given RS hyperexcitability in stroke survivors, SAS could increase muscle strength in stroke survivors. The objective was to quantify the effect of SAS on maximal and sub-maximal voluntary elbow flexion on the contralesional (impaired) side in stroke survivors as compared to ipsilesional (non-impaired) side and healthy controls. Design Thirteen hemiparetic stroke survivors and 12 healthy subjects volunteered for this investigation. Acoustic stimulation was given at rest, during ballistic maximal and sustained sub-maximal isometric elbow contractions using low (80 dB) and high intensity sound (105 dB). The effect of acoustic stimuli was evaluated from EMG and force recordings. Results Prevalence of acoustic startle reflex with shorter latency in the impaired biceps was greater as compared to the response in the non-impaired side of stroke subjects and in healthy subjects. Delivery of SAS resulted in earlier initiation of elbow flexion and greater peak torque in healthy subjects and in stroke subjects with spastic hemiplegia during maximal voluntary elbow flexion tasks. During sub-maximal elbow flexion tasks, SAS-induced force responses were slightly greater on the impaired side than the non-impaired side. However, no statistically significant difference was found in SAS-induced responses between impaired and non-impaired sides at maximal and sub-maximal elbow flexion tasks. Conclusion The findings suggest RS hyperexcitability in stroke survivors with spastic hemiplegia. The results of similar SAS-induced responses between healthy and stroke subjects indicate that RS projections via acoustic stimulation are not likely to contribute to muscle strength for stroke survivors to a significant extent.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Minal Bhadane
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Fan Gao
- The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| |
Collapse
|
32
|
Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Transl Stroke Res 2017; 8:529-540. [PMID: 28691140 DOI: 10.1007/s12975-017-0551-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as "latent" projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.
Collapse
|
33
|
George SH, Rafiei MH, Borstad A, Adeli H, Gauthier LV. Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke. Behav Brain Res 2017; 333:314-322. [PMID: 28688897 DOI: 10.1016/j.bbr.2017.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022]
Abstract
The majority of rehabilitation research focuses on the comparative effectiveness of different interventions in groups of patients, while much less is currently known regarding individual factors that predict response to rehabilitation. In a recent article, the authors presented a prognostic model to identify the sensorimotor characteristics predictive of the extent of motor recovery after Constraint-Induced Movement (CI) therapy amongst individuals with chronic mild-to-moderate motor deficit using the enhanced probabilistic neural network (EPNN). This follow-up paper examines which participant characteristics are robust predictors of rehabilitation response irrespective of the training modality. To accomplish this, EPNN was first applied to predict treatment response amongst individuals who received a virtual-reality gaming intervention (utilizing the same enrollment criteria as the prior study). The combinations of predictors that yield high predictive validity for both therapies, using their respective datasets, were then identified. High predictive classification accuracy was achieved for both the gaming (94.7%) and combined datasets (94.5%). Though CI therapy employed primarily fine-motor training tasks and the gaming intervention emphasized gross-motor practice, larger improvements in gross motor function were observed within both datasets. Poorer gross motor ability at pre-treatment predicted better rehabilitation response in both the gaming and combined datasets. The conclusion of this research is that for individuals with chronic mild-to-moderate upper extremity hemiparesis, residual deficits in gross motor function are highly responsive to motor restorative interventions, irrespective of the modality of training.
Collapse
Affiliation(s)
- Sarah Hulbert George
- Department of Biophysics, The Ohio State University, 1012 Wiseman Hall, 400 W. 12th Ave, Columbus, OH 43210, USA.
| | - Mohammad Hossein Rafiei
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave., Columbus, OH 43220, USA.
| | - Alexandra Borstad
- Department of Physical Therapy, The College of St. Scholastica, 1200 Kenwood Avenue, Duluth, MN 55811, USA.
| | - Hojjat Adeli
- Departments of Civil, Environmental and Geodetic Engineering, Biomedical Informatics, Biomedical Engineering, Neurology, and Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH 43220, USA.
| | - Lynne V Gauthier
- Physical Medicine and Rehabilitation, The Ohio State University, 480 Medical Center Drive, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Shimamura N, Katagai T, Kakuta K, Matsuda N, Katayama K, Fujiwara N, Watanabe Y, Naraoka M, Ohkuma H. Rehabilitation and the Neural Network After Stroke. Transl Stroke Res 2017; 8:507-514. [PMID: 28681346 DOI: 10.1007/s12975-017-0550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Abstract
Stroke remains a major cause of disability throughout the world: paralysis, cognitive impairment, aphasia, and so on. Surgical or medical intervention is curative in only a small number of cases. Nearly all stroke cases require rehabilitation. Neurorehabilitation generally improves patient outcome, but it sometimes has no effect or even a mal-influence. The aim of this review is the clarification of the mechanisms of neurorehabilitation. We systematically reviewed recently published articles on neural network remodeling, especially from 2014 to 2016. Finally, we summarize progress in neurorehabilitation and discuss future prospects.
Collapse
Affiliation(s)
- Norihito Shimamura
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan.
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Kiyohide Kakuta
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Naoya Matsuda
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Kosuke Katayama
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Nozomi Fujiwara
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Yuuka Watanabe
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
35
|
Li S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front Neurol 2017; 8:120. [PMID: 28421032 PMCID: PMC5377239 DOI: 10.3389/fneur.2017.00120] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke and impose significant challenges for treatment and patient care. Spasticity emerges and disappears in the course of complete motor recovery. Spasticity and motor recovery are both related to neural plasticity after stroke. However, the relation between the two remains poorly understood among clinicians and researchers. Recovery of strength and motor function is mainly attributed to cortical plastic reorganization in the early recovery phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is the most plausible mechanism for poststroke spasticity. It is important to differentiate and understand that motor recovery and spasticity have different underlying mechanisms. Facilitation and modulation of neural plasticity through rehabilitative strategies, such as early interventions with repetitive goal-oriented intensive therapy, appropriate non-invasive brain stimulation, and pharmacological agents, are the keys to promote motor recovery. Individualized rehabilitation protocols could be developed to utilize or avoid the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. Aggressive and appropriate spasticity management with botulinum toxin therapy is an example of how to create a transient plastic state of the neuromotor system that allows motor re-learning and recovery in chronic stages.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|