1
|
Mariscal DM, Sombric CJ, Torres-Oviedo G. Age and self-selected walking speed impact the generalization of locomotor memories across contexts. J Neurophysiol 2025; 133:1410-1421. [PMID: 39992988 DOI: 10.1152/jn.00432.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Previous work has shown that compared with young adults, older adults generalize their walking patterns more across environments that impose different motor demands (i.e., split-belt treadmill vs. overground). However, in this previous study, all participants walked at a speed that was more comfortable for older adults than young participants, which leads to the question of whether young adults would generalize more their walking patterns than older adults when exposed to faster speeds that are more comfortable for them. To address this question, we examined the interaction between healthy aging and walking speed on the generalization of a pattern learned on a split-belt treadmill (i.e., legs moving at different speeds) to overground. We hypothesized that walking speed during split-belt walking regulates the generalization of walking patterns in an age-specific manner. To this end, groups of young (<30 yr old) and older (65+ yr old) adults adapted their gait on a split-belt treadmill at either slower or faster walking speeds. We assessed the generalization of movements between the groups by quantifying their aftereffects during overground walking, where larger overground aftereffects represent more generalization, and zero aftereffects represent no generalization. We found an interaction between age and walking speed in the generalization of walking patterns. More specifically, older adults generalized more when adapted at slower speeds, whereas younger adults did so when adapted at faster speeds. These results suggest that comfortable walking speeds lead to more generalization of newly acquired motor patterns beyond the training contexts.NEW & NOTEWORTHY The generalization of motor learning in humans depends on both internal factors, such as age, and external factors imposed by experimenters, like treadmill speeds. However, the interaction between these factors remains unclear. Our study revealed that older adults showed increased generalization when adapting to slower speeds, whereas younger adults exhibited this behavior at faster speeds. This implies that walking at unusual speeds acts as a contextual cue, restricting the generalization of motor patterns.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Carly J Sombric
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Hirata K, Hanawa H, Miyazawa T, Kanemura N. Impact of unilateral knee restraint on symmetry adaptation and double-support phase dynamic stability during split-belt walking. Exp Brain Res 2025; 243:61. [PMID: 39912907 DOI: 10.1007/s00221-025-07006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
The split-belt treadmill task is an effective tool for studying walking adaptation, particularly the symmetry adaptation of spatiotemporal parameters such as step length and double support time. This study aimed to evaluate the relationship between symmetry adaptation of spatiotemporal parameters and dynamic stability during the double-support phase in split-belt walking. We hypothesized that restraining fast-side knee extension, which is necessary for step lengthening during adaptation, would decrease dynamic stability during the double-support phase. Ten able-bodied male participants performed split-belt walking tasks under three conditions: control, fast-side knee restraint, and slow-side knee restraint. Our findings revealed that slow-side knee restraint disrupted symmetry in double support time and significantly decreased stability on the fast side during the early and late adaptation phases. Contrary to our hypothesis, fast-side knee restraint did not have a statistically significant effect on dynamic stability or symmetry. These results suggest that decreased dynamic stability during the double-support phase, particularly due to limitations in the movement of the trailing leg, may hinder the adaptation process. This study highlights the importance of dynamic stability control during the double-support phase for successful walking adaptation. Future studies with larger sample sizes and varying speed conditions are recommended to generalize these findings and develop targeted interventions to improve walking adaptability and dynamic stability.
Collapse
Affiliation(s)
- Keisuke Hirata
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama-shi, Saitama, 350-1398, Japan.
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan.
| | - Hiroki Hanawa
- Department of Rehabilitation, Faculty of Health Science, University of Human Arts and Sciences, 354-3 Shinshoji-Guruwa, Ota-aza, Iwatsuki-ku, Saitama-shi, Saitama, 339-8555, Japan
| | - Taku Miyazawa
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan
- Department of Rehabilitation, Faculty of Health Science, University of Human Arts and Sciences, 354-3 Shinshoji-Guruwa, Ota-aza, Iwatsuki-ku, Saitama-shi, Saitama, 339-8555, Japan
| | - Naohiko Kanemura
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan
| |
Collapse
|
3
|
Rossi C, Roemmich RT, Bastian AJ. Understanding mechanisms of generalization following locomotor adaptation. NPJ SCIENCE OF LEARNING 2024; 9:48. [PMID: 39043679 PMCID: PMC11266392 DOI: 10.1038/s41539-024-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Our nervous system has the remarkable ability to adapt our gait to accommodate changes in our body or surroundings. However, our adapted walking patterns often generalize only partially (or not at all) between different contexts. Here, we sought to understand how the nervous system generalizes adapted gait patterns from one context to another. Through a series of split-belt treadmill walking experiments, we evaluated different mechanistic hypotheses to explain the partial generalization of adapted gait patterns from split-belt treadmill to overground walking. In support of the credit assignment hypothesis, our experiments revealed the central finding that adaptation involves recalibration of two distinct forward models. Recalibration of the first model generalizes to overground walking, suggesting that the model represents the general movement dynamics of our body. On the other hand, recalibration of the second model does not generalize to overground walking, suggesting the model represents dynamics specific to treadmill walking. These findings reveal that there is a predefined portion of forward model recalibration that generalizes across context, leading to overall partial generalization of walking adaptation.
Collapse
Affiliation(s)
- Cristina Rossi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Hiew S, Eibeck L, Nguemeni C, Zeller D. The Influence of Age and Physical Activity on Locomotor Adaptation. Brain Sci 2023; 13:1266. [PMID: 37759867 PMCID: PMC10526769 DOI: 10.3390/brainsci13091266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aging increases individual susceptibility to falls and injuries, suggesting poorer adaptation of balance responses to perturbation during locomotion, which can be measured with the locomotor adaptation task (LAT). However, it is unclear how aging and lifestyle factors affect these responses during walking. Hence, the present study investigates the relationship between balance and lifestyle factors during the LAT in healthy individuals across the adult lifespan using a correlational design. METHODS Thirty participants aged 20-78 years performed an LAT on a split-belt treadmill (SBT). We evaluated the magnitude and rate of adaptation and deadaptation during the LAT. Participants reported their lifelong physical and cognitive activity. RESULTS Age positively correlated with gait-line length asymmetry at the late post-adaptation phase (p = 0.007). These age-related effects were mediated by recent physical activity levels (p = 0.040). CONCLUSION Our results confirm that locomotor adaptive responses are preserved in aging, but the ability to deadapt newly learnt balance responses is compromised with age. Physical activity mediates these age-related effects. Therefore, gait symmetry post-adaptation could effectively measure the risk of falling, and maintaining physical activity could protect against declines in balance.
Collapse
Affiliation(s)
- Shawn Hiew
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany; (L.E.); (C.N.); (D.Z.)
| | | | | | | |
Collapse
|
5
|
Zhang L, Lin F, Sun L, Chen C. Comparison of Efficacy of Lokomat and Wearable Exoskeleton-Assisted Gait Training in People With Spinal Cord Injury: A Systematic Review and Network Meta-Analysis. Front Neurol 2022; 13:772660. [PMID: 35493806 PMCID: PMC9044921 DOI: 10.3389/fneur.2022.772660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveLokomat and wearable exoskeleton-assisted walking (EAW) have not been directly compared previously. To conduct a network meta-analysis of randomized and non-randomized controlled trials to assess locomotor abilities achieved with two different types of robotic-assisted gait training (RAGT) program in persons with spinal cord injury (SCI).MethodsThree electronic databases, namely, PubMed, Embase, and the Cochrane Library, were systematically searched for randomized and non-randomized controlled trials published before August 2021, which assessed locomotor abilities after RAGT.ResultsOf 319 studies identified for this review, 12 studies were eligible and included in our analysis. Studies from 2013 to 2021 were covered and contained 353 valid data points (N-353) on patients with SCI receiving wearable EWA and Lokomat training. In the case of wearable EAW, the 10-m walk test (10-MWT) distance and speed scores significantly increased [distance: 0.85 (95% CI = 0.35, 1.34); speed: −1.76 (95% CI = −2.79, −0.73)]. The 6-min walk test (6-MWT) distance [−1.39 (95% CI = −2.01, −0.77)] and the timed up and go (TUG) test significantly increased [(1.19 (95% CI = 0.74, 1.64)], but no significant difference was observed in the walking index for spinal cord injury (WISCI-II) [−0.33 (95% CI = −0.79, 0.13)]. Among the patients using Lokomat, the 10-MWT-distance score significantly increased [−0.08 (95% CI = −0.14, −0.03)] and a significant increase in the WISCI-II was found [1.77 (95% CI = 0.23, 3.31)]. The result of network meta-analysis showed that the probability of wearable EAW to rank first and that of Lokomat to rank second was 89 and 47%, respectively, in the 10-MWT speed score, while that of Lokomat to rank first and wearable EAW to rank second was 73 and 63% in the WISCI-II scores.ConclusionLokomat and wearable EAW had effects on the performance of locomotion abilities, namely, distance, speed, and function. Wearable EAW might lead to better outcomes in walking speed compared with that in the case of Lokomat.
Collapse
Affiliation(s)
- Lingjie Zhang
- School of Health, Fujian Medical University, Fuzhou, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Sun
- School of Health, Fujian Medical University, Fuzhou, China
- Lei Sun
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Chunmei Chen
| |
Collapse
|
6
|
Mariscal DM, Vasudevan EVL, Malone LA, Torres-Oviedo G, Bastian AJ. Context-Specificity of Locomotor Learning Is Developed during Childhood. eNeuro 2022; 9:ENEURO.0369-21.2022. [PMID: 35346963 PMCID: PMC9036623 DOI: 10.1523/eneuro.0369-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Humans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g., growth or injury) or in the environment (e.g., walking on sand vs ice). It has been suggested that adaptation that occurs in response to changes in the state of our body will generalize across different movement contexts and environments, whereas adaptation that occurs with alterations in the external environment will be context-specific. Here, we asked whether the ability to form generalizable versus context-specific motor memories develops during childhood. We performed a cross-sectional study of context-specific locomotor adaptation in 35 children (3-18 years old) and 7 adults (19-31 years old). Subjects first adapted their gait and learned a new walking pattern on a split-belt treadmill, which has two belts that move each leg at a different speed. Then, subjects walked overground to assess the generalization of the adapted walking pattern across different environments. Our results show that the generalization of treadmill after-effects to overground walking decreases as subjects' age increases, indicating that age and experience are critical factors regulating the specificity of motor learning. Our results suggest that although basic locomotor patterns are established by two years of age, brain networks required for context-specific locomotor learning are still being developed throughout youth.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Erin V L Vasudevan
- Kennedy Krieger Institute, Baltimore, MD, 21205
- School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11794
| | - Laura A Malone
- Neurology Department, Johns Hopkins University, Baltimore, MD, 21205
- Physical Medicine, and Rehabilitation Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| | - Gelsy Torres-Oviedo
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amy J Bastian
- Neuroscience Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| |
Collapse
|
7
|
Gregory DL, Sup FC, Choi JT. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202084. [PMID: 33972880 PMCID: PMC8074624 DOI: 10.1098/rsos.202084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking.
Collapse
Affiliation(s)
- Daniel L. Gregory
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Frank C. Sup
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T. Choi
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL 32611-8205, USA
| |
Collapse
|
8
|
Split-belt treadmill walking in patients with Parkinson's disease: A systematic review. Gait Posture 2019; 69:187-194. [PMID: 30771729 DOI: 10.1016/j.gaitpost.2019.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Walking on a split-belt treadmill (SBT) can help to modulate an asymmetric gait, particularly for people with neurological conditions, such as Parkinson's disease (PD), where asymmetry plays a role due to the laterality of the disease. RESEARCH QUESTION This systematic review critically evaluates the literature on SBT in PD. First, different SBT paradigms and methodological approaches were evaluated. Second, the review explored how people with PD adapt their gait to different SBT conditions compared to healthy controls (HC). METHODS We conducted a systematic search of the PubMED, PsychINFO, and Web of Knowledge databases. Original research articles, published in English and investigating SBT walking in people with PD, were included. RESULTS From the 925 studies originally identified, seven met the inclusion criteria and were selected for evaluation (n = 118 individuals with PD of whom 44 had freezing of gait (FOG)). The SBT paradigms varied across studies regarding the SBT settings, definitions of gait variables, and criteria for determining dominance of body side. Gait variability and bilateral coordination were found to adapt to the SBT condition similarly in people with PD and healthy controls (HC). Inconsistent results were found with respect to the adaptation of gait asymmetry, for the differences between PD and HC participants. The subgroup of people with PD and FOG showed reduced accuracy in detecting belt speed differences and slower adaptation to SBT conditions. CONCLUSION Individuals with mild to moderately severe PD adapted similarly to HCs to SBT walking for gait variability and bilateral gait coordination. However, those with FOG had impaired perception of belt speed differences and did not adapt their gait so readily. Although SBT can be useful for modulating gait asymmetry in some people with PD, it was not beneficial for all. We recommend standardization of SBT protocols for clinical practice in future studies.
Collapse
|
9
|
Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Pérez-Zavala R, Barrera-Ortiz A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med 2019; 42:142-154. [PMID: 29065788 PMCID: PMC6419626 DOI: 10.1080/10790268.2017.1390644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CONTEXT While there are previous systematic reviews on the effectiveness of the use of robotic-assisted gait training (RAGT) in people with spinal cord injuries (SCI), as this is a dynamic field, new studies have been produced that are now incorporated on this systematic review (SR) with meta-analysis, updating the available evidence on this area. OBJECTIVE To synthesise the available evidence on the use of RAGT, to improve gait, strength and functioning. METHODS SR and meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions were implemented. Cochrane Injuries Group Specialized Register, PubMed, MEDLINE, EMBASE, CINAHL, ISIWeb of Science (SCIEXPANDED) databases were reviewed for the period 1990 to December 2016. Three researchers independently identified and categorized trials; 293 studies were identified, 273 eliminated; remaining 15 randomized clinical trials (RCT) and five SR. Six studies had available data for meta-analysis (222 participants). RESULTS The pooled mean demonstrated a beneficial effect of RAGT for WISCI, FIM-L and LEMS (3.01, 2.74 and 1.95 respectively), and no effect for speed. CONCLUSIONS The results show a positive effect in the use of RAGT. However, this should be taken carefully due to heterogeneity of the studies, small samples and identified limitations of some of the included trials. These results highlight the relevance of implementing a well-designed multicenter RCT powered enough to evaluate different RAGT approaches.
Collapse
Affiliation(s)
| | | | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Ramiro Pérez-Zavala
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Aída Barrera-Ortiz
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
10
|
Velocity-dependent transfer of adaptation in human running as revealed by split-belt treadmill adaptation. Exp Brain Res 2018; 236:1019-1029. [PMID: 29411081 DOI: 10.1007/s00221-018-5195-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Animal studies demonstrate that the neural mechanisms underlying locomotion are specific to the modes and/or speeds of locomotion. In line with animal results, human locomotor adaptation studies, particularly those focusing on walking, have revealed limited transfers of adaptation among movement contexts including different locomotion speeds. Running is another common gait that humans utilize in their daily lives and is distinct from walking in terms of the underlying neural mechanisms. The present study employed an adaptation paradigm on a split-belt treadmill to examine the possible independence of neural mechanisms mediating different running speeds. The adaptations learned with split-belt running resulted in aftereffects with magnitudes that varied in a speed-dependent matter. In the two components of the ground reaction force investigated, the anterior braking and posterior propulsive components exhibited different trends. The anterior braking component tended to show larger aftereffect under speeds near the slower side speed of the previously experienced split-belt in contrast to the posterior propulsive component in which the aftereffect size tended to be the largest at a speed that corresponded to the faster side speed of the split-belt. These results show that the neural mechanisms underlying different running speeds in humans may be independent, just as in human walking and animal studies.
Collapse
|
11
|
The effect of proprioceptive acuity variability on motor adaptation in older adults. Exp Brain Res 2017; 236:599-608. [PMID: 29255917 DOI: 10.1007/s00221-017-5150-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022]
Abstract
Motor adaptation requires efficient integration of sensory information with predicted sensory consequences of one's own action. However, the effect of reduced sensory acuity on motor adaptation in humans remains to be further investigated. Here, we examined the variability of proprioceptive acuity during an arm-position matching task and the pattern of visuomotor adaptation in older and young adults, and determined the relationship between the two variables. The older adults, a known example of impaired proprioceptive acuity, exhibited greater trial-to-trial variability during the arm-position matching task as compared with the young adults. Furthermore, the older adults showed a slower rate of adaptation to a 30° visuomotor rotation during targeted reaching movements, as well as larger movement errors in the later phase of adaptation, than the young adults. Our correlation analyses indicated a negative association between the variability in proprioceptive acuity and the rate of visuomotor adaptation in the older adults; and no association was observed in the young adults. These findings point to a possibility that an increase in the variability of proprioceptive acuity due to aging may weaken the integration of predicted and actual sensory feedback, which in turn may result in poor visuomotor adaptation in older adults.
Collapse
|
12
|
Vasudevan EVL, Hamzey RJ, Kirk EM. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation. J Vis Exp 2017. [PMID: 28872105 DOI: 10.3791/55424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.
Collapse
Affiliation(s)
- Erin V L Vasudevan
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network;
| | - Rami J Hamzey
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| | - Eileen M Kirk
- Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| |
Collapse
|