1
|
Alves CDO, Waku I, Chiossi JN, de Oliveira AR. Dopamine D2-like receptors on conditioned and unconditioned fear: A systematic review of rodent pharmacological studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111080. [PMID: 38950840 DOI: 10.1016/j.pnpbp.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Joyce Nonato Chiossi
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Enomoto K, Shibata K, Muraoka H, Kawano M, Inada K, Ishigooka J, Nishimura K, Oshibuchi H. Effects of chronic haloperidol treatment on the expression of fear memory and fear memory extinction in the cued fear-conditioned rats. Neuropsychopharmacol Rep 2024; 44:197-205. [PMID: 38356296 PMCID: PMC10932774 DOI: 10.1002/npr2.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
AIM Impairments in emotional memory are frequently observed in several mental disorders, highlighting their significance as potential therapeutic targets. Recent research on the cued fear conditioning model has elucidated the neural circuits involved in fear memory processing. However, contradictory findings have been reported concerning the role of dopamine and the impact of dopamine D2 receptor (D2R) antagonists. There is notably limited knowledge regarding the clinical utility of chronic D2R antagonist treatments. This study aimed to uncover how such treatments affect fear memory processing. METHODS We utilized a cued fear conditioning rat model and conducted chronic haloperidol treatment for 14 days. Subsequently, to investigate the effect of chronic haloperidol treatment on fear-conditioned memory expression and extinction, we observed freezing behavior under exposure to a conditioned stimulus for 14 days. RESULTS Chronic haloperidol treatment suppressed freezing time on the fear memory expression. In contrast, a single haloperidol administration enhanced the freezing time on fear memory expression and delayed extinction. CONCLUSION The results of this study suggest that chronic administration of antipsychotic drugs affects fear memory processing differently from single-dose administration. This indicates that the effects of chronic D2R antagonist treatment are distinct from the nonspecific effects of the drugs. This study provides fundamental insights that may contribute to our understanding of therapeutic mechanisms for fear memory disorders related to D2R in the future.
Collapse
Affiliation(s)
- Kosuke Enomoto
- Department of PsychiatryTokyo Women's Medical UniversityTokyoJapan
| | - Kazuro Shibata
- Department of PsychiatryTokyo Women's Medical UniversityTokyoJapan
| | - Hiroyuki Muraoka
- Department of PsychiatryKitasato UniversitySagamihara‐shiKanagawaJapan
| | | | - Ken Inada
- Department of PsychiatryKitasato UniversitySagamihara‐shiKanagawaJapan
| | | | | | | |
Collapse
|
3
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
5
|
Fabris D, Carvalho MC, Brandão ML, Prado WA, Zuardi AW, Crippa JA, de Oliveira AR, Lovick TA, Genaro K. Sex-dependent differences in the anxiolytic-like effect of cannabidiol in the elevated plus-maze. J Psychopharmacol 2022; 36:1371-1383. [PMID: 36239039 PMCID: PMC9716492 DOI: 10.1177/02698811221125440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Cannabidiol (CBD), the major non-psychoactive constituent of cannabis, has therapeutic potential for the treatment of anxiety. Most preclinical studies investigate only acute effects of CBD and only in males, yet the drug is most likely to be used over a sustained period in clinical practice. OBJECTIVES The objectives of this study were to investigate the anxiolytic-like effect of CBD in female rats compared to males and to determine whether the responsiveness of females was influenced by the stage of the estrous cycle. METHODS We carried out experiments to compare the effect of CBD in male and female rats in the elevated plus maze (EPM) in response to acute and short-term (4 days) administration through a complete cycle in females. RESULTS Male and female rats behaved in a similar manner in the EPM, but females in the late diestrus (LD) phase exhibited more anxiety-like behavior than at other stages, the difference reaching statistical significance compared to proestrus stages. CBD produced anxiolytic-like effects in both sexes, but female rats were responsive only in LD and 10-fold lower dose than males. After sub-chronic (4 days) treatment, responsiveness to CBD was maintained in females in LD, but females in proestrus remained unresponsive to CBD treatment. CONCLUSIONS We suggest that there are sex differences in the anxiolytic-like effects of CBD in rats that reflect different underlying mechanisms: based on literature data, gonadal hormone status linked to GABAA receptor expression in females, and 5-HT1A receptor activation in males.
Collapse
Affiliation(s)
- Débora Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil,Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil,Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Milene C Carvalho
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Marcus L Brandão
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Wiliam A Prado
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil,National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-TM, CNPq), Brasília, DF, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil,National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-TM, CNPq), Brasília, DF, Brazil
| | - Amanda R de Oliveira
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil,Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Thelma A Lovick
- Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Genaro
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP, Brazil,Department of Anesthesiology, School of Medicine, University of California, Irvine, CA, USA,Karina Genaro, Department of Anesthesiology, School of Medicine, University of California, 837 Health Sci. Rd. Gillespie BLDG., Irvine, CA 92617, USA.
| |
Collapse
|
6
|
de Oliveira Alves C, Reimer AE, de Oliveira AR. Involvement of D2-like dopaminergic receptors in contextual fear conditioning in female rats: influence of estrous cycle. Front Behav Neurosci 2022; 16:1033649. [PMID: 36518813 PMCID: PMC9742248 DOI: 10.3389/fnbeh.2022.1033649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 10/19/2023] Open
Abstract
Introduction: Dopamine has been increasingly recognized as a key neurotransmitter regulating fear/anxiety states. Nevertheless, the influence of sex and estrous cycle differences on the role of dopamine in fear responses needs further investigation. We aimed to evaluate the effects of sulpiride (a dopaminergic D2-like receptor antagonist) on contextual fear conditioning in females while exploring the influence of the estrous cycle. Methods: First, using a contextual fear conditioning paradigm, we assessed potential differences in acquisition, expression, and extinction of the conditioned freezing response in male and female (split in proestrus/estrus and metestrus/diestrus) Wistar rats. In a second cohort, we evaluated the effects of sulpiride (20 and 40 mg/kg) on contextual conditioned fear in females during proestrus/estrus and metestrus/diestrus. Potential nonspecific effects were assessed in motor activity assays (catalepsy and open-field tests). Results: No sex differences nor estrous cycle effects on freezing behavior were observed during the fear conditioning phases. Sulpiride reduced freezing expression in female rats. Moreover, females during the proestrus/estrus phases of the estrous cycle were more sensitive to the effects of sulpiride than females in metestrus/diestrus. Sulpiride did not cause motor impairments. Discussion: Although no sex or estrous cycle differences were observed in basal conditioned fear expression and extinction, the estrous cycle seems to influence the effects of D2-like antagonists on contextual fear conditioning.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Waku I, Reimer AE, de Oliveira AR. Effects of Immediate Aversive Stimulation on Haloperidol-Induced Catalepsy in Rats. Front Behav Neurosci 2022; 16:867180. [PMID: 35481243 PMCID: PMC9036068 DOI: 10.3389/fnbeh.2022.867180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
In animal models, the administration of the dopaminergic D2 antagonist haloperidol affects the nigrostriatal pathway, inducing catalepsy, a state of immobility similar to Parkinson’s disease (PD) bradykinesia and akinesia. In PD, the motor impairments are due to difficulties in selecting and executing motor actions, associated with dopamine loss in basal ganglia and cortical targets. Motor and affective limbic networks seem to be integrated via a striato-nigro-striatal network, therefore, it is not surprising that the motor impairments in PD can be influenced by the patient’s emotional state. Indeed, when exposed to aversive stimuli or life-threatening events, immobile patients are capable of performing sudden movements, a phenomenon known as paradoxical kinesia. Thus, the present study investigated the effects of unconditioned and conditioned aversive stimulation on haloperidol-induced catalepsy in rats. First, male Wistar rats received intraperitoneal administration of saline or haloperidol (1 or 2 mg/kg) and were evaluated in the catalepsy bar test to assess the cataleptic state induced by the different doses of haloperidol over time. Next, we evaluated the effects of two types of unconditioned aversive stimuli–100 lux light (1 and 20 s) or 0.6 mA footshock (1 s)–on the catalepsy. Finally, we evaluated the effects of light conditioned stimuli (Light-CS), previously paired with footshocks, on the cataleptic state. Catalepsy was observed following haloperidol 1 and 2 mg/kg administration. Exposure to footshocks, but not to light, significantly reduced step-down latency during the catalepsy test. Although unconditioned light did not affect catalepsy, paired Light-CS did reduce step-down latency. Here, we have provided evidence of face validity for the study of paradoxical kinesia. In addition to demonstrating that immediate exposure to an aversive stimulus is capable of disrupting the cataleptic state, our findings show that haloperidol-induced catalepsy seems to be differently influenced depending on the modality of aversive stimulation. Our data suggest that the selective recruitment of threat response systems may bypass the dysfunctional motor circuit leading to the activation of alternative routes to drive movement.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Adriano E. Reimer
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Amanda R. de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
- *Correspondence: Amanda R. de Oliveira,
| |
Collapse
|
8
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
9
|
de Vita VM, Zapparoli HR, Reimer AE, Brandão ML, de Oliveira AR. Dopamine D2 receptors in the expression and extinction of contextual and cued conditioned fear in rats. Exp Brain Res 2021; 239:1963-1974. [PMID: 33885919 DOI: 10.1007/s00221-021-06116-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
Dopamine seems to mediate fear conditioning through its action on D2 receptors in the mesolimbic pathway. Systemic and local injections of dopaminergic agents showed that D2 receptors are preferentially involved in the expression, rather than in the acquisition, of conditioned fear. To further examine this issue, we evaluated the effects of systemic administration of the dopamine D2-like receptor antagonists sulpiride and haloperidol on the expression and extinction of contextual and cued conditioned fear in rats. Rats were trained to a context-CS or a light-CS using footshocks as unconditioned stimuli. After 24 h, rats received injections of sulpiride or haloperidol and were exposed to the context-CS or light-CS for evaluation of freezing expression (test session). After another 24 h, rats were re-exposed to the context-CS or light-CS, to evaluate the extinction recall (retest session). Motor performance was assessed with the open-field and catalepsy tests. Sulpiride, but not haloperidol, significantly reduced the expression of contextual and cued conditioned fear without affecting extinction recall. In contrast, haloperidol, but not sulpiride, had cataleptic and motor-impairing effects. The results reinforce the importance of D2 receptors in fear conditioning and suggest that dopaminergic mechanisms mediated by D2 receptors are mainly involved in the expression rather than in the extinction of conditioned freezing.
Collapse
Affiliation(s)
- Vivian M de Vita
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Heloisa R Zapparoli
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Adriano E Reimer
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Marcus L Brandão
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Ferri SL, Dow HC, Schoch H, Lee JY, Brodkin ES, Abel T. Age- and sex-specific fear conditioning deficits in mice lacking Pcdh10, an Autism Associated Gene. Neurobiol Learn Mem 2020; 178:107364. [PMID: 33340671 DOI: 10.1016/j.nlm.2020.107364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
PCDH10 is a gene associated with Autism Spectrum Disorder. It is involved in the growth of thalamocortical projections and dendritic spine elimination. Previously, we characterized Pcdh10 haploinsufficient mice (Pcdh10+/- mice) and found male-specific social deficits and dark phase hypoactivity. Pcdh10+/- males exhibit increased dendritic spine density of immature morphology, decreased NMDAR expression, and decreased gamma synchronization in the basolateral amygdala (BLA). Here, we further characterize Pcdh10+/- mice by testing for fear memory, which relies on BLA function. We used both male and female Pcdh10+/- mice and their wild-type littermates at two ages, juvenile and adult, and in two learning paradigms, cued and contextual fear conditioning. We found that males at both ages and in both assays exhibited fear conditioning deficits, but females were only impaired as adults in the cued condition. These data are further evidence for male-specific alterations in BLA-related behaviors in Pcdh10+/- mice and suggest that these mice may be a useful model for dissecting male specific brain and behavioral phenotypes relevant to social and emotional behaviors.
Collapse
Affiliation(s)
- Sarah L Ferri
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Holly C Dow
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31(st) Street, Room 2202, Philadelphia, PA 19104-3403, USA
| | - Hannah Schoch
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Ji Youn Lee
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31(st) Street, Room 2202, Philadelphia, PA 19104-3403, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
St Laurent R, Martinez Damonte V, Tsuda AC, Kauer JA. Periaqueductal Gray and Rostromedial Tegmental Inhibitory Afferents to VTA Have Distinct Synaptic Plasticity and Opiate Sensitivity. Neuron 2020; 106:624-636.e4. [PMID: 32191871 DOI: 10.1016/j.neuron.2020.02.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/01/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
The ventral tegmental area (VTA) is a major target of addictive drugs and receives multiple GABAergic projections originating outside the VTA. We describe differences in synaptic plasticity and behavior when optogenetically driving two opiate-sensitive GABAergic inputs to the VTA, the rostromedial tegmental nucleus (RMTg), and the periaqueductal gray (PAG). Activation of GABAergic RMTg terminals in the VTA in vivo is aversive, and low-frequency stimulation induces long-term depression in vitro. Low-frequency stimulation of PAG afferents in vitro unexpectedly causes long-term potentiation. Opioid receptor activation profoundly depresses PAG and RMTg inhibitory synapses but prevents synaptic plasticity only at PAG synapses. Activation of the GABAergic PAG terminals in the VTA promotes immobility, and optogenetically-driven immobility is blocked by morphine. Our data reveal the PAG as a source of highly opioid-sensitive GABAergic afferents and support the idea that different GABAergic pathways to the VTA control distinct behaviors.
Collapse
Affiliation(s)
- Robyn St Laurent
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Ayumi C Tsuda
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94035, USA.
| |
Collapse
|
12
|
Abstract
Catalepsy - an immobile state in which individuals fail to change imposed postures - can be induced by haloperidol. In rats, the pattern of haloperidol-induced catalepsy is very similar to that observed in Parkinson's disease (PD). As some PD symptoms seem to depend on the patient's emotional state, and as anxiety disorders are common in PD, it is possible that the central mechanisms regulating emotional and cataleptic states interplay. Previously, we showed that haloperidol impaired contextual-induced alarm calls in rats, without affecting footshock-evoked calls. Here, we evaluated the influence of distinct aversive stimulations on the haloperidol-induced catalepsy. First, male Wistar rats were subjected to catalepsy tests to establish a baseline state after haloperidol or saline administration. Next, distinct cohorts were exposed to open-field; elevated plus-maze; open-arm confinement; inescapable footshocks; contextual conditioned fear; or corticosterone administration. Subsequently, catalepsy tests were performed again. Haloperidol-induced catalepsy was verified in all drug-treated animals. Exposure to open-field, elevated plus-maze, open-arm confinement, footshocks, or administration of corticosterone had no significant effect on haloperidol-induced catalepsy. Contextual conditioned fear, which is supposed to promote a more intense fear, increased catalepsy over time. Our findings suggest that only specific defensive circuitries modulate the nigrostriatal system mediating the haloperidol-induced cataleptic state.
Collapse
|
13
|
Kokhan VS, Lebedeva-Georgievskaya KB, Kudrin VS, Bazyan AS, Maltsev AV, Shtemberg AS. An investigation of the single and combined effects of hypogravity and ionizing radiation on brain monoamine metabolism and rats' behavior. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:12-19. [PMID: 30797429 DOI: 10.1016/j.lssr.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ionizing radiation and hypogravity can cause central nervous system (CNS) dysfunctions. This is a key limiting factor for deep space missions. Up until now, the mechanisms through which they affect the neural tissue are not completely understood. OBJECTIVES We studied how the combination of hypogravity (antiorthostatic suspension model, AS) and ionizing radiations (γ-quanta and 1H+ together, R) affects the CNS. METHODS We applied separately and in combination AS and R to determine the influence of these factors on behavior and metabolism of monoamines in Wistar rat's brain. RESULTS We found out that R has a slight effect on both the behavior and metabolism of monoamines. However, when applied in combination with AS the former was able to reduce the negative effects of the latter. The combined effect of ionizing radiation and hypogravity led to the recovery of locomotor activity, orientation and exploratory behavior, and long-term context memory impaired under the impact of hypogravity only. These changes came together with an increase in the serotonin and dopamine turnover in all of the brain structures that were studied. CONCLUSIONS We received the first evidence of interferential interaction between the effects of ionizing radiation and hypogravity factors with regard to a behavior and monoamine turnover in the brain. Further studies with heavy nuclei at relevant doses (<0.5 Gy) are needed.
Collapse
Affiliation(s)
- Viktor S Kokhan
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia.
| | - Kseniya B Lebedeva-Georgievskaya
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| | - Vladimir S Kudrin
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| | - Ara S Bazyan
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia; Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Andrey V Maltsev
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| | - Andrey S Shtemberg
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| |
Collapse
|
14
|
Karakilic A, Kizildag S, Kandis S, Guvendi G, Koc B, Camsari GB, Camsari UM, Ates M, Arda SG, Uysal N. The effects of acute foot shock stress on empathy levels in rats. Behav Brain Res 2018; 349:31-36. [PMID: 29709611 DOI: 10.1016/j.bbr.2018.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Empathy defined as the ability to understand and the share the feelings, thoughts, and attitudes of another, is an important skill in survival and reproduction. Among many factors that affect empathy include psychological stress, anxiety states. The aim of this study was to investigate the impact of acute psychological stress on empathic behavior and its association with oxytocin and vasopressin levels in amygdala and prefrontal cortex. Rats were subjected to 0.2 mA (low) and 1.6 mA (high) intensity of foot shock stress for duration of 20 min. Empathic behavior was found to be improved as a response to low intensity stress, but not to high intensity stress. As a response to lower intensity stress, vasopressin was increased in prefrontal cortex and amygdala; oxytocin was increased in only prefrontal cortex, and corticosterone levels increased in general. Anxiety indicators did not change in low intensity stress group yet; high intensity stress group demonstrated a lesser degree of anxiety response. High intensity stress group stayed unexpectedly more active in middle area of elevated plus maze test equipment, which may support impaired executive decision making abilities in the setting of high anxiety states. Further research is needed to investigate gender effects, the role of dopaminergic system and other stress related pathways in acute stress.
Collapse
Affiliation(s)
- Aslı Karakilic
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Servet Kizildag
- Department of Pharmacology, College of Vocational School of Health Services, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Guven Guvendi
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Gamze B Camsari
- Department of Psychiatry and Psychology, Mayo Clinic Health System, Albert Lea, MN, USA
| | - Ulas M Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mehmet Ates
- Department of Pharmacology, College of Vocational School of Health Services, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Sevil Gonenc Arda
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, Dokuz Eylul University, School of Medicine, Izmir, Turkey.
| |
Collapse
|
15
|
Pértile RAN, Corvino ME, Marchette RCN, Pavesi E, Cavalli J, Ramos A, Izídio GS. The Quinpirole Hypolocomotive Effects are Strain and Route of Administration Dependent in SHR and SLA16 Isogenic Rats. Behav Genet 2017; 47:552-563. [PMID: 28822047 DOI: 10.1007/s10519-017-9865-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022]
Abstract
The SHR and SLA16 inbred strains present behavioral differences in anxiety/emotionality that could be under the influence of dopaminergic neurotransmission. In order to investigate the role of D2 receptors in modulating such differences, an agonist (quinpirole) and an antagonist (haloperidol) of this receptor were administered, either via systemic injection (IP), or microinjected into the ventral area of the hippocampus (vHIP). Quinpirole and haloperidol IP decreased locomotor activity, only in SLA16 rats in the open-field (OF), and in both strains in the elevated plus-maze (EPM). Quinpirole also increased the preference for the aversive areas of the EPM. Quinpirole vHIP decreased locomotor activity in both strains. Haloperidol vHIP did not elicit behavioural changes and no differences in the levels of D2 receptors and of dopamine transporter in the hippocampus were found. Results indicate that systemic activation/blocking of D2 receptors caused a strain-dependent hypolocomotion, whereas activation of D2 receptors in the vHIP, but not D2 receptor antagonism, regardless of dose, decreased general locomotor activity in the two strains. Therefore, we suggest that genomic differences in the chromosome 4 can influence the locomotor activity regulated by the D2 dopaminergic receptor, especially in the vHIP.
Collapse
Affiliation(s)
- R A N Pértile
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - M E Corvino
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - R C N Marchette
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - E Pavesi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Cavalli
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - A Ramos
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - G S Izídio
- Laboratory of Behavior Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|