1
|
Perrier ML, Graham KR, Vander Vaart JE, Staines WR, Meehan SK. Sensitivity to Instruction Strategies in Motor Learning Is Predicted by Anterior-Posterior TMS Motor Thresholds. Brain Sci 2025; 15:645. [PMID: 40563815 PMCID: PMC12190545 DOI: 10.3390/brainsci15060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 06/06/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
Background: The impact of exogenous explicit knowledge on early motor learning is highly variable and may be influenced by excitability within the procedural sensorimotor network. Recent transcranial magnetic stimulation (TMS) studies suggest that variability in interneuron recruitment by anterior-posterior (AP) currents is linked to differences in functional connectivity between premotor and motor regions. Objectives: This study used controllable pulse parameter TMS (cTMS) to assess how AP-sensitive interneuron excitability interacts with explicit knowledge to influence motor learning. Methods: Seventy-two participants were grouped as AP-positive (n = 36) and AP-negative groups (n = 36) based on whether an AP threshold could be obtained before reaching maximal stimulator output. A narrow (30 µs) stimulus was employed to target the longest latency corticospinal inputs selectively. Participants then practiced a continuous visuomotor tracking task and completed a delayed retention test. Half of each group received explicit knowledge of a repeated sequence embedded between random sequences. Random sequence tracking performance assessed general sensorimotor efficiency; repeated sequence performance assessed sequence-specific learning. Results: Both AP30-positive participants, with and without explicit knowledge, and the AP30-negative without explicit knowledge demonstrated similar improvements in sensorimotor efficiency driven by offline consolidation. However, AP30-negative participants given explicit instruction exhibited significantly reduced improvement in sensorimotor efficiency, primarily due to impaired offline consolidation. Conclusions: These findings suggest that individuals with low excitability in long-latency AP-sensitive inputs may be more vulnerable to interference from explicit instruction. The current results highlight the importance of accounting for individual differences in interneuron excitability when developing instructional strategies for motor learning.
Collapse
Affiliation(s)
| | | | | | | | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; (M.L.P.); (K.R.G.); (J.E.V.V.); (W.R.S.)
| |
Collapse
|
2
|
Tanel M, Kidgell DJ, Vekki S, Ahtiainen JP, Gomez-Guerrero G, Halonen EJ, Baker SN, Walker S. Reticulospinal and corticospinal responses in long-term strength-trained and untrained adults. Eur J Appl Physiol 2025:10.1007/s00421-025-05834-x. [PMID: 40493174 DOI: 10.1007/s00421-025-05834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/20/2025] [Indexed: 06/12/2025]
Abstract
PURPOSE Studies investigating neural adaptation to strength training have yet to determine the loci of previously observed improvements in motor pathway function. While transcranial magnetic stimulation (TMS) studies have typically focused on the corticospinal tract, recent evidence from primates suggests that the subcortical reticulospinal tract may be the primary candidate for adaptation. METHODS Using a cross-sectional comparison, long-term strength-trained athletes (n = 15, 11M/4F, 32 ± 6 y) and untrained adults (n = 18, 11M/7F, 32 ± 4 y) underwent a series of neurophysiological tests designed to target corticospinal and reticulospinal functioning based on biceps brachii muscle responses. The StartReact test was used to determine reaction time, rate of torque development, and muscle activity in response to visual (V), visual-auditory (VA, 80 dB), and visual-startle (VS, 120 dB) cues. Reaction times were used to calculate reticulospinal gain ([V-VS]/[V-VA]). Neuro-navigated monophasic TMS to the motor cortex was given during low-force level isometric voluntary contractions (10% of maximum) with both posterior-anterior (100-180% active motor threshold) and anterior-posterior currents (120% active motor threshold). Motor evoked potentials (MEPs) from stimuli given at 120% active motor threshold were compared to startle cue-conditioned responses and anterior-posterior current responses. RESULTS Untrained adults benefitted more from StartReact (reticulospinal gain, p = 0.003), whereas strength-trained athletes showed greater MEP size at higher stimulation intensities (180% active motor threshold, p = 0.048, 140-180% area-under-the-curve, p = 0.020) and shorter silent period (180% active motor threshold, p = 0.035). CONCLUSIONS Evidence provided here suggests greater cortico-reticulospinal excitability/functioning in long-term strength-trained athletes.
Collapse
Affiliation(s)
- Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland
| | - Dawson J Kidgell
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Sakari Vekki
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland
| | - Gonzalo Gomez-Guerrero
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland
| | - Eeli J Halonen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland
| | - Stuart N Baker
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35 (VIV225), Jyväskylä, Finland.
| |
Collapse
|
3
|
Urbin MA, Liu F, Moon CH. Microstructural integrity within the damaged region of the residual corticofugal projection from primary motor cortex predicts the effect of noninvasive neuromodulation targeting the spinal cord in chronic stroke. Neurotherapeutics 2025:e00607. [PMID: 40383664 DOI: 10.1016/j.neurot.2025.e00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Distal limb impairment after neurological injury is largely a consequence of damage to descending tracts that structurally and functionally connect cortical motor areas with spinal motor neuron pools. Noninvasive neuromodulation strategies that aim to enhance cortico-spinal connectivity via spike timing-dependent mechanisms in the spinal cord rely on transmission of descending volleys across the residual tract. Whether variation in the aftereffects of noninvasive neuromodulation depends on the overall volume or microstructural integrity of fibers that survive injury is unknown. Here, paired corticospinal-motoneuronal stimulation (PCMS) was administered to increase cortico-spinal connectivity of the residual tract in humans with longstanding hand impairment due to stroke. Diffusion MRI was used to reconstruct the residual corticofugal projection from primary motor cortex. We found that fractional anisotropy of fibers within the region directly damaged by stroke accounted for 49.2 % of the variance in facilitation of motor-evoked potentials elicited by single-pulse transcranial magnetic stimulation. White matter volume within the damaged region was only weakly correlated with the observed change. Microstructure in caudal portions of the residual tract subject to secondary degeneration strongly predicted voluntary and stimulation-evoked activation of spinal motor neurons pools innervating the paretic hand but were unrelated to PCMS aftereffects. Our findings provide preliminary evidence to indicate that microstructural integrity of fibers directly damaged by stroke, and not the overall volume that remains, predicts the effect of noninvasive neuromodulation mediated downstream in the spinal cord.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, 15206, PA, USA.
| | - Fang Liu
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, 15213, PA, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, 15213, PA, USA
| |
Collapse
|
4
|
Liao WY, Hand BJ, Rinaldi G, Semmler JG, Opie GM. Neuromodulation by repetitive paired-pulse TMS at late I-wave intervals in older adults. Exp Brain Res 2025; 243:140. [PMID: 40327107 PMCID: PMC12055644 DOI: 10.1007/s00221-025-07060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 03/16/2025] [Indexed: 05/07/2025]
Abstract
The efficacy of indirect (I) wave periodicity repetitive transcranial magnetic stimulation (iTMS) on the excitability of primary motor cortex (M1) in young adults can be modified by changing the late I-wave interval. Given that late I-wave activity is altered in older adults, this could contribute to age-related changes in M1 plasticity. To assess this possibility, the present study investigated the effects of iTMS using three late I-wave intervals (4.0, 4.5, and 5.0 ms) on M1 excitability in 17 older adults (69.6 ± 5.7 years; 10 females), which was compared to findings obtained previously in 17 young adults (27.2 ± 6.4 years, 12 females). Changes in M1 excitability were assessed using motor evoked potentials (MEPs) recorded from the right first dorsal interosseus to index single-pulse MEP1.0mV and paired-pulse short-interval intracortical facilitation (SICF). To increase sensitivity to different intracortical circuits, both measures were also recorded using posterior-anterior (PA) and anterior-posterior (AP) TMS currents. Within older adults, PA MEP1.0mV and SICF were facilitated following iTMS (both P < 0.0001) and these were not different between iTMS ISIs (both P > 0.077). In contrast, AP MEP1.0mV and SICF were potentiated by iTMS4.0 and iTMS5.0 (both P < 0.023). iTMS5.0 potentiation of AP circuits was also increased in older adults compared to young adults (both P < 0.004). These results suggest complex, timing-dependent effects of advancing age on the plasticity of the late I-wave circuits.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Brodie J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Giuseppe Rinaldi
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Lucarelli D, Guidali G, Sulcova D, Zazio A, Bonfiglio NS, Stango A, Barchiesi G, Bortoletto M. Stimulation Parameters Recruit Distinct Cortico-Cortical Pathways: Insights from Microstate Analysis on TMS-Evoked Potentials. Brain Topogr 2025; 38:39. [PMID: 40153104 PMCID: PMC11953218 DOI: 10.1007/s10548-025-01113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) represent an innovative measure for examining brain connectivity and developing biomarkers of psychiatric conditions. Minimizing TEP variability across studies and participants, which may stem from methodological choices, is therefore vital. By combining classic peak analysis and microstate investigation, we tested how TMS pulse waveform and current direction may affect cortico-cortical circuit engagement when targeting the primary motor cortex (M1). We aim to disentangle whether changing these parameters affects the degree of activation of the same neural circuitry or may lead to changes in the pathways through which the induced activation spreads. Thirty-two healthy participants underwent a TMS-EEG experiment in which the pulse waveform (monophasic, biphasic) and current direction (posterior-anterior, anterior-posterior, latero-medial) were manipulated. We assessed the latency and amplitude of M1-TEP components and employed microstate analyses to test differences in topographies. Results revealed that TMS parameters strongly influenced M1-TEP components' amplitude but had a weaker role over their latencies. Microstate analysis showed that the current direction in monophasic stimulations changed the pattern of evoked microstates at the early TEP latencies, as well as their duration and global field power. This study shows that the current direction of monophasic pulses may modulate cortical sources contributing to TEP signals, activating neural populations and cortico-cortical paths more selectively. Biphasic stimulation reduces the variability associated with current direction and may be better suited when TMS targeting is blind to anatomical information.
Collapse
Affiliation(s)
- Delia Lucarelli
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Guidali
- Department of Psychology and Milan Center for Neuroscience - Neuromi, University of Milano-Bicocca, Milano, Italy
| | - Dominika Sulcova
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Antonietta Stango
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Guido Barchiesi
- Department of Philosophy, University of Milano, Milano, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
6
|
Liao W, Hand B, Cirillo J, Sasaki R, Opie G, Goldsworthy M, Semmler J. Gamma Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Human Motor Cortex Plasticity Induced by Theta-Burst Stimulation. Eur J Neurosci 2025; 61:e70018. [PMID: 39930653 PMCID: PMC11811485 DOI: 10.1111/ejn.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Long-term potentiation (LTP)-like plasticity in primary motor cortex (M1) induced by intermittent theta burst stimulation (iTBS) can be enhanced by transcranial alternating current stimulation (tACS) at a gamma frequency of 70 Hz. Recent evidence suggests that there is some frequency specificity in the effects of tACS on motor function within the midgamma band (60-90 Hz). The purpose of this study was to examine the effect of different tACS frequencies within the gamma band on the neuroplastic response to iTBS. Seventeen healthy young adults performed four experimental sessions, where iTBS was combined with different tACS conditions (60, 75 and 90 Hz, sham) over M1 using a tACS-iTBS costimulation approach. Motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI) were assessed from a hand muscle before and after the intervention using transcranial magnetic stimulation with posterior-anterior (PA) and anterior-posterior (AP) coil orientations. Gamma tACS-iTBS costimulation increased PA and AP MEPs when gamma tACS was applied at 90 Hz, but not at 75 or 60 Hz, compared with sham tACS. PA and AP SICI was reduced by tACS-iTBS costimulation, but this was not influenced by gamma tACS frequency. Gamma tACS can increase LTP-like plasticity when combined with iTBS over M1, with the largest effect observed when tACS was applied at higher gamma frequencies. The functional relevance of targeting higher gamma frequencies within different brain areas and study populations remains to be determined.
Collapse
Affiliation(s)
- Wei‐Yeh Liao
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Brodie J. Hand
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - John Cirillo
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Ryoki Sasaki
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Graduate Course of Health and Social ServicesKanagawa University of Human ServicesYokosukaJapan
| | - George M. Opie
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| | - Mitchell R. Goldsworthy
- Behaviour‐Brain‐Body Research Centre, Justice and SocietyUniversity of South AustraliaAdelaideAustralia
- Hopwood Centre for Neurobiology, Lifelong Health ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - John G. Semmler
- Discipline of Physiology, School of BiomedicineUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
7
|
Souza VH, Nieminen JO, Tugin S, Koponen LM, Ziemann U, Baffa O, Ilmoniemi RJ. Probing the orientation specificity of excitatory and inhibitory circuitries in the primary motor cortex with multi-channel TMS. Clin Neurophysiol 2025; 169:23-32. [PMID: 39603156 DOI: 10.1016/j.clinph.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Electric-field orientation is crucial for optimizing neuronal excitation in transcranial magnetic stimulation (TMS). Yet, the stimulus orientation effects on short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are poorly understood due to technical challenges in manipulating the TMS-induced stimulus orientation within milliseconds. We aimed to assess the orientation sensitivity of SICI and ICF paradigms and identify optimal orientations for motor evoked potential (MEP) facilitation and suppression. METHODS We applied paired-pulse multi-channel TMS to 12 healthy subjects with conditioning and test stimuli in the same, opposite, and perpendicular orientations to each other at four interstimulus intervals (ISI) to generate refractoriness, SICI, and ICF. RESULTS MEP modulation was affected by the conditioning- and test-stimulus orientation, being strongest when both pulses were in the same direction. MEP modulation with 2.5-ms and 6.0-ms ISIs were more sensitive to orientation changes than 0.5- and 8.0-ms ISIs. CONCLUSION SICI and ICF orientation sensitivity exhibit a complex dependence on the conditioning stimulus orientation, which might be explained by anatomical and morphological arrangements of inhibitory and excitatory neuronal populations. SIGNIFICANCE Distinct mechanisms mediating SICI and ICF are sensitive to stimulus orientation at specific ISIs, describing a structural-functional relationship that maximizes each effect at the cortical level.
Collapse
Affiliation(s)
- Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sergei Tugin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lari M Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, USA; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Oswaldo Baffa
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Aalto University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Liao WY, Opie GM, Ziemann U, Semmler JG. The effects of intermittent theta burst stimulation over dorsal premotor cortex on primary motor cortex plasticity in young and older adults. Eur J Neurosci 2024; 60:4019-4033. [PMID: 38757748 DOI: 10.1111/ejn.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Previous transcranial magnetic stimulation (TMS) research suggests that the dorsal premotor cortex (PMd) influences neuroplasticity within the primary motor cortex (M1) through indirect (I) wave interneuronal circuits. However, it is unclear how the influence of PMd on the plasticity of M1 I-waves changes with advancing age. This study therefore investigated the neuroplastic effects of intermittent theta burst stimulation (iTBS) to M1 early and late I-wave circuits when preceded by iTBS (PMd iTBS-M1 iTBS) or sham stimulation (PMd sham-M1 iTBS) to PMd in 15 young and 16 older adults. M1 excitability was assessed with motor evoked potentials (MEP) recorded from the right first dorsal interosseous using posterior-anterior (PA) and anterior-posterior (AP) current TMS at standard stimulation intensities (PA1mV, AP1mV) and reduced stimulation intensities (PA0.5mV, early I-waves; AP0.5mV, late I-waves). PMd iTBS-M1 iTBS lowered the expected facilitation of PA0.5mV (to M1 iTBS) in young and older adults (P = 0.009), whereas the intervention had no effect on AP0.5mV facilitation in either group (P = 0.305). The modulation of PA0.5mV following PMd iTBS-M1 iTBS may reflect a specific influence of PMd on different I-wave circuits that are involved in M1 plasticity within young and older adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
10
|
Laakso I, Tani K, Gomez-Tames J, Hirata A, Tanaka S. Small effects of electric field on motor cortical excitability following anodal tDCS. iScience 2024; 27:108967. [PMID: 38352229 PMCID: PMC10863330 DOI: 10.1016/j.isci.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.5, 1.0, 1.5, or 2.0 mA or sham. Compared to sham, all active conditions increased the size of motor evoked potentials (MEP) normalized to the pre-tDCS baseline, irrespective of anterior or posterior magnetic test stimuli. The electric field calculated in the motor cortex of each participant had a nonlinear effect on the normalized MEP size, but its effects were small compared to those of other participant-specific factors. The findings support the efficacy of anodal tDCS in enhancing the MEP size but do not demonstrate any benefits of personalized electric field modeling in explaining tDCS response variability.
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Keisuke Tani
- Faculty of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan
| | - Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| |
Collapse
|
11
|
Pantovic M, Boss R, Noorda KJ, Premyanov MI, Aynlender DG, Wilkins EW, Boss S, Riley ZA, Poston B. The Influence of Different Inter-Trial Intervals on the Quantification of Intracortical Facilitation in the Primary Motor Cortex. Bioengineering (Basel) 2023; 10:1278. [PMID: 38002401 PMCID: PMC10669180 DOI: 10.3390/bioengineering10111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Intracortical facilitation (ICF) is a paired-pulse transcranial magnetic stimulation (TMS) measurement used to quantify interneuron activity in the primary motor cortex (M1) in healthy populations and motor disorders. Due to the prevalence of the technique, most of the stimulation parameters to optimize ICF quantification have been established. However, the underappreciated methodological issue of the time between ICF trials (inter-trial interval; ITI) has been unstandardized, and different ITIs have never been compared in a paired-pulse TMS study. This is important because single-pulse TMS studies have found motor evoked potential (MEP) amplitude reductions over time during TMS trial blocks for short, but not long ITIs. The primary purpose was to determine the influence of different ITIs on the measurement of ICF. Twenty adults completed one experimental session that involved 4 separate ICF trial blocks with each utilizing a different ITI (4, 6, 8, and 10 s). Two-way ANOVAs indicated no significant ITI main effects for test MEP amplitudes, condition-test MEP amplitudes, and therefore ICF. Accordingly, all ITIs studied provided nearly identical ICF values when averaged over entire trial blocks. Therefore, it is recommended that ITIs of 4-6 s be utilized for ICF quantification to optimize participant comfort and experiment time efficiency.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Sage Boss
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
12
|
Hand BJ, Merkin A, Opie GM, Ziemann U, Semmler JG. Repetitive paired-pulse TMS increases motor cortex excitability and visuomotor skill acquisition in young and older adults. Cereb Cortex 2023; 33:10660-10675. [PMID: 37689833 PMCID: PMC10560576 DOI: 10.1093/cercor/bhad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) over primary motor cortex (M1) recruits indirect (I) waves that can be modulated by repetitive paired-pulse TMS (rppTMS). The purpose of this study was to examine the effect of rppTMS on M1 excitability and visuomotor skill acquisition in young and older adults. A total of 37 healthy adults (22 young, 18-32 yr; 15 older, 60-79 yr) participated in a study that involved rppTMS at early (1.4 ms) and late (4.5 ms) interstimulus intervals (ISIs), followed by the performance of a visuomotor training task. M1 excitability was examined with motor-evoked potential (MEP) amplitudes and short-interval intracortical facilitation (SICF) using posterior-anterior (PA) and anterior-posterior (AP) TMS current directions. We found that rppTMS increased M1 excitability in young and old adults, with the greatest effects for PA TMS at the late ISI (4.5 ms). Motor skill acquisition was improved by rppTMS at an early (1.4 ms) but not late (4.5 ms) ISI in young and older adults. An additional study using a non-I-wave interval (3.5 ms) also showed increased M1 excitability and visuomotor skill acquisition. These findings show that rppTMS at both I-wave and non-I-wave intervals can alter M1 excitability and improve visuomotor skill acquisition in young and older adults.
Collapse
Affiliation(s)
- Brodie J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - Ashley Merkin
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
13
|
Guidali G, Zazio A, Lucarelli D, Marcantoni E, Stango A, Barchiesi G, Bortoletto M. Effects of transcranial magnetic stimulation (TMS) current direction and pulse waveform on cortico-cortical connectivity: A registered report TMS-EEG study. Eur J Neurosci 2023; 58:3785-3809. [PMID: 37649453 DOI: 10.1111/ejn.16127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) are a promising proxy for measuring effective connectivity, that is, the directed transmission of physiological signals along cortico-cortical tracts, and for developing connectivity-based biomarkers. A crucial point is how stimulation parameters may affect TEPs, as they may contribute to the general variability of findings across studies. Here, we manipulated two TMS parameters (i.e. current direction and pulse waveform) while measuring (a) an early TEP component reflecting contralateral inhibition of motor areas, namely, M1-P15, as an operative model of interhemispheric cortico-cortical connectivity, and (b) motor-evoked potentials (MEP) for the corticospinal pathway. Our results showed that these two TMS parameters are crucial to evoke the M1-P15, influencing its amplitude, latency, and replicability. Specifically, (a) M1-P15 amplitude was strongly affected by current direction in monophasic stimulation; (b) M1-P15 latency was significantly modulated by current direction for monophasic and biphasic pulses. The replicability of M1-P15 was substantial for the same stimulation condition. At the same time, it was poor when stimulation parameters were changed, suggesting that these factors must be controlled to obtain stable single-subject measures. Finally, MEP latency was modulated by current direction, whereas non-statistically significant changes were evident for amplitude. Overall, our study highlights the importance of TMS parameters for early TEP responses recording and suggests controlling their impact in developing connectivity biomarkers from TEPs. Moreover, these results point out that the excitability of the corticospinal tract, which is commonly used as a reference to set TMS intensity, may not correspond to the excitability of cortico-cortical pathways.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Delia Lucarelli
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Eleonora Marcantoni
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Guido Barchiesi
- Department of Philosophy, University of Milano, Milan, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
14
|
Sasaki R, Liao W, Opie GM, Semmler JG. Effect of current direction and muscle activation on motor cortex neuroplasticity induced by repetitive paired-pulse transcranial magnetic stimulation. Eur J Neurosci 2023; 58:3270-3285. [PMID: 37501330 PMCID: PMC10946698 DOI: 10.1111/ejn.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Repetitive paired-pulse transcranial magnetic stimulation (TMS) at indirect (I)-wave periodicity (iTMS) can increase plasticity in primary motor cortex (M1). Both TMS coil orientation and muscle activation can influence I-wave activity, but it remains unclear how these factors influence M1 plasticity with iTMS. We therefore investigated the influence of TMS coil orientation and muscle activation on the response to iTMS. Thirty-two young adults (24.2 ± 4.8 years) participated in three experiments. Each experiment included two sessions using a modified iTMS intervention with either a posterior-anterior orientation (PA) or anterior-posterior (AP) coil orientation over M1. Stimulation was applied in resting (Experiments 1 and 3) or active muscle (Experiments 2 and 3). Effects of iTMS on M1 excitability were assessed by recording motor evoked potentials (MEPs) and short-interval intracortical facilitation (SICF) with PA and AP orientations in both resting (all experiments) and active (Experiment 2) muscle. For the resting intervention, MEPs were greater after AP iTMS (Experiment 1, P = .046), whereas SICF was comparable between interventions (all P > .10). For the active intervention, responses did not vary between PA and AP iTMS (Experiment 2, all P > .14), and muscle activation reduced the effect of AP iTMS during the intervention (Experiment 3, P = .002). Coil orientation influenced the MEP response after iTMS, and muscle activation reduced the response during iTMS. While this suggests that AP iTMS may be beneficial in producing a neuroplastic modulation of I-wave circuits in resting muscle, further exploration of factors such as dosing is required.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Discipline of PhysiologyUniversity of AdelaideAdelaideAustralia
| | - Wei‐Yeh Liao
- Discipline of PhysiologyUniversity of AdelaideAdelaideAustralia
| | - George M. Opie
- Discipline of PhysiologyUniversity of AdelaideAdelaideAustralia
| | - John G. Semmler
- Discipline of PhysiologyUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
15
|
Wrightson JG, Cole J, Sohn MN, McGirr A. The effects of D-Cycloserine on corticospinal excitability after repeated spaced intermittent theta-burst transcranial magnetic stimulation: A randomized controlled trial in healthy individuals. Neuropsychopharmacology 2023; 48:1217-1224. [PMID: 37041205 PMCID: PMC10267195 DOI: 10.1038/s41386-023-01575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023]
Abstract
Repeated spaced TMS protocols, also termed accelerated TMS protocols, are of increasing therapeutic interest. The long-term potentiation (LTP)-like effects of repeated spaced intermittent theta-burst transcranial magnetic stimulation (iTBS) are presumed to be N-Methyl-D-Aspartate receptor (NMDA-R) dependent; however, this has not been tested. We tested whether the LTP-like effects of repeated spaced iTBS are influenced by low-dose D-Cycloserine (100 mg), an NMDA-R partial-agonist. We conducted a randomized, double-blind, placebo-controlled crossover trial in 20 healthy adults from August 2021-Feb 2022. Participants received repeated spaced iTBS, consisting of two iTBS sessions 60 minutes apart, to the primary motor cortex. The peak-to-peak amplitude of the motor evoked potentials (MEP) at 120% resting motor threshold (RMT) was measured after each iTBS. The TMS stimulus-response (TMS-SR; 100-150% RMT) was measured at baseline, +30 min, and +60 min after each iTBS. We found evidence for a significant Drug*iTBS effect in MEP amplitude, revealing that D-Cycloserine enhanced MEP amplitudes relative to the placebo. When examining TMS-SR, pairing iTBS with D-Cycloserine increased the TMS-SR slope relative to placebo after both iTBS tetani, and this was due to an increase in the upper bound of the TMS-SR. This indicates that LTP-like and metaplastic effects of repeated-spaced iTBS involve NMDA-R, as revealed by two measures of corticospinal excitability, and that low-dose D-Cycloserine facilitates the physiological effects of repeated spaced iTBS. However, extension of these findings to clinical populations and therapeutic protocols targeting non-motor regions of cortex requires empirical validation.
Collapse
Affiliation(s)
- James G Wrightson
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaeden Cole
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Maya N Sohn
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
16
|
Germann M, Baker SN. Testing a Novel Wearable Device for Motor Recovery of the Elbow Extensor Triceps Brachii in Chronic Spinal Cord Injury. eNeuro 2023; 10:ENEURO.0077-23.2023. [PMID: 37460228 PMCID: PMC10399611 DOI: 10.1523/eneuro.0077-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/29/2023] Open
Abstract
After corticospinal tract damage, reticulospinal connections to motoneurons strengthen preferentially to flexor muscles. This could contribute to the disproportionately poor recovery of extensors often seen after spinal cord injury (SCI) and stroke. In this study, we paired electrical stimulation over the triceps muscle with auditory clicks, using a wearable device to deliver stimuli over a prolonged period of time. Healthy human volunteers wore the stimulation device for ∼6 h and a variety of electrophysiological assessments were used to measure changes in triceps motor output. In contrast to previous results in the biceps muscle, paired stimulation: (1) did not increase the StartReact effect; (2) did not decrease the suppression of responses to transcranial magnetic brain stimulation (TMS) following a loud sound; (3) did not enhance muscle responses elicited by a TMS coil oriented to induce anterior-posterior current. In a second study, chronic cervical SCI survivors wore the stimulation device for ∼4 h every day for four weeks; this was compared with a four-week period without wearing the device. Functional and electrophysiological assessments were repeated at week 0, week 4, and week 8. No significant changes were observed in electrophysiological assessments after paired stimulation. Functional measurements such as maximal force and variability and speed of trajectories made during a planar reaching task also remained unchanged. Our results suggest that the triceps muscle shows less potential for plasticity than biceps; pairing clicks with muscle stimulation does not seem beneficial in enhancing triceps recovery after SCI.
Collapse
Affiliation(s)
- Maria Germann
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
17
|
Wendt K, Sorkhabi MM, Stagg CJ, Fleming MK, Denison T, O'Shea J. The effect of pulse shape in theta-burst stimulation: Monophasic vs biphasic TMS. Brain Stimul 2023; 16:1178-1185. [PMID: 37543172 PMCID: PMC10444700 DOI: 10.1016/j.brs.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Intermittent theta-burst stimulation (i) (TBS) is a transcranial magnetic stimulation (TMS) plasticity protocol. Conventionally, TBS is applied using biphasic pulses due to hardware limitations. However, monophasic pulses are hypothesised to recruit cortical neurons more selectively than biphasic pulses, predicting stronger plasticity effects. Monophasic and biphasic TBS can be generated using a custom-made pulse-width modulation-based TMS device (pTMS). OBJECTIVE Using pTMS, we tested the hypothesis that monophasic iTBS would induce a stronger plasticity effect than biphasic, measured as induced increases in motor corticospinal excitability. METHODS In a repeated-measures design, thirty healthy volunteers participated in three separate sessions, where monophasic and biphasic iTBS was applied to the primary motor cortex (M1 condition) or the vertex (control condition). Plasticity was quantified as increases in motor corticospinal excitability after versus before iTBS, by comparing peak-to-peak amplitudes of motor evoked potentials (MEP) measured at baseline and over 60 min after iTBS. RESULTS Both monophasic and biphasic M1 iTBS led to significant increases in MEP amplitude. As predicted, linear mixed effects (LME) models showed that the iTBS condition had a significant effect on the MEP amplitude (χ2 (1) = 27.615, p < 0.001) with monophasic iTBS leading to significantly stronger plasticity than biphasic iTBS (t (693) = 2.311, p = 0.021). Control vertex iTBS had no effect. CONCLUSIONS In this study, monophasic iTBS induced a stronger motor corticospinal excitability increase than biphasic within participants. This greater physiological effect suggests that monophasic iTBS may also have potential for greater functional impact, of interest for future fundamental and clinical applications of TBS.
Collapse
Affiliation(s)
- Karen Wendt
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK; Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Majid Memarian Sorkhabi
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Charlotte J Stagg
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Melanie K Fleming
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK; Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, UK
| |
Collapse
|
18
|
Liao W, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences I-wave excitability in primary motor cortex of young and older adults. J Physiol 2023; 601:2959-2974. [PMID: 37194369 PMCID: PMC10952229 DOI: 10.1113/jp284204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
Previous research using transcranial magnetic stimulation (TMS) has demonstrated weakened connectivity between dorsal premotor cortex (PMd) and motor cortex (M1) with age. While this alteration is probably mediated by changes in the communication between the two regions, the effect of age on the influence of PMd on specific indirect (I) wave circuits within M1 remains unclear. The present study therefore investigated the influence of PMd on early and late I-wave excitability in M1 of young and older adults. Twenty-two young (mean ± SD, 22.9 ± 2.9 years) and 20 older (66.6 ± 4.2 years) adults participated in two experimental sessions involving either intermittent theta burst stimulation (iTBS) or sham stimulation over PMd. Changes within M1 following the intervention were assessed with motor-evoked potentials (MEPs) recorded from the right first dorsal interosseous muscle. We applied posterior-anterior (PA) and anterior-posterior (AP) current single-pulse TMS to assess corticospinal excitability (PA1mV ; AP1mV ; PA0.5mV , early; AP0.5mV , late), and paired-pulse TMS short intracortical facilitation for I-wave excitability (PA SICF, early; AP SICF, late). Although PMd iTBS potentiated PA1mV and AP1mV MEPs in both age groups (both P < 0.05), the time course of this effect was delayed for AP1mV in older adults (P = 0.001). Furthermore, while AP0.5mV , PA SICF and AP SICF were potentiated in both groups (all P < 0.05), potentiation of PA0.5mV was only apparent in young adults (P < 0.0001). While PMd influences early and late I-wave excitability in young adults, direct PMd modulation of the early circuits is specifically reduced in older adults. KEY POINTS: Interneuronal circuits responsible for late I-waves within primary motor cortex (M1) mediate projections from dorsal premotor cortex (PMd), but this communication probably changes with advancing age. We investigated the effects of intermittent theta burst stimulation (iTBS) to PMd on transcranial magnetic stimulation (TMS) measures of M1 excitability in young and older adults. We found that PMd iTBS facilitated M1 excitability assessed with posterior-anterior (PA, early I-waves) and anterior-posterior (AP, late I-waves) current TMS in young adults, with a stronger effect for AP TMS. M1 excitability assessed with AP TMS also increased in older adults following PMd iTBS, but there was no facilitation for PA TMS responses. We conclude that changes in M1 excitability following PMd iTBS are specifically reduced for the early I-waves in older adults, which could be a potential target for interventions that enhance cortical excitability in older adults.
Collapse
Affiliation(s)
- Wei‐Yeh Liao
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - George M. Opie
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - Ulf Ziemann
- Department of Neurology & StrokeEberhard Karls University of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchEberhard Karls University of TübingenTübingenGermany
| | - John G. Semmler
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| |
Collapse
|
19
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
21
|
Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle. Exp Brain Res 2023; 241:927-936. [PMID: 36811686 PMCID: PMC9985579 DOI: 10.1007/s00221-023-06575-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r = - 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.
Collapse
|
22
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
23
|
Wang H, Zheng H, Wu H, Long J. Behavior-Dependent Corticocortical Contributions to Imagined Grasping: A BCI-Triggered TMS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:519-529. [PMID: 37015706 DOI: 10.1109/tnsre.2022.3227511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have indicated that corticocortical neural mechanisms differ during various grasping behaviors. However, the literature rarely considers corticocortical contributions to various imagined grasping behaviors. To address this question, we examine their mechanisms by transcranial magnetic stimulation (TMS) triggered when detecting event-related desynchronization during right-hand grasping behavior imagination through a brain-computer interface (BCI) system. Based on the BCI system, we designed two experiments. In Experiment 1, we explored differences in motor evoked potentials (MEPs) between power grip and resting conditions. In Experiment 2, we used the three TMS coil orientations (lateral-medial (LM), posterior-anterior (PA), and anterior-posterior (AP) directions) over the primary motor cortex to elicit MEPs during imagined index finger abduction, precision grip, and power grip. We found that larger MEP amplitudes and shorter latencies were obtained in imagined power grip than in resting. We also detected lower MEP amplitudes during imagined power grip, while MEP amplitudes remained similar across imagined precision grip and index finger abduction in each TMS coil orientation. Differences in AP-LM latency were longer when subjects imagined a power grip compared with precision grip and index finger abduction. Based on our results, higher cortical excitability may be achieved when humans imagine precision grip and index finger abduction. Our results suggests that higher cortical excitability may be achieved when humans imagine precision grip and index finger abduction. We also propose that preferential recruitment of late synaptic inputs to corticospinal neurons may occur when humans imagine a power grip.
Collapse
|
24
|
Kesselheim J, Takemi M, Christiansen L, Karabanov AN, Siebner HR. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. J Neurophysiol 2023; 129:410-420. [PMID: 36629338 DOI: 10.1152/jn.00263.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Single-pulse transcranial magnetic stimulation (TMS) of the precentral hand representation (M1HAND) can elicit indirect waves in the corticospinal tract at a periodicity of ∼660 Hz, called I-waves. These descending volleys are produced by transsynaptic excitation of fast-conducting corticospinal axons in M1HAND. Paired-pulse TMS can induce short-interval intracortical facilitation (SICF) of motor evoked potentials (MEPs) at interpulse intervals that match I-wave periodicity. This study examined whether short-latency corticospinal facilitation engages additional mechanisms independently of I-wave periodicity. In 19 volunteers, one to four biphasic TMS pulses were applied to left M1HAND with interpulse intervals adjusted to the first peak or trough of the individual SICF curve at different intensities to probe the intensity-response relationship. Multipulse TMSHAND at individual peak latency facilitated MEP amplitudes and reduced resting motor threshold (RMT) compared with single pulses. Multipulse TMSHAND at individual trough latency also produced a consistent facilitation of MEPs and a reduction of RMT. Short-latency facilitation at trough latency was less pronounced, but the relative difference in facilitation decreased with increasing stimulus intensity. Increasing the pulse number had only a modest effect. Two mechanisms underlie short-latency facilitation caused by biphasic multipulse TMSHAND. One intracortical mechanism is related to I-wave periodicity and engages fast-conducting direct projections to spinal motoneurons. A second corticospinal mechanism does not rely on I-wave rhythmicity and may be mediated by slower-conducting indirect pyramidal tract projections from M1HAND to spinal interneurons. The latter mechanism deserves more attention in studies of the corticomotor system and its link to manual motor control using the MEP.NEW & NOTEWORTHY TMS pairs evoke SICF at interpulse intervals (IPIs) that match I-wave periodicity. Biphasic bursts with IPIs at the latency of the first peak facilitate MEPs and reduce corticomotor threshold. Bursts at the latency of the first trough facilitate MEPs and reduce corticomotor threshold to a lesser extent. TMS bursts facilitate corticomotor excitability via two mechanisms: SICF-dependently via fast-conducting direct projections from M1HAND to spinal motoneurons and SICF-independently, probably through slower-conducting indirect pyramidal tract projections.
Collapse
Affiliation(s)
- Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Mitsuaki Takemi
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Section for Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen NV, Denmark.,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
25
|
Neige C, Ciechelski V, Lebon F. The recruitment of indirect waves within primary motor cortex during motor imagery: A directional transcranial magnetic stimulation study. Eur J Neurosci 2022; 56:6187-6200. [PMID: 36215136 PMCID: PMC10092871 DOI: 10.1111/ejn.15843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
Motor imagery (MI) refers to the mental simulation of an action without overt movement. While numerous transcranial magnetic stimulation (TMS) studies provided evidence for a modulation of corticospinal excitability and intracortical inhibition during MI, the neural signature within the primary motor cortex is not clearly established. In the current study, we used directional TMS to probe the modulation of the excitability of early and late indirect waves (I-waves) generating pathways during MI. Corticospinal responses evoked by TMS with posterior-anterior (PA) and anterior-posterior (AP) current flow within the primary motor cortex evoke preferentially early and late I-waves, respectively. Seventeen participants were instructed to stay at rest or to imagine maximal isometric contractions of the right flexor carpi radialis. We demonstrated that the increase of corticospinal excitability during MI is greater with PA than AP orientation. By using paired-pulse stimulations, we confirmed that short-interval intracortical inhibition (SICI) increased during MI in comparison to rest with PA orientation, whereas we found that it decreased with AP orientation. Overall, these results indicate that the pathways recruited by PA and AP orientations that generate early and late I-waves are differentially modulated by MI.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France.,Centre Hospitalier Le Vinatier, Université Claude Bernard Lyon 1, INSERM, CNRS, CRNL U1028 UMR5292, PsyR2 Team, Bron, France
| | - Valentin Ciechelski
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
26
|
Ni Z, Pajevic S, Chen L, Leodori G, Vial F, Avram AV, Zhang Y, McGurrin P, Cohen LG, Basser PJ, Hallett M. Identifying transcranial magnetic stimulation induced EEG signatures of different neuronal elements in primary motor cortex. Clin Neurophysiol 2022; 141:42-52. [PMID: 35841868 PMCID: PMC9398981 DOI: 10.1016/j.clinph.2022.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the neuronal elements involved in the activation of corticospinal neurons in the primary motor cortex (M1). METHODS We studied 10 healthy subjects. Cortical evoked potentials with different components induced by monophasic transcranial magnetic stimulation (TMS) in anterior-posterior and posterior-anterior currents recorded with electroencephalography (EEG) were analyzed. RESULTS EEG signatures with P25 and N45 components recorded at the C3 electrode with posterior-anterior current were larger than those with anterior-posterior current, while the signatures with P180 and N280 components recorded at the FC1 electrode with anterior-posterior current were larger than those with posterior-anterior current. The source localization analysis revealed that the cortical evoked potential with anterior-posterior current distributed both in the M1 and premotor cortex while that with posterior-anterior current only located in the M1. CONCLUSIONS We conclude that the activation of corticospinal pyramidal neurons in the M1 is affected by various neuronal elements including the local intracortical circuits in the M1 and inputs from premotor cortex with different sensitivities to TMS in opposite current directions. SIGNIFICANCE Our finding helped answer a longstanding question about how the corticospinal pathway from the M1 is functionally organized and activated.
Collapse
Affiliation(s)
- Zhen Ni
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Sinisa Pajevic
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Li Chen
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | | | - Felipe Vial
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA; Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA; National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, USA
| | - Yong Zhang
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Patrick McGurrin
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA.
| |
Collapse
|
27
|
Mirdamadi JL, Meehan SK. Specific sensorimotor interneuron circuits are sensitive to cerebellar-attention interactions. Front Hum Neurosci 2022; 16:920526. [PMID: 36061499 PMCID: PMC9437336 DOI: 10.3389/fnhum.2022.920526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Short latency afferent inhibition (SAI) provides a method to investigate mechanisms of sensorimotor integration. Cholinergic involvement in the SAI phenomena suggests that SAI may provide a marker of cognitive influence over implicit sensorimotor processes. Consistent with this hypothesis, we previously demonstrated that visual attention load suppresses SAI circuits preferentially recruited by anterior-to-posterior (AP)-, but not posterior-to-anterior (PA)-current induced by transcranial magnetic stimulation. However, cerebellar modulation can also modulate these same AP-sensitive SAI circuits. Yet, the consequences of concurrent cognitive and implicit cerebellar influences over these AP circuits are unknown.Objective: We used cerebellar intermittent theta-burst stimulation (iTBS) to determine whether the cerebellar modulation of sensory to motor projections interacts with the attentional modulation of sensory to motor circuits probed by SAI.Methods: We assessed AP-SAI and PA-SAI during a concurrent visual detection task of varying attention load before and after cerebellar iTBS.Results: Before cerebellar iTBS, a higher visual attention load suppressed AP-SAI, but not PA-SAI, compared to a lower visual attention load. Post-cerebellar iTBS, the pattern of AP-SAI in response to visual attention load, was reversed; a higher visual attention load enhanced AP-SAI compared to a lower visual attention load. Cerebellar iTBS did not affect PA-SAI regardless of visual attention load.Conclusion: These findings suggest that attention and cerebellar networks converge on overlapping AP-sensitive circuitry to influence motor output by controlling the strength of the afferent projections to the motor cortex. This interaction has important implications for understanding the mechanisms of motor performance and learning.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Sean K. Meehan
| |
Collapse
|
28
|
Sommer M. Detecting and reporting the limits of rTMS. Clin Neurophysiol 2022; 141:90. [PMID: 35902303 DOI: 10.1016/j.clinph.2022.07.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Martin Sommer
- Department of Geriatrics, Department of Neurology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
| |
Collapse
|
29
|
Liao WY, Sasaki R, Semmler JG, Opie GM. Cerebellar transcranial direct current stimulation disrupts neuroplasticity of intracortical motor circuits. PLoS One 2022; 17:e0271311. [PMID: 35820111 PMCID: PMC9275832 DOI: 10.1371/journal.pone.0271311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
While previous research using transcranial magnetic stimulation (TMS) suggest that cerebellum (CB) influences the neuroplastic response of primary motor cortex (M1), the role of different indirect (I) wave inputs in M1 mediating this interaction remains unclear. The aim of this study was therefore to assess how CB influences neuroplasticity of early and late I-wave circuits. 22 young adults (22 ± 2.7 years) participated in 3 sessions in which I-wave periodicity repetitive transcranial magnetic stimulation (iTMS) was applied over M1 during concurrent application of cathodal transcranial direct current stimulation over CB (tDCSCB). In each session, iTMS either targeted early I-waves (1.5 ms interval; iTMS1.5), late I-waves (4.5 ms interval; iTMS4.5), or had no effect (variable interval; iTMSSham). Changes due to the intervention were examined with motor evoked potential (MEP) amplitude using TMS protocols measuring corticospinal excitability (MEP1mV) and the strength of CB-M1 connections (CBI). In addition, we indexed I-wave activity using short-interval intracortical facilitation (SICF) and low-intensity single-pulse TMS applied with posterior-anterior (MEPPA) and anterior-posterior (MEPAP) current directions. Following both active iTMS sessions, there was no change in MEP1mV, CBI or SICF (all P > 0.05), suggesting that tDCSCB broadly disrupted the excitatory response that is normally seen following iTMS. However, although MEPAP also failed to facilitate after the intervention (P > 0.05), MEPPA potentiated following both active iTMS sessions (both P < 0.05). This differential response between current directions could indicate a selective effect of CB on AP-sensitive circuits.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ryoki Sasaki
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - John G. Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - George M. Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
30
|
Sasaki R, Semmler JG, Opie GM. Threshold Tracked Short-Interval Intracortical Inhibition More Closely Predicts the Cortical Response to Transcranial Magnetic Stimulation. Neuromodulation 2022; 25:614-623. [DOI: 10.1016/j.neurom.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
|
31
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
32
|
Ivan C, Andrea A, Simon ES, Walter P, Leif S, Konrad M, Mathias B, Onnen M, Caspar S. The role of the TMS parameters for activation of the corticospinal pathway to the diaphragm. Clin Neurophysiol 2022; 138:173-185. [DOI: 10.1016/j.clinph.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
|
33
|
Rawji V, Modi S, Rocchi L, Jahanshahi M, Rothwel J. Proactive inhibition is marked by differences in the pattern of motor cortex activity during movement preparation and execution. J Neurophysiol 2022; 127:819-828. [PMID: 35235439 PMCID: PMC8957347 DOI: 10.1152/jn.00359.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful human behavior relies on the ability to flexibly alter movements depending on the context in which they are made. One such context-dependent modulation is proactive inhibition, a type of behavioral inhibition used when anticipating the need to stop or change movements. We investigated how the motor cortex might prepare and execute movements made under different contexts. We used transcranial magnetic stimulation (TMS) in different coil orientations [postero-anterior (PA) and antero-posterior (AP) flowing currents] and pulse widths (120 and 30 µs) to probe the excitability of different inputs to corticospinal neurons while participants performed two reaction time tasks: a simple reaction time task and a stop-signal task requiring proactive inhibition. We took inspiration from state space models to assess whether the pattern of motor cortex activity changed due to proactive inhibition (PA and AP neuronal circuits represent the x and y axes of a state space upon which motor cortex activity unfolds during motor preparation and execution). We found that the rise in motor cortex excitability was delayed when proactive inhibition was required. State space visualizations showed altered patterns of motor cortex activity (combined PA120 and AP30 activity) during proactive inhibition, despite adjusting for reaction time. Overall, we show that the pattern of neural activity generated by the motor cortex during movement preparation and execution is dependent upon the context under which the movement is to be made. NEW & NOTEWORTHY Using directional TMS, we find that the human motor cortex flexibly changes its pattern of neural activity depending on the context in which a movement is due to be made. Interestingly, this occurs despite adjusting for reaction time. We also show that state space and dynamical systems models of movement can be noninvasively visualized in humans using TMS, thereby offering a novel method to study these powerful models in humans.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sachin Modi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John Rothwel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
34
|
Naros G, Machetanz K, Leao MT, Wang S, Tatagiba M, Gharabaghi A. Impaired phase synchronization of motor-evoked potentials reflects the degree of motor dysfunction in the lesioned human brain. Hum Brain Mapp 2022; 43:2668-2682. [PMID: 35199903 PMCID: PMC9057086 DOI: 10.1002/hbm.25812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
The functional corticospinal integrity (CSI) can be indexed by motor-evoked potentials (MEP) following transcranial magnetic stimulation of the motor cortex. Glial brain tumors in motor-eloquent areas are frequently disturbing CSI resulting in different degrees of motor dysfunction. However, this is unreliably mirrored by MEP characteristics. In 59 consecutive patients with diffuse glial tumors and 21 healthy controls (CTRL), we investigated the conventional MEP features, that is, resting motor threshold (RMT), amplitudes and latencies. In addition, frequency-domain MEP features were analyzed to estimate the event-related spectral perturbation (ERSP), and the induced phase synchronization by intertrial coherence (ITC). The clinical motor status was captured including the Medical Research Council Scale (MRCS), the Grooved Pegboard Test (GPT), and the intake of antiepileptic drugs (AED). Motor function was classified according to MRCS and GPT as no motor deficit (NMD), fine motor deficits (FMD) and gross motor deficits (GMD). CSI was assessed by diffusion-tensor imaging (DTI). Motor competent subjects (CTRL and NMD) had similar ERSP and ITC values. The presence of a motor deficit (FMD and GMD) was associated with an impairment of high-frequency ITC (150-300 Hz). GMD and damage to the CSI demonstrated an additional reduction of high-frequency ERSP (150-300 Hz). GABAergic AED increased ERSP but not ITC. Notably, groups were indistinguishable based on conventional MEP features. Estimating MEP phase synchronization provides information about the corticospinal transmission after transcranial magnetic stimulation and reflects the degree of motor impairment that is not captured by conventional measures.
Collapse
Affiliation(s)
- Georgios Naros
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Kathrin Machetanz
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Maria Teresa Leao
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| |
Collapse
|
35
|
Davis M, Wang Y, Bao S, Buchanan JJ, Wright DL, Lei Y. The Interactions Between Primary Somatosensory and Motor Cortex during Human Grasping Behaviors. Neuroscience 2021; 485:1-11. [PMID: 34848261 DOI: 10.1016/j.neuroscience.2021.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Afferent inputs to the primary somatosensory cortex (S1) are differentially processed during precision and power grip in humans. However, it remains unclear how S1 interacts with the primary motor cortex (M1) during these two grasping behaviors. To address this question, we measured short-latency afferent inhibition (SAI), reflecting S1-M1 interactions via thalamo-cortical pathways, using paired-pulse transcranial magnetic stimulation (TMS) during precision and power grip. The TMS coil over the hand representation of M1 was oriented in the posterior-anterior (PA) and anterior-posterior (AP) direction to activate distinct sets of corticospinal neurons. We found that SAI increased during precision compared with power grip when AP, but not PA, currents were applied. Notably, SAI tested in the AP direction were similar during two-digit than five-digit precision grip. The M1 receives movement information from S1 through direct cortico-cortical pathways, so intra-hemispheric S1-M1 interactions using dual-site TMS were also evaluated. Stimulation of S1 attenuated M1 excitability (S1-M1 inhibition) during precision and power grip, while the S1-M1 inhibition ratio remained similar across tasks. Taken together,our findings suggest that distinct neural mechanisms for S1-M1 interactions mediate precision and power grip, presumably by modulating neural activity along thalamo-cortical pathways.
Collapse
Affiliation(s)
- Madison Davis
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yiyu Wang
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
36
|
Neva JL, Brown KE, Peters S, Feldman SJ, Mahendran N, Boisgontier MP, Boyd LA. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021; 475:103-116. [PMID: 34487820 DOI: 10.1016/j.neuroscience.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Accumulating evidence demonstrates acute exercise affects measures of M1 intracortical excitability, with some studies also showing altered corticospinal excitability. However, the influence of distinct M1 interneuron populations on the modulation of intracortical and corticospinal excitability following acute exercise is currently unknown. We assessed the impact of an acute bout of leg cycling exercise on unique M1 interneuron excitability of a non-exercised intrinsic hand muscle using transcranial magnetic stimulation (TMS) in young adults. Specifically, posterior-to-anterior (PA) and anterior-to-posterior (AP) TMS current directions were used to measure the excitability of distinct populations of interneurons before and after an acute bout of exercise or rest. Motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured in the PA and AP current directions in M1 at two time points separated by 25 min of rest, as well as immediately and 30 min after a 25-minute bout of moderate-intensity cycling exercise. Thirty minutes after exercise, MEP amplitudes were significantly larger than other timepoints when measured with AP current, whereas MEP amplitudes derived from PA current did not show this effect. Similarly, SICI was significantly decreased immediately following acute exercise measured with AP but not PA current. Our findings suggest that the excitability of unique M1 interneurons are differentially modulated by acute exercise. These results indicate that M1 interneurons preferentially activated by AP current may play an important role in the exercise-induced modulation of intracortical and corticospinal excitability.
Collapse
Affiliation(s)
- Jason L Neva
- Université de Montréal, École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Montréal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, QC, Canada.
| | - Katlyn E Brown
- University of Waterloo, Department of Kinesiology, Applied Health Sciences, Waterloo, ON, Canada
| | - Sue Peters
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada
| | - Samantha J Feldman
- Graduate Program in Clinical Developmental Neuropsychology, Department of Psychology, York University, Toronto, ON, Canada
| | - Niruthikha Mahendran
- University of Queensland, Discipline of Physiotherapy, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa ON, Canada; Bruyère Research Institute, Ottawa, ON, Canada
| | - Lara A Boyd
- University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Desmons M, Rohel A, Desgagnés A, Mercier C, Massé-Alarie H. Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. J Neurophysiol 2021; 126:1276-1288. [PMID: 34550037 DOI: 10.1152/jn.00137.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles. The aim of the study was to compare the effect of different current directions (PA- and AP-TMS) on the corticomotor control and spatial cortical organization of the lumbar erector spinae muscle (LES). Thirty-four healthy participants were recruited for two independent experiments, and LES motor-evoked potentials (MEPs) were recorded. In experiment 1 (n = 17), active motor threshold (AMT), MEP latencies, recruitment curve (90% to 160% AMT), and excitatory and inhibitory intracortical mechanisms by paired-pulse TMS (80% followed by 120% AMT stimuli at 2-, 3-, 10-, and 15-ms interstimulus intervals) were tested with a double-cone (n = 12) and a figure-of-eight (n = 5) coil. In experiment 2 (n = 17), LES cortical representations were tested with PA- and AP-TMS. AMT was higher for AP- compared with PA-TMS (P = 0.002). Longer latencies with AP-TMS were present compared with PA-TMS (P = 0.017). AP-TMS produced more inhibition compared with PA-TMS at 2 ms and 3 ms (P = 0.010), but no difference was observed for longer intervals. No difference was found for recruitment curve and mapping. These findings suggest that PA- and AP-TMS may activate different cortical circuits controlling low back muscles, as proposed for hand muscles.NEW & NOTEWORTHY For the first time, anteroposterior and posteroanterior induced electric currents in the brain were compared when targeting back muscle representation with transcranial magnetic stimulation. The use of the anteroposterior current resulted in later response latency, larger inhibition probed by paired-pulse stimulation, and higher motor threshold. These important differences between current directions suggest that each of the current directions may recruit specific cortical circuits involved in the control of back muscles, similar to that for hand muscles.
Collapse
Affiliation(s)
- Mikaël Desmons
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Antoine Rohel
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Amélie Desgagnés
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
38
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Kirkovski M, Albein-Urios N, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol 2021; 132:2639-2653. [PMID: 34344609 DOI: 10.1016/j.clinph.2021.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study brought together over 60 transcranial magnetic stimulation (TMS) researchers to create the largest known sample of individual participant single and paired-pulse TMS data to date, enabling a more comprehensive evaluation of factors driving response variability. METHODS Authors of previously published studies were contacted and asked to share deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to variability in response to single and paired-pulse TMS data. RESULTS 687 healthy participant's data were pooled across 35 studies. Target muscle, pulse waveform, neuronavigation use, and TMS machine significantly predicted an individual's single-pulse TMS amplitude. Baseline motor evoked potential amplitude, motor cortex hemisphere, and motor threshold (MT) significantly predicted short-interval intracortical inhibition response. Baseline motor evoked potential amplitude, test stimulus intensity, interstimulus interval, and MT significantly predicted intracortical facilitation response. Age, hemisphere, and TMS machine significantly predicted MT. CONCLUSIONS This large-scale analysis has identified a number of factors influencing participants' responses to single and paired-pulse TMS. We provide specific recommendations to minimise interindividual variability in single and paired-pulse TMS data. SIGNIFICANCE This study has used large-scale analyses to give clarity to factors driving variance in TMS data. We hope that this ongoing collaborative approach will increase standardisation of methods and thus the utility of single and paired-pulse TMS.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|
39
|
Saravanamuttu J, Radhu N, Udupa K, Baarbé J, Gunraj C, Chen R. Impaired motor cortical facilitatory-inhibitory circuit interaction in Parkinson's disease. Clin Neurophysiol 2021; 132:2685-2692. [PMID: 34284974 DOI: 10.1016/j.clinph.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Motor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson's disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD. METHODS Fifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit. RESULTS SICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions. CONCLUSIONS The facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication. SIGNIFICANCE Impaired interaction between M1 circuits is a pathophysiological feature of PD.
Collapse
Affiliation(s)
- James Saravanamuttu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Natasha Radhu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Kaviraja Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Department of Neurophysiology, National Institute of Mental Health and NeuroSciences, Hosur Road, Bangalore, India
| | - Julianne Baarbé
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Carolyn Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
40
|
Opie GM, Liao WY, Semmler JG. Interactions Between Cerebellum and the Intracortical Excitatory Circuits of Motor Cortex: a Mini-Review. CEREBELLUM (LONDON, ENGLAND) 2021; 21:159-166. [PMID: 33978934 DOI: 10.1007/s12311-021-01278-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Interactions between cerebellum (CB) and primary motor cortex (M1) are critical for effective motor function. Although the associated neurophysiological processes are yet to be fully characterised, a growing body of work using non-invasive brain stimulation (NIBS) techniques has significantly progressed our current understanding. In particular, recent developments with both transcranial magnetic (TMS) and direct current (tDCS) stimulation suggest that CB modulates the activity of local excitatory interneuronal circuits within M1. These circuits are known to be important both physiologically and functionally, and understanding the nature of their connectivity with CB therefore has the potential to provide important insight for NIBS applications. Consequently, this mini-review provides an overview of the emerging literature that has investigated interactions between CB and the intracortical excitatory circuits of M1.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
41
|
Van Hoornweder S, Debeuf R, Verstraelen S, Meesen R, Cuypers K. Unravelling Ipsilateral Interactions Between Left Dorsal Premotor and Primary Motor Cortex: A Proof of Concept Study. Neuroscience 2021; 466:36-46. [PMID: 33971265 DOI: 10.1016/j.neuroscience.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Few studies have identified the intrahemispheric functional connectivity between the ipsilateral dorsal premotor cortex (PMd) and the primary motor hand area (M1hand) due to technical limitations. In this proof-of-concept study, a novel neuronavigated dsTMS set-up was employed, combining stimulation over left PMd and left M1hand using the edge of a butterfly coil and a small cooled-coil. This arrangement was warranted because coil (over)heating and inter coil distance are limiting factors when investigating connectivity between stimulation targets in close proximity and over a longer duration. The proposed set-up was designed to deal with these limitations. Specifically, the effect of four dual-site transcranial magnetic stimulation (dsTMS) protocols on twenty-eight right-handed participants (12 males) was evaluated. These protocols differed in stimulus order, interstimulus interval and current direction induced in PMd. A structural scan with electric (E-)field modeling was obtained from seven participants prior to dsTMS, demonstrating that PMd and M1hand were effectively stimulated. Results indicate that one protocol, in which a latero-medial current was induced in PMd 2.8 ms prior to stimulation over M1hand, induced a sex-mediated effect. In males, significant inhibition of motor-evoked potentials was identified, whereas females demonstrated a facilitatory effect that did not survive correction for multiple comparisons. E-field simulations revealed that the E-field induced by the coil targeting PMd was maximal in PMd, with weaker E-field strengths extending to regions beyond PMd. Summarizing, the current dsTMS set-up enabled stimulating at an inter-target distance of 35 mm without any indications of coil-overheating.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Ruben Debeuf
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium; Rehabilitation Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Raf Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
42
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
43
|
Germann M, Baker SN. Evidence for Subcortical Plasticity after Paired Stimulation from a Wearable Device. J Neurosci 2021; 41:1418-1428. [PMID: 33441436 PMCID: PMC7896019 DOI: 10.1523/jneurosci.1554-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Existing non-invasive stimulation protocols can generate plasticity in the motor cortex and its corticospinal projections; techniques for inducing plasticity in subcortical circuits and alternative descending pathways such as the reticulospinal tract (RST) are less well developed. One possible approach developed by this laboratory pairs electrical muscle stimulation with auditory clicks, using a wearable device to deliver stimuli during normal daily activities. In this study, we applied a variety of electrophysiological assessments to male and female healthy human volunteers during a morning and evening laboratory visit. In the intervening time (∼6 h), subjects wore the stimulation device, receiving three different protocols, in which clicks and stimulation of the biceps muscle were paired at either low or high rate, or delivered at random. Paired stimulation: (1) increased the extent of reaction time shortening by a loud sound (the StartReact effect); (2) decreased the suppression of responses to transcranial magnetic brain stimulation (TMS) following a loud sound; (3) enhanced muscle responses elicited by a TMS coil oriented to induce anterior-posterior (AP) current, but not posterior-anterior (PA) current, in the brain. These measurements have all been suggested to be sensitive to subcortical, possibly reticulospinal, activity. Changes were similar for either of the two paired stimulus rates tested, but absent after unpaired (control) stimulation. Taken together, these results suggest that pairing clicks and muscle stimulation for long periods does indeed induce plasticity in subcortical systems such as the RST.SIGNIFICANCE STATEMENT Subcortical systems such as the reticulospinal tract (RST) are important motor pathways, which can make a significant contribution to functional recovery after cortical damage such as stroke. Here, we measure changes produced after a novel non-invasive stimulation protocol, which uses a wearable device to stimulate for extended periods. We observed changes in electrophysiological measurements consistent with the induction of subcortical plasticity. This protocol may prove an important tool for enhancing motor rehabilitation, in situations where insufficient cortical tissue survives to be a plausible substrate for recovery of function.
Collapse
Affiliation(s)
- Maria Germann
- Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
44
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
45
|
Okawada M, Kaneko F, Shibata E. Effect of primary motor cortex excitability changes after quadripulse transcranial magnetic stimulation on kinesthetic sensitivity: A preliminary study. Neurosci Lett 2020; 741:135483. [PMID: 33161107 DOI: 10.1016/j.neulet.2020.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Muscle spindles provide the greatest contribution to kinesthetic perception. Primary motor cortex (M1) excitability changes in parallel with the intensity of kinesthetic perception inputs from muscle spindles; M1 is therefore involved in kinesthetic perception. However, the causal relationship between changes in kinesthetic sensitivity and M1 excitability is unclear. The purpose of this study was to test whether artificially and sustainably modulated M1 excitability causes changes in kinesthetic sensitivity in healthy individuals. We evaluated motor evoked potentials (MEP) in Experiment 1 and joint motion detection thresholds (JMDT) in Experiment 2 before and after quadripulse transcranial magnetic stimulation (QPS). Nine healthy right-handed male volunteers were recruited. In each experiment, participants received QPS or sham stimulation (Sham) on separate days. MEP amplitude and JMDT were recorded before and at 0, 15, 30, 45, and 60 min after QPS and Sham. Our results showed that M1 excitability and kinesthetic sensitivity increased after QPS, whereas neither changed after Sham. In the five subjects who participated in both experiments, there was a significant moderate correlation between M1 excitability and kinesthetic sensitivity. Thus, the long-lasting change in kinesthetic sensitivity may be due to changes in M1 excitability. In addition, M1 may play a gain adjustment role in the neural pathways of muscle spindle input.
Collapse
Affiliation(s)
- Megumi Okawada
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, Japan; Department of Rehabilitation, Hokuto Hospital, Hokuto Social Medical Corporation, 7-5 Kisen, Inada-cho, Obihiro-shi, Hokkaido, Japan
| | - Fuminari Kaneko
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, Japan.
| | - Eriko Shibata
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1, Koganechuo, Eniwa Shi, Hokkaido, Japan
| |
Collapse
|
46
|
Corp DT, He J, Cooke D, Perellón-Alfonso R, Joutsa J, Pascual-Leone A, Fox MD, Hyde C. 'Expedited Interhemispheric Inhibition': A Simple Method to Collect Additional IHI Data in the Same Amount of Time. Brain Topogr 2020; 34:1-5. [PMID: 33141335 DOI: 10.1007/s10548-020-00800-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Interhemispheric inhibition (IHI) is a dual-site TMS protocol measuring inhibitory interactions between the primary motor cortices (M1). IHI is performed by applying an initial conditioning stimulus followed by a test stimulus to the contralateral M1. Conventionally, the response in the contralateral hand to the conditioning TMS pulse is either not measured, or discarded. The aim of this experiment was to investigate whether MEPs evoked from these conditioning stimuli can be utilised as non-conditioned, or 'baseline', responses, and therefore expedite IHI data collection. We evaluated short-latency (10 ms) and long-latency (40 ms) IHI bidirectionally in 14 healthy participants. There was no difference in MEP amplitudes evoked by conventional single TMS pulses randomly inserted into IHI blocks, and those evoked by the conditioning stimulus. Nor was there any significant difference in IHI magnitude when using single pulse MEPs or conditioning stimulus MEPs as baseline responses. The utilisation of conditioning stimuli dispenses with the need to insert dedicated single TMS pulses into IHI blocks, allowing for additional IHI data to be collected in the same amount of time.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia. .,Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.
| | - Jason He
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia.,Russel H. Morgan Department of Radiology and Radiological Science, Bere, Baltimore, MA, 21205, USA
| | - Danielle Cooke
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Juho Joutsa
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.,Department of Neurology, University of Turku, Turku, Finland.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autónoma, Barcelona, Spain
| | - Michael D Fox
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia
| |
Collapse
|
47
|
Aoyama T, Kanazawa A, Kohno Y, Watanabe S, Tomita K, Kimura T, Endo Y, Kaneko F. Feasibility Case Study for Treating a Patient with Sensory Ataxia Following a Stroke with Kinesthetic Illusion Induced by Visual Stimulation. Prog Rehabil Med 2020; 5:20200025. [PMID: 33134593 PMCID: PMC7591318 DOI: 10.2490/prm.20200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Sensory ataxia is a disorder of movement coordination caused by sensory
deficits, especially in kinesthetic perception. Visual stimulus-induced kinesthetic
illusion (KINVIS) is a method used to provide vivid kinesthetic perception without
peripheral sensory input by using a video showing pre-recorded limb movements while the
actual limb remains stationary. We examined the effects of KINVIS intervention in a
patient with sensory ataxia. Case: The patient was a 59-year-old man with a severe
proprioceptive deficit caused by left thalamic hemorrhage. During KINVIS intervention, a
computer screen displayed a pre-recorded mirror image video of the patient’s unaffected
hand performing flexion–extension movements as if it were attached to the patient’s
affected forearm. Kinematics during the flexion–extension movements of the paretic hand
were recorded before and after 20-min interventions. Transcranial magnetic stimulation was
applied to the affected and non-affected hemispheres. The amplitude of the motor-evoked
potential (MEP) at rest was recorded for the muscles of both hands. After the
intervention, the total trajectory length and the rectangular area bounding the trajectory
of the index fingertip decreased. The MEP amplitude of the paretic hand increased, whereas
the MEP amplitude of the non-paretic hand was unchanged. Discussion: The changes in
kinematics after the intervention suggested that KINVIS therapy may be a useful new
intervention for sensory ataxia, a condition for which few effective treatments are
currently available. Studies in larger numbers of patients are needed to clarify the
mechanisms underlying this therapeutic effect.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Atsushi Kanazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Shinya Watanabe
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yusuke Endo
- Department of Physical Therapy, Health Science University, Fujikawaguchiko, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Qasem H, Fujiyama H, Rurak BK, Vallence AM. Good test–retest reliability of a paired-pulse transcranial magnetic stimulation protocol to measure short-interval intracortical facilitation. Exp Brain Res 2020; 238:2711-2723. [DOI: 10.1007/s00221-020-05926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
|
49
|
Calvert GHM, McMackin R, Carson RG. Probing interhemispheric dorsal premotor-primary motor cortex interactions with threshold hunting transcranial magnetic stimulation. Clin Neurophysiol 2020; 131:2551-2560. [PMID: 32927210 DOI: 10.1016/j.clinph.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterise the effect of altering transcranial magnetic stimulation parameters on the magnitude of interhemispheric inhibition (IHI) from dorsal premotor (PMd) to primary motor cortex (M1). METHOD We used a fully automated adaptive threshold hunting paradigm to quantify PMd-M1 IHI across a range of conditioning stimulus (CS) intensities (90%, 110%, 130% of resting motor threshold, rMT) and interstimulus intervals (ISIs) (8, 10, 40 ms). M1-M1 IHI was examined with CS intensities of 110%, 120%, and 130% rMT and ISIs of 10 and 40 ms. Two test coil orientations (inducing posterior-anterior or anterior-posterior current) were used. RESULTS PMd-M1 IHI was obtained consistently with posterior-anterior (but not anterior-posterior) test stimuli and increased with CS intensity. M1-M1 IHI was expressed across all conditions and increased with CS intensity when posterior-anterior but not anterior-posterior induced current was used. CONCLUSIONS The expression of PMd-M1 IHI is contingent on test coil orientation (requiring posterior-anterior induced current) and increases as a function of CS intensity. The expression of M1-M1 IHI is not dependent on test coil orientation. SIGNIFICANCE We defined a range of parameters that elicit reliable PMd-M1 IHI. This (threshold hunting) methodology may provide a means to quantify premotor-motor pathology and reveal novel quantitative biomarkers.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| | - Roisin McMackin
- Academic Unit of Neurology, 152-160 Pearse St., Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK.
| |
Collapse
|
50
|
Grandjean J, Duque J. A TMS study of preparatory suppression in binge drinkers. Neuroimage Clin 2020; 28:102383. [PMID: 32828028 PMCID: PMC7451449 DOI: 10.1016/j.nicl.2020.102383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Binge drinking consists in a pattern of consumption characterised by the repeated alternation between massive alcohol intakes and abstinence periods. A continuum hypothesis suggests that this drinking endeavour represents an early stage of alcohol dependence rather than a separate phenomenon. Among the variety of alterations in alcohol-dependent individuals (ADIs), one has to do with the motor system, which does not show a normal pattern of activity during action preparation. In healthy controls (HCs), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1) show both facilitation and suppression effects, depending on the time and setting of TMS during action preparation. A recent study focusing on the suppression component revealed that this aspect of preparatory activity is abnormally weak in ADIs and that this defect scales with the risk of relapse. In the present study, we tested whether binge drinkers (BDs) present a similar deficit. To do so, we recorded MEPs in a set of hand muscles applying TMS in 20 BDs and in 20 matched HCs while they were preparing index finger responses in an instructed-delay choice reaction time task. Consistent with past research, the MEP data in HCs revealed a strong MEP suppression in this task. This effect was evident in all hand muscles, regardless of whether they were relevant or irrelevant in the task. BDs also showed some preparatory suppression, yet this effect was less consistent, especially in the prime mover of the responding hand. These findings suggest abnormal preparatory activity in BDs, similar to alcohol-dependent patients, though some of the current results also raise new questions regarding the significance of these observations.
Collapse
Affiliation(s)
- Julien Grandjean
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|