1
|
Hutchinson JL, Hutchinson AJ, Feng J, Séguin CA. The Role of Sex Hormones in Cartilaginous Tissues: A Scoping Review. JOR Spine 2025; 8:e70072. [PMID: 40386494 PMCID: PMC12081328 DOI: 10.1002/jsp2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025] Open
Abstract
Background The use of sex hormones in the clinic for the management of musculoskeletal conditions is increasingly common. Despite this, the role of sex hormones in various joint tissues such as the intervertebral disc (IVD), temporomandibular joint (TMJ), and articular cartilage remains poorly understood. Here, we employ a database search strategy to critically examine the available literature in this field through a scoping review. Methods Using a 4-step protocol, primary research articles pertaining to sex hormones and the IVD, TMJ, or articular cartilage were identified and reviewed by two independent reviewers. ~3900 articles were identified in our initial search, and after review, ~140 were identified to be relevant to our tissues of interest and the effects of sex hormones. Results Within all joint tissues investigated here, there were limited investigations on the effects of testosterone. Studies reported here for these tissues indicate that sex hormones are likely beneficial in the context of age-associated joint diseases, but there are important limitations to how this translates to the clinic given that various animal models can display distinct responses to sex hormone exposure. Direct comparisons of sex hormone therapies are limited between biological sexes, but evidence indicates that the molecular responses are likely similar. Current evidence indicates that sex hormone exposure likely has anti-inflammatory effects within joint tissues at the level of gene and protein expression, but the mechanism is unknown. Conclusion Sex hormones such as testosterone and estrogen play an important role in inflammatory signaling within joint tissues, which could lead to novel interventions within the clinic for joint degeneration. However, understanding the biological mechanisms of hormones in these distinct tissues, between sexes, and with age is imperative for their proper implementation.
Collapse
Affiliation(s)
- Jeffrey L. Hutchinson
- Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, The University of Western OntarioLondonOntarioCanada
| | | | - Joy Feng
- Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, The University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, The University of Western OntarioLondonOntarioCanada
| |
Collapse
|
2
|
Wang W, Liu L, Ma W, Zhao L, Huang L, Zhou D, Fan J, Wang J, Liu H, Wu D, Zheng Z. An anti-senescence hydrogel with pH-responsive drug release for mitigating intervertebral disc degeneration and low back pain. Bioact Mater 2024; 41:355-370. [PMID: 39171275 PMCID: PMC11338064 DOI: 10.1016/j.bioactmat.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and aging lead to progressive senescence of nucleus pulposus (NP) cells, resulting in intervertebral disc (IVD) degeneration (IVDD). In some cases, degenerative IVD can further cause low back pain (LBP). Several studies have confirmed that delaying and rejuvenating the senescence of NP cells can attenuate IVDD. However, the relatively closed tissue structure of IVDs presents challenges for the local application of anti-senescence drugs. Here, we prepared an anti-senescence hydrogel by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with quercetin to alleviate IVDD by removing senescent NP cells. The hydrogel exhibited injectability, biodegradability, prominent biocompatibility and responsive release of quercetin under pathological conditions. In vitro experiments demonstrated that the hydrogel could reduce the expression of senescence markers and restore the metabolic balance in senescent NP cells. In vivo studies validated that a single injection of the hydrogel in situ could maintain IVD tissue structure and alleviate sensitivity to noxious mechanical force in the rat models, indicating a potential therapeutic approach for ameliorating IVDD and LBP. This approach helps prevent potential systemic toxicity associated with systemic administration and reduces the morbidity resulting from repeated injections of free drugs into the IVD, providing a new strategy for IVDD treatment.
Collapse
Affiliation(s)
- Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
3
|
Xu HW, Fang XY, Chen H, Zhang SB, Yi YY, Ge XY, Liu XW, Wang SJ. Vitamin D delays intervertebral disc degeneration and improves bone quality in ovariectomized rats. J Orthop Res 2024; 42:1314-1325. [PMID: 38225869 DOI: 10.1002/jor.25778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Known to be involved in bone-cartilage metabolism, Vitamin D (VD) may play a role in human's disc pathophysiology. Given that postmenopausal women are prone to suffer VD deficiency and intervertebral disc degeneration (IDD), this study is intended to investigate whether VD can delay IDD in ovariectomized rats by improving bone microstructure and antioxidant stress. Female Sprague-Dawley rats were randomly allocated into four groups: sham, oophorectomy (OVX)+VD deficiency (VDD), OVX, and OVX+VD supplementation (VDS). In vivo, after a 6-month intervention, imaging and pathology slice examinations showed that IDD induced by OVX was significantly alleviated in VDS and deteriorated by VDD. The expressions of aggrecan and Collagen II in intervertebral disc were reduced by OVX and VDD, and elevated by VDS. Compared with the OVX+VDD and OVX group vertebrae, OVX+VDS group vertebrae showed significantly improved endplate porosity and lumbar bone mineral density with increased percent bone volume and trabecular thickness. Furthermore, 1α,25(OH)2D3 restored the redox balance (total antioxidant capacity, ratio of oxidized glutathione/glutathione) in the disc. The cocultivation of 1α,25(OH)2D3 and nucleus pulposus cells (NPCs) was conducted to observe its potential ability to resist excessive oxidative stress damage induced by H2O2. In vitro experiments revealed that 1α,25(OH)2D3 reduced the senescence, apoptosis, and extracellular matrix degradation induced by H2O2 in NPCs. In conclusion, VDS exhibits protective effects in OVX-induced IDD, partly by regulating the redox balance and preserving the microstructure of endplate. This finding provides a new idea for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin-Yue Fang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Chen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Yong Ge
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Spinal Diseases, Jinggangshan University, Jiangxi, China
- Department of orthopedic, Shanghai East Hospital, Ji'An Hospital, Jiangxi, China
| |
Collapse
|
4
|
Li W, Niu Y, Qiu Z, Zhou S, Zhong W, Xiong Z, Zhao D, Yang Y, Zhao H, Yu X. New evidence on the controversy over the correlation between vertebral osteoporosis and intervertebral disc degeneration: a systematic review of relevant animal studies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2354-2379. [PMID: 38642137 DOI: 10.1007/s00586-024-08256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE The effect of vertebral osteoporosis on disc degeneration remains controversial. The aim of this study was to conduct a systematic review and meta-analysis of relevant animal studies to shed more light on the effects and mechanisms of vertebral osteoporosis on disc degeneration and to promote the resolution of the controversy. METHODS The PubMed, Cochrane Library, and Embase databases were searched for studies that met the inclusion criteria. Basic information and data were extracted from the included studies and data were analyzed using STATA 15.1 software. This study was registered on INPLASY with the registration number INPLASY202370099 and https://doi.org/10.37766/inplasy2023.7.0099 . RESULTS A total of 13 studies were included in our study. Both animals, rats and mice, were covered. Meta-analysis results showed in disc height index (DHI) (P < 0.001), histological score (P < 0.001), number of osteoblasts in the endplate (P = 0.043), number of osteoclasts in the endplate (P < 0.001), type I collagen (P < 0.001), type II collagen (P < 0.001), aggrecan (P < 0.001), recombinant a disintegrin and metalloproteinase with thrombospondin-4 (ADAMTS-4) (P < 0.001), matrix metalloproteinase-1 (MMP-1) (P < 0.001), MMP-3 (P < 0.001), MMP-13 (P < 0.001), the difference between the osteoporosis group and the control group was statistically significant. In terms of disc volume, the difference between the osteoporosis group and the control group was not statistically significant (P = 0.459). CONCLUSION Our study shows that vertebral osteoporosis may exacerbate disc degeneration. Abnormal bone remodeling caused by vertebral osteoporosis disrupts the structural integrity of the endplate, leading to impaired nutrient supply to the disc, increased expression of catabolic factors, and decreased levels of type II collagen and aggrecan may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yiqun Niu
- China Medical Technology Press Co., Ltd, Beijing, 100089, China
| | - Ziye Qiu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shibo Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenqing Zhong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhencheng Xiong
- West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Dingyan Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
5
|
Sun Q, Liu F, Fang J, Lian Q, Hu Y, Nan X, Tian FM, Zhang G, Qi D, Zhang L, Zhang J, Luo Y, Zhang Z, Zhou Z. Strontium ranelate retards disc degradation and improves endplate and bone micro-architecture in ovariectomized rats with lumbar fusion induced - Adjacent segment disc degeneration. Bone Rep 2024; 20:101744. [PMID: 38404727 PMCID: PMC10884424 DOI: 10.1016/j.bonr.2024.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives Adjacent segment disc degeneration (ASDD) is one of the long-term sequelae of spinal fusion, which is more susceptible with osteoporosis. As an anti-osteoporosis drug, strontium ranelate (SR) has been reported to not only regulate bone metabolism but also cartilage matrix formation. However, it is not yet clear whether SR has a reversal or delaying effect on fusion-induced ASDD in a model of osteoporosis. Materials and methods Fifth three-month-old female Sprague-Dawley rats that underwent L4-L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery. Animals were administered vehicle (V) or SR (900 mg/kg/d) orally for 12 weeks post-PLF as follows: Sham+V, OVX + V, PLF + V, OVX + PLF + V, and OVX + PLF + SR. Manual palpation and X-ray were used to evaluate the state of lumbar fusion. Adjacent-segment disc was assessed by histological (VG staining and Scoring), histomorphometry (Disc Height, MVD, Calcification rate and Vascular Bud rate), immunohistochemical (Col-II, Aggrecan, MMP-13, ADAMTS-4 and Caspase-3), and mRNA analysis (Col-I, Col-II, Aggrecan, MMP-13 and ADAMTS-4). Adjacent L6 vertebrae microstructures were evaluated by microcomputed tomography. Results Manual palpation and radiographs showed clear evidence of the fused segment's immobility. After 12 weeks of PLF surgery, a fusion-induced ASDD model was established. Low bone mass caused by ovariectomy can significantly exacerbate ASDD progression. SR exerted a protective effect on adjacent segment intervertebral disc with the underlying mechanism possibly being associated with preserving bone mass to prevent spinal instability, maintaining the functional integrity of endplate vascular microstructure, and regulating matrix metabolism in the nucleus pulposus and annulus fibrosus. Discussion Anti-osteoporosis medication SR treatments not only maintain bone mass and prevent fractures, but early intervention could also potentially delay degenerative conditions linked to osteoporosis. Taken together, our results suggested that SR might be a promising approach for the intervention of fusion-induced ASDD with osteoporosis.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Fang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jiakang Fang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qiangqiang Lian
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yunpeng Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xinyu Nan
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Guochuan Zhang
- Department of Musculoskeletal Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Dianwen Qi
- Department of Musculoskeletal Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Emergency General Hospital, Beijing, People's Republic of China
| | - Jingwen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Luo
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zuzhuo Zhang
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhuang Zhou
- Department of Musculoskeletal Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
6
|
Li W, Zhao H, Zhou S, Xiong Z, Zhong W, Guan J, Liu T, Yang Y, Yu X. Does vertebral osteoporosis delay or accelerate lumbar disc degeneration? A systematic review. Osteoporos Int 2023; 34:1983-2002. [PMID: 37578509 PMCID: PMC10651704 DOI: 10.1007/s00198-023-06880-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
The effect of vertebral osteoporosis on disc degeneration is still debated. The purpose of this study was to provide a systematic review of studies in this area to further reveal the relationship between the two. Relevant studies were searched in electronic databases, and studies were screened according to inclusion and exclusion criteria, and finally, basic information of the included studies was extracted and summarized. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 34 publications spanning 24 years were included in our study. There were 19 clinical studies, including 12 prospective studies and 7 retrospective studies. Of these, 7 considered vertebral osteoporosis to be positively correlated with disc degeneration, 8 considered them to be negatively correlated, and 4 considered them to be uncorrelated. Two cadaveric studies were included, one considered the two to be negatively correlated and one considered them not to be correlated. Seven animal studies were included, of which five considered a positive correlation between vertebral osteoporosis and disc degeneration and two considered a negative correlation between the two. There were also 6 studies that used anti-osteoporosis drugs for intervention, all of them were animal studies. Five of them concluded that vertebral osteoporosis was positively associated with disc degeneration, and the remaining one concluded that there was no correlation between the two. Our systematic review shows that the majority of studies currently consider an association between vertebral osteoporosis and disc degeneration, but there is still a huge disagreement whether this association is positive or negative. Differences in observation time and follow-up time may be one of the reasons for the disagreement. A large number of clinical and basic studies are still needed in the future to further explore the relationship between the two.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Shibo Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhencheng Xiong
- West China Medical School, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenqing Zhong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jianbin Guan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tao Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
7
|
Xu HW, Fang XY, Liu XW, Zhang SB, Yi YY, Chang SJ, Chen H, Wang SJ. α-Ketoglutaric acid ameliorates intervertebral disk degeneration by blocking the IL-6/JAK2/STAT3 pathway. Am J Physiol Cell Physiol 2023; 325:C1119-C1130. [PMID: 37661920 DOI: 10.1152/ajpcell.00280.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Intervertebral disk degeneration (IVDD) is the major cause of low back pain. Alpha-ketoglutaric acid (α-KG), an important intermediate in energy metabolism, has various functions, including epigenetic regulation, maintenance of redox homeostasis, and antiaging, but whether it can ameliorate IVDD has not been reported. Here, we examined the impacts of long-term administration of α-KG on aging-associated IVDD in adult rats. In vivo and in vitro experiments showed that α-KG supplementation effectively ameliorated IVDD in rats and the senescence of nucleus pulposus cells (NPCs). α-KG supplementation significantly attenuated senescence, apoptosis, and matrix metalloproteinase-13 (MMP-13) protein expression, and it increased the synthesis of aggrecan and collagen II in IL-1β-treated NPCs. In addition, α-KG supplementation reduced the levels of IL-6, phosphorylated JAK2 and STAT3, and the nuclear translocation of p-STAT3 in IL-1β-induced degenerating NPCs. The effects of α-KG were enhanced by AG490 in NPCs. The underlying mechanism may involve the inhibition of JAK2/STAT3 phosphorylation and the reduction of IL-6 expression. Our findings may help in the development of new therapeutic strategies for IVDD.NEW & NOTEWORTHY Alpha-ketoglutaric acid (α-KG) exerted its protective effect on nucleus pulposus cells' (NPCs) degeneration by inhibiting the senescence-associated secretory phenotype and extracellular matrix degradation. The possible mechanism may be associated with negatively regulating the JAK2/STAT3 phosphorylation and the decreased IL-6 expression, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin-Yue Fang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Chen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
- Department of Orthopedic, Shanghai East Hospital, Ji'an Hospital, Ji'an, China
| |
Collapse
|
8
|
Pang H, Chen S, Klyne DM, Harrich D, Ding W, Yang S, Han FY. Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res 2023; 11:42. [PMID: 37542028 PMCID: PMC10403578 DOI: 10.1038/s41413-023-00280-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Low back pain (LBP) is the world's leading cause of disability and is increasing in prevalence more rapidly than any other pain condition. Intervertebral disc (IVD) degeneration and facet joint osteoarthritis (FJOA) are two common causes of LBP, and both occur more frequently in elderly women than in other populations. Moreover, osteoarthritis (OA) and OA pain, regardless of the joint, are experienced by up to twice as many women as men, and this difference is amplified during menopause. Changes in estrogen may be an important contributor to these pain states. Receptors for estrogen have been found within IVD tissue and nearby joints, highlighting the potential roles of estrogen within and surrounding the IVDs and joints. In addition, estrogen supplementation has been shown to be effective at ameliorating IVD degeneration and OA progression, indicating its potential use as a therapeutic agent for people with LBP and OA pain. This review comprehensively examines the relationship between estrogen and these pain conditions by summarizing recent preclinical and clinical findings. The potential molecular mechanisms by which estrogen may relieve LBP associated with IVD degeneration and FJOA and OA pain are discussed.
Collapse
Affiliation(s)
- Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Shihui Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Shi X, Li P, Wu X, Shu J. Whole-transcriptome sequencing identifies key differentially expressed circRNAs/lncRNAs/miRNAs/mRNAs and linked ceRNA networks in adult degenerative scoliosis. Front Mol Neurosci 2023; 16:1038816. [PMID: 37063366 PMCID: PMC10098162 DOI: 10.3389/fnmol.2023.1038816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 04/18/2023] Open
Abstract
Background Adult degenerative scoliosis (ADS) is forecast to be a prevalent disabling condition in an aging society. Universally, its pathogenesis is perceived as intervertebral disc degeneration (IDD), however, a thought-provoking issue is why precisely a subset of patients with disc degeneration develop ADS. Exploring the diversities between common IDD and ADS would contribute to unraveling the etiological mechanisms of ADS. Therefore, we aimed to integrate the circRNA, lncRNA, miRNA, and mRNA expression profiles from normal adults (Normal), patients with lumbar disc herniation (LDH), and ADS by whole transcriptome sequencing, which identifies critical functional ncRNA and ceRNA networks and crosstalk between the various transcripts. Methods The fresh whole blood samples (n = 3/group) were collected from ADS patients, LDH patients, and healthy volunteers (Normal group), which were examined for mRNA, miRNA, lncRNA, and circRNA expression and screened for differentially expressed (DE) ncRNAs. Then, Gene Ontology (GO) and KEGG analyses were performed for gene annotation and enrichment pathways on the DE RNAs, which were constructed as a lncRNA-miRNA-mRNA network. Eventually, DE RNAs were validated by qRT-PCR targeting disc nucleus pulposus (NP) tissue in ADS and LDH group (n = 10/group). Results Compared to the LDH group, we identified 3322 DE mRNAs, 221 DE lncRNAs, 20 DE miRNAs, and 15 DE circRNAs in the ADS. In contrast to Normal, 21 miRNAs and 19 circRNAs were differentially expressed in the ADS. The expression of multiple differentially expressed ncRNAs was confirmed by qRT-PCR analysis to be consistent with the sequencing results. In addition, GO, and KEGG analysis demonstrated that most DE mRNAs and ncRNAs target genes are involved in various biological processes, including Endocytosis, Apoptosis, Rap1 signaling pathway, Notch signaling pathway, and others. The constructed lncRNA-miRNA-mRNA co-expression network was primarily related to angiogenesis and regulation. Conclusion By focusing on comparing asymmetric and symmetric disc degeneration, whole-transcriptome sequencing and bioinformatics analysis systematically screened for key ncRNAs in the development of ADS, which provided an abundance of valuable candidates for the elucidation of regulatory mechanisms. The DE ncRNAs and the lncRNA-miRNA-mRNA network are intrinsically involved in the regulation of mediator and angiogenesis, which may contribute to the insight into the pathogenesis of ADS.
Collapse
Affiliation(s)
- Xin Shi
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Panpan Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Panpan Li,
| | - Xiang Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jun Shu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Tao S, Shen Z, Chen J, Shan Z, Huang B, Zhang X, Zheng L, Liu J, You T, Zhao F, Hu J. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS NANO 2022; 16:20376-20388. [PMID: 36469724 DOI: 10.1021/acsnano.2c06328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been known as a highly prevalent and disabling disease, which is one of the main causes of low back pain and disability. Unfortunately, there is no effective cure to treat this formidable disease, and surgical interventions are typically applied. Herein, we report that the local administration of nitric oxide (NO)-releasing micellar nanoparticles can efficiently treat IVDD associated with Modic changes in a rat model established by infection with Cutibacterium acnes (C. acnes). By covalent incorporation of palladium(II) meso-tetraphenyltetrabenzoporphyrin photocatalyst and coumarin-based NO donors into the core of micellar nanoparticles, we demonstrate that the activation of the UV-absorbing coumarin-based NO donors can be achieved under red light irradiation via photoredox catalysis, although it remains a great challenge to implement photoredox catalysis reactions in biological conditions due to the complex microenvironments. Notably, the local delivery of NO can not only efficiently eradicate C. acnes pathogens but also inhibit the inflammatory response and osteoclast differentiation in the intervertebral disc tissues, exerting antibacterial, anti-inflammatory, and antiosteoclastogenesis effects. This work provides a feasible means to efficiently treat IVDD by the local administration of NO signaling molecules without resorting to a surgical approach.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhi Shan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei230001, AnhuiChina
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
11
|
Tian S, Gao J, Gong H, Zhang X, Wang S. Effects of whole-body vibration at different periods on lumbar vertebrae in female rats. Med Eng Phys 2022; 110:103918. [PMID: 36564133 DOI: 10.1016/j.medengphy.2022.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
The current study aimed to investigate the effects of whole-body vibration (WBV) before and after ovariectomy on lumbar vertebrae, and to observe whether the positive effects of WBV before and after ovariectomy on lumbar vertebrae in rats could be maintained after vibration stopped. Three-month-old female rats were divided into four groups (n = 45/group): control (CON), ovariectomy (OVA), WBV before ovariectomy (WBV-BO), and WBV after ovariectomy (WBV-AO) groups. For 1-8 weeks, WBV-BO group was subjected to vertical WBV. At the 9th week, the rats in WBV-BO, WBV-AO, and OVA groups were ovariectomized. During 11-18 weeks, WBV-AO group was subjected to vibration. For 19-26 weeks, no intervention was done for rats. The lumbar vertebrae were examined by Micro-CT, compressive test, creep test, and microindentation test. At the 8th week, the displacement of the L1-L2 annulus fibrosus in WBV-BO group was 18% smaller compared with CON group (p<0.05). At the 18th week, the elastic modulus of the L5 vertebral body in WBV-BO and WBV-AO groups was 53% and 57% higher than that in CON group, respectively (p<0.05); the displacement of the L1-L2 annulus fibrosus in WBV-BO group was 25% smaller than those in the other groups (p<0.05). At the 26th week, there was no significant difference in the displacement of the L1-L2 annulus fibrosus between WBV-BO group and other groups (p>0.05); the elastic modulus of the L5 vertebral body had no significant difference between WBV-AO group and CON group (p>0.05). Our results demonstrated that WBV before ovariectomy effectively prevented disc degeneration with significant effects up to 8 weeks after ovariectomy. The vertebral mechanical properties could be significantly improved by WBV after ovariectomy, but the residual effect did not maintain after WBV stopped.
Collapse
Affiliation(s)
- Sujing Tian
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China.
| | - Xiang Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - Shuai Wang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| |
Collapse
|
12
|
Tucci M, Wilson GA, McGuire R, Benghuzzi HA. The Effects of NPY1 Receptor Antagonism on Intervertebral Disc and Bone Changes in Ovariectomized Rats. Global Spine J 2021; 11:1166-1175. [PMID: 32748636 PMCID: PMC8453679 DOI: 10.1177/2192568220939908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY DESIGN Basic science. OBJECTIVE To compare the effects of a neuropeptide Y1 receptor antagonist (NPY-1RA) to estrogen on maintaining vertebral bone microarchitecture and disc height in a rat model of menopause. METHODS This study was an institutional animal care approved randomized control study with 104 ovariectomized rats and 32 intact control animals. Comparison of disc height, trabecular bone, body weights, circulating levels of NPY and estrogen, and distribution of Y1 receptors in the intervertebral disc in an established rodent osteoporotic model were made at baseline and after 2, 4, and 8 weeks after receiving either an implant containing estrogen or an antagonist to the neuropeptide Y1 receptor. Data was compared statistically using One-way analysis of variance. RESULTS Circulating levels of estrogen increased and NPY decreased following estrogen replacement, with values comparable to ovary-intact animals. NPY-1RA-treated animals had low estrogen and high NPY circulating levels and were similar to ovariectomized control rats. Both NPY-1RA and estrogen administration were able reduce, menopause associated weight gain. NPY-1RA appeared to restore bone formation and maintain disc height, while estrogen replacement prevented further bone loss. CONCLUSION NPY-1RA in osteoporotic rats activates osteoblast production of bone and decreased marrow and body fat more effectively than estrogen replacement when delivered in similar concentrations. Annulus cells had NPY receptors, which may play a role in disc nutrition, extracellular matrix production, and pain signaling cascades.
Collapse
Affiliation(s)
- Michelle Tucci
- University of Mississippi Medical Center, Jackson, MS, US,Michelle Tucci, Department of Anesthesiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | - Robert McGuire
- University of Mississippi Medical Center, Jackson, MS, US
| | | |
Collapse
|
13
|
Lai A, Gansau J, Gullbrand SE, Crowley J, Cunha C, Dudli S, Engiles JB, Fusellier M, Goncalves RM, Nakashima D, Okewunmi J, Pelletier M, Presciutti SM, Schol J, Takeoka Y, Yang S, Yurube T, Zhang Y, Iatridis JC. Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section. JOR Spine 2021; 4:e1150. [PMID: 34337335 PMCID: PMC8313153 DOI: 10.1002/jsp2.1150] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rats are a widely accepted preclinical model for evaluating intervertebral disc (IVD) degeneration and regeneration. IVD morphology is commonly assessed using histology, which forms the foundation for quantifying the state of IVD degeneration. IVD degeneration severity is evaluated using different grading systems that focus on distinct degenerative features. A standard grading system would facilitate more accurate comparison across laboratories and more robust comparisons of different models and interventions. AIMS This study aimed to develop a histology grading system to quantify IVD degeneration for different rat models. MATERIALS & METHODS This study involved a literature review, a survey of experts in the field, and a validation study using 25 slides that were scored by 15 graders from different international institutes to determine inter- and intra-rater reliability. RESULTS A new IVD degeneration grading system was established and it consists of eight significant degenerative features, including nucleus pulposus (NP) shape, NP area, NP cell number, NP cell morphology, annulus fibrosus (AF) lamellar organization, AF tears/fissures/disruptions, NP-AF border appearance, as well as endplate disruptions/microfractures and osteophyte/ossification. The validation study indicated this system was easily adopted, and able to discern different severities of degenerative changes from different rat IVD degeneration models with high reproducibility for both experienced and inexperienced graders. In addition, a widely-accepted protocol for histological preparation of rat IVD samples based on the survey findings include paraffin embedding, sagittal orientation, section thickness < 10 μm, and staining using H&E and/or SO/FG to facilitate comparison across laboratories. CONCLUSION The proposed histological preparation protocol and grading system provide a platform for more precise comparisons and more robust evaluation of rat IVD degeneration models and interventions across laboratories.
Collapse
Affiliation(s)
- Alon Lai
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jennifer Gansau
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James Crowley
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | - Carla Cunha
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
| | - Stefan Dudli
- University Clinic of Rheumatology, Center of Experimental RheumatologyBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Marion Fusellier
- Regenerative Medicine and Skeleton, Inserm, UMR 1229, RMeSUniversité de Nantes, ONIRISNantes CedexFrance
| | - Raquel M. Goncalves
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
- Instituto de CiênciasBiomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Daisuke Nakashima
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Jeffrey Okewunmi
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | | | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Yoshiki Takeoka
- Department of Orthopaedic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Sidong Yang
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yejia Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
14
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
15
|
Wang J, Zheng Z, Huang B, Wu H, Zhang X, Chen Y, Liu J, Shan Z, Fan S, Chen J, Zhao F. Osteal Tissue Macrophages Are Involved in Endplate Osteosclerosis through the OSM-STAT3/YAP1 Signaling Axis in Modic Changes. THE JOURNAL OF IMMUNOLOGY 2020; 205:968-980. [PMID: 32690652 DOI: 10.4049/jimmunol.1901001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
Modic changes (MCs) are radiographic manifestations of lumbar degenerative diseases. Various types of MCs are often associated with endplate osteosclerosis. Osteal tissue macrophages (Osteomacs) were reported to be crucial for bone homeostasis and bone repair, but whether osteomacs participate in the endplate osteosclerosis in MCs remained unclear. In this study, we tried to explore the critical role of osteomacs in regulating osteogenesis in MCs. We collected MCs from patient samples and developed a Propionibacterium acnes-induced rat MCs model, using microcomputed tomography and immunohistochemistry to detect the endplate bone mass and distribution of osteomacs. In patients' MCs, osteomacs increased in endplate subchondral bone, especially in Modic type II. Endplate in Modic type III presented a stable osteosclerosis. In rat MCs model, osteomacs increased in the bone hyperplasia area but not in the inflammation area of the endplate region, whereas the distribution of osteomacs was consistent with the area of osteosclerosis. To further explore the functions of osteomacs in vitro, we isolated osteomacs using MACS technology and found osteomacs secreted oncostatin M (OSM) and strongly promoted osteoblast differentiation rather than osteoclast through the mechanism of OSM-mediated tyrosine phosphorylation and interaction of STAT3 and Yes-associated protein 1 (YAP1). STAT3 phosphorylation inhibition or YAP1 knockdown attenuated OSM-mediated osteoblast differentiation. Finally, we confirmed that blockade of OSM in vivo using anti-OSM-neutralizing Ab prevented endplate osteosclerosis in rat MCs model. Taken together, these findings confirmed that endplate osteosclerosis in MCs was accompanied by an increased number of osteomacs, which regulated osteogenesis via the OSM-STAT3/YAP1 signaling axis.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Zeyu Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Hao Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
16
|
Tang P, Chen WX, Gao HL, Dai JY, Gu Y, Xie ZA, Li XF, Fan SW, Jiang XS, Lu Q, Hu ZJ. Small molecule inhibitor of TAK1 ameliorates rat cartilaginous endplate degeneration induced by oxidative stress in vitro and in vivo. Free Radic Biol Med 2020; 148:140-150. [PMID: 31911149 DOI: 10.1016/j.freeradbiomed.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Pan Tang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Wen-Xiang Chen
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China.
| | - Hong-Liang Gao
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China.
| | - Jia-Yong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Yu Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Zi-Ang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiong-Feng Li
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China.
| | - Shun-Wu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Xue-Sheng Jiang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Qian Lu
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, #198 Hongqi Road, Huzhou, 313003, China.
| | - Zhi-Jun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
17
|
Jin LY, Song XX, Li XF. The role of estrogen in intervertebral disc degeneration. Steroids 2020; 154:108549. [PMID: 31812622 DOI: 10.1016/j.steroids.2019.108549] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a main contributor to low back and radicular pain, which imposes heavy economic burdens on society. However, the etiology and mechanism of IVDD are complex and still not completely clear. In particular, the role of estrogen in IVDD has not received much attention in recent research, although estrogen plays a crucial role in the metabolic dysfunction of others musculoskeletal structures, such as bone, muscle, and tendon. In this review, we attempt to describe the role of estrogen in IVDD and to summarize the proposed mechanisms in vivo and in vitro, as well as, to outline several interesting questions in this field.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1058, Huan Zheng Bei Rd, Shanghai 200444, China; Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai 200025, China.
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1058, Huan Zheng Bei Rd, Shanghai 200444, China.
| |
Collapse
|
18
|
Estrogen Deficiency Exacerbates Intervertebral Disc Degeneration Induced by Spinal Instability in Rats. Spine (Phila Pa 1976) 2019; 44:E510-E519. [PMID: 30325885 DOI: 10.1097/brs.0000000000002904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study of osteoporosis (OP) and intervertebral disc degeneration (IDD). OBJECTIVE The aim of this study was to clarify the effects of estrogen deficiency and supplement on cervical IDD induced by bilateral facetectomy in rats. SUMMARY OF BACKGROUND DATA The relationship between IDD and OP is still controversy with the wide prevalence in aged people. METHODS Seventy-two Sprague-Dawley female rats were randomly divided into ovariectomy (OVX) group, facet joints resection of C4-6 (FR), FR-OVX group, estrogen replacement therapy (ERT, based on the FR-OVX group) group, and sham group. Specimens of C4-6 segment were harvested at 12 and 24 weeks. The microstructures of C5 vertebrae, vertebral endplate lesions and calcification, and IDD of C5/6 disc were evaluated by micro-computed tomography (micro-CT) and histology. The protein and gene levels of aggrecan, Col2α1, matrix metalloprotease (MMP)-3, and MMP-13 in the C5/6 and C4/5 discs were measured. RESULTS Microstructures of C5 vertebral body were weakened significantly after ovariectomy, while restored effectively with estradiol supplementation. The facetectomy led to significant IDD, and the IDD was aggravated when combined with OVX. The IDD of the ERT group was alleviated effectively and similar to that of the FR group in intervertebral disc height, vertebral endplate lesions and calcification, and disc degeneration scores. In addition, the estrogen supplement maintained the extracellular matrix by decreasing MMP-3 and MMP-13, and increasing aggrecan and Col2α1 expression. CONCLUSION The present study demonstrated that estrogen deficiency exacerbated IDD induced by spinal instability, while estrogen supplementation alleviated the progression of disc degeneration related to osteoporosis. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Zhang Y, Si M, Li C, Liu Y, Han Y, Nie L, Wang M. Effect of hyperlipidaemia to accelerate intervertebral disc degeneration in the injured rat caudal disc model. J Orthop Sci 2019; 24:42-49. [PMID: 30219602 DOI: 10.1016/j.jos.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Dyslipidaemia is a well-known risk factor for the development of atherosclerosis, however, little is known about the effect of dyslipidaemia on intervertebral disc degeneration (IVDD). Thus, the purpose of this study is to investigate the relationship between dyslipidaemia and IVDD, and to identify the possible mechanism by which dyslipidaemia aggravates the degeneration of intervertebral discs. METHODS Hyperlipidaemia rats were induced, thirty male Wistar rats were randomly divided into two groups: normal chow diet control group (CON) and high-fat diet group (HFD) for 8 weeks. And then, a rat disc degeneration model was established, rats were divided into three experimental groups: the normal chow diet + sham surgery group (CON-Sham); the normal chow diet + needle puncture group (CON-NP); and the high-fat diet + needle puncture group (HFD-NP), all rats were continually fed with normal chow diet or HFD 8 weeks. At the end of the experiment, the discs were harvested and histomorphological analysis, immunohistochemistry staining, real-time PCR and western blot were performed for all groups. RESULTS The degenerative histological score of disc in the HFD-NP group was significantly higher than the CON-NP group. Immunohistochemical analysis revealed remarkable reductions in aggrecan and collagen type II expressions, and significant increases in IL-1β, TNF-α, MMP-13, HIF-1α and P65 expression in the HFD-NP group. RT-PCR and western blot analysis showed that the mRNA levels and protein expressions of MMP-13 and TIMP-1 were higher in the HFD-NP group. CONCLUSIONS Hyperlipidaemia resulted in an exaggerated degenerative changes and altered expression and transcription of the degeneration-associated molecules in the rat disc tissue. These results raise the possibility that hyperlipidaemia may accelerate the progression of disc degeneration.
Collapse
Affiliation(s)
- Yuedong Zhang
- Department of Orthopaedics, Taian Central Hospital, Taian, Shandong, 271000, PR China; Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Meng Si
- Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Chunpu Li
- Department of Orthopaedics, Taian Central Hospital, Taian, Shandong, 271000, PR China; Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yi Liu
- Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yingguang Han
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, PR China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Mei Wang
- College of Medical Information Engineering, Taishan Medical University, 619 Changcheng Road, Taian, Shandong, 271016, PR China.
| |
Collapse
|
20
|
Estradiol Alleviates Intervertebral Disc Degeneration through Modulating the Antioxidant Enzymes and Inhibiting Autophagy in the Model of Menopause Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7890291. [PMID: 30671175 PMCID: PMC6323532 DOI: 10.1155/2018/7890291] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Objective To investigate the effects of menopause on redox balance in the intervertebral disc and to examine whether oxidative stress and autophagy were associated with disc degeneration in menopause rats. Methods Thirty female Sprague-Dawley rats were randomly divided into three groups (sham, ovariectomized with vehicle, and ovariectomized with estrogen). At the end of the 3-month treatment, the rats were examined by 3.0 T MRI. Serum estradiol (E2) level was measured. Redox balance of nucleus pulposus was determined by measuring total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), and oxidized glutathione (GSSG). Transmission electron microscopy (TEM), immunohistochemical staining, and Western blot were used to determine the nucleus pulposus autophagy level. At the same time, Spearman's correlation coefficient was used to describe the relationship between intervertebral disc grade, oxidative stress status, serum E2, and autophagy level. Results The level of serum E2 was significantly decreased by ovariectomy and can be corrected by the estrogen replacement therapy (ERT). In OVX rats, an increased oxidative stress and high level of autophagy were observed in nucleus pulposus tissue. ERT prevented the intervertebral disc degeneration (IVDD), restored the redox balance, and reduced autophagy level. Conclusion Ovariectomy induced oxidative stress, autophagy, and intervertebral disc degeneration. Autophagy of the intervertebral disc was negatively correlated with oxidative stress, and the level of autophagy can be reduced by ERT through modulating the redox balance and downregulating the autophagy level. Regulating the redox balance of IVD may be a potential therapeutic option for degeneration of the disc in the postmenopausal women.
Collapse
|
21
|
Chen CH, Chen WC, Lin CY, Chen CH, Tsuang YH, Kuo YJ. Sintered dicalcium pyrophosphate treatment attenuates estrogen deficiency-associated disc degeneration in ovariectomized rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3033-3041. [PMID: 30271118 PMCID: PMC6151093 DOI: 10.2147/dddt.s170816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Estrogen deficiency is associated with musculoskeletal disorders. Sintered dicalcium pyrophosphate (SDCP) is a novel antiosteoporotic agent. In this study, we examined its use for restoration of bone quality and attenuation of disc degeneration in ovariectomy rats. Methods Sixty female Sprague Dawley rats were randomly divided into 3 groups, namely sham group undergoing sham surgery, ovariectomy (OVX) group receiving an equivalent volume of isotonic sodium chloride solution, and OVX/SDCP group orally administered with 0.25 mg/mL SDCP. Animals were sacrificed at 3 and 6 months post ovariectomy and lumbar vertebrae and intervertebral discs were harvested. Bone mineral density, micro-computed tomography analysis, and biomechanical testing were performed to assess bone quality. Histological analysis with hematoxylin and eosin, Alcian blue, and Masson’s trichrome stain were conducted to determine disc degeneration. Immunohistochemistry and real-time PCR were carried out to measure the expressions of aggrecan, type I collagen, type II collagen, and MMP-1, MMP-3, and MMP-13. Results SDCP improved bone quality as observed by the results of increased bone mineral density and stiffness in OVX rats. The improvement in disc degeneration induced by estrogen withdrawal was associated with reduced gene expressions of MMPs and increased production of collagen type II. Conclusion SDCP prevents osteoporosis and ameliorates disc degeneration in OVX rats. It represents a favorable therapeutic agent for osteoporotic and osteoarthritic conditions in clinical practice.
Collapse
Affiliation(s)
- Chia-Hsien Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Yi Lin
- Department of Orthopedic Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,
| |
Collapse
|
22
|
Tang P, Gu JM, Xie ZA, Gu Y, Jie ZW, Huang KM, Wang JY, Fan SW, Jiang XS, Hu ZJ. Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radic Biol Med 2018; 120:368-379. [PMID: 29649568 DOI: 10.1016/j.freeradbiomed.2018.04.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IVDD) is a multifactorial disease and responsible for many spine related disorders, causes disability in the workforce and heavy social costs all over the world. Honokiol, a low molecular weight natural product, could penetrate into and distribute in IVDs to achieve therapeutic effect in a rat tail model. Therefore, the present study was undertaken to examine the antiinflammatory, antioxidation and IVD-protective effect of honokiol using nucleus pulposus cells and investigate its mechanisms to provide a new basis for future clinical treatment of IVDD. In the current study, we demonstrated that honokiol inhibits the H2O2-induced apoptosis (caspase-9, caspase-3, and bax), levels of oxidative stress mediators (ROS, MDA), expression of inflammatory mediators (Interleukin-6, COX-2, and iNOS), major matrix degrading proteases (MMP-3, MMP-13, ADAMTS5, and ADAMTS4) associated with nucleus pulposus degradation. Furthermore, we found nucleus pulposus protective ability of honokiol by up-regulating extra cellular matrix anabolic factors like type II collagen (Col II) and SOX9 in nucleus pulposus. We also found that honokiol suppressed the phosphorylation of NF-kB and JNK, and activation of TXNIP-NLRP3 inflammasome in H2O2-stimulated nucleus pulposus cells, thereby inhibiting the activation of downstream inflammatory mediators such as Interleukin-1β. Furthermore, honokiol showed a cartilage protective effect in the progression of IVDD in a rat model induced by puncture. Thus, our results demonstrate that honokiol inhibited the H2O2 induced apoptosis, oxidative stress, and inflammatory responses through the depression of TXNIP/NLRP3/caspase-1/ Interleukin - 1β signaling axis and the activation of NF-kB and JNK. Honokiol possess nucleus pulposus protective properties and may be of value in suppressing the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Pan Tang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China; Department of Orthopaedics, Huzhou Hospital, Zhejiang University, #198 Hongqi Road, Huzhou 313003, China.
| | - Jia-Ming Gu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Zi-Ang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Yu Gu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Zhi-Wei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Kang-Mao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Ji-Ying Wang
- Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Shun-Wu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| | - Xue-Sheng Jiang
- Department of Orthopaedics, Huzhou Hospital, Zhejiang University, #198 Hongqi Road, Huzhou 313003, China
| | - Zhi-Jun Hu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou 310016, China; Key Laboratory of Biotherapy of Zhejiang Province, #3 East Qingchun Road, Hangzhou 310016, China.
| |
Collapse
|
23
|
Luo Y, Li SY, Tian FM, Song HP, Zhang YZ, Zhang L. Effects of human parathyroid hormone 1-34 on bone loss and lumbar intervertebral disc degeneration in ovariectomized rats. INTERNATIONAL ORTHOPAEDICS 2018; 42:1183-1190. [PMID: 29442158 DOI: 10.1007/s00264-018-3821-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Lumbar intervertebral disc degeneration is a common cause of lower back pain that affects the physical and mental health of patients and increases social burden. Parathyroid hormone has been reported to be effective at inhibiting disc degeneration; however, these effects have not been fully established in vivo in ovariectomized (OVX) rats. Thus, in this study, we aimed to address this issue and examine the effects of parathyroid hormone treatment in OVX rats. METHODS Thirty female Sprague-Dawley rats, three months-old, were subjected to sham or ovariectomy surgery. Twelve weeks postsurgery, OVX rats were treated with either human parathyroid hormone [hPTH(1-34), 30 μg/kg/day] or vehicle (normal saline (NS)) treatment. The L3-6 spinal segments were harvested after 12 weeks treatment. Bone mineral density (BMD), micro-architectural parameters, and biomechanical assessment were measured at the lumbar vertebral bodies. Histology and immunohistochemistry were performed to analyze the characteristics of the lumbar intervertebral discs. RESULTS OVX + PTH rats had significantly higher BMD, percentage bone volume density, trabecular thickness, and biomechanical strength compared with those in Sham and OVX + NS rats. Histology and immunostaining revealed that disc degeneration was not significantly different between the OVX + NS rats and the OVX + PTH rats, compared with the Sham group; the structure of nucleus pulposus was disordered, the expression of collagen I was increased, and collagen II and aggrecan were decreased. CONCLUSIONS These findings confirmed that hPTH(1-34) treatment has substantial anabolic effects on bone mass and trabecular micro-architecture, while the excessively enhanced bone mass and strength were coupled with a non-significant effect on the disc degeneration in ovariectomized rats.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China.,Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shu-Yang Li
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhehaote, People's Republic of China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Hui-Ping Song
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China
| | - Ying-Ze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China.
| |
Collapse
|
24
|
Lumbar disc degeneration was not related to spine and hip bone mineral densities in Chinese: facet joint osteoarthritis may confound the association. Arch Osteoporos 2017; 12:20. [PMID: 28210985 DOI: 10.1007/s11657-017-0315-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/06/2017] [Indexed: 02/03/2023]
Abstract
UNLABELLED A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. PURPOSE Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. METHODS We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. RESULTS Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). CONCLUSION BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.
Collapse
|
25
|
Association between menopause and lumbar disc degeneration: an MRI study of 1,566 women and 1,382 men. Menopause 2017; 24:1136-1144. [DOI: 10.1097/gme.0000000000000902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Song H, Luo Y, Wang W, Li S, Yang K, Dai M, Shen Y, Zhang Y, Zhang L. Effects of alendronate on lumbar intervertebral disc degeneration with bone loss in ovariectomized rats. Spine J 2017; 17:995-1003. [PMID: 28288923 DOI: 10.1016/j.spinee.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/15/2017] [Accepted: 03/08/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Osteoporosis adversely affects disc degeneration cascades, and prophylactic alendronate (ALN) helps delay intervertebral disc degeneration (IDD) in ovariectomized (OVX) rats. However, there remains no information regarding whether ALN affects IDD with bone loss. PURPOSE This study aimed to observe the effects of ALN on degenerative discs with bone loss induced by OVX in rats. STUDY DESIGN This study used controlled in vivo experiments in rodents. METHODS Thirty female Sprague-Dawley rats were randomly assigned to undergo sham surgery (n=10) or OVX surgery (n=20); 3 months later, the OVX animals were injected with either ALN (OVX+ALN, 15 µg/kg/2w, n=10) or normal saline (OVX+vehicle treatment [V], n=10). At 3 months after the ALN intervention, van Gieson staining and immunohistochemistry were used to investigate histologic and metabolic changes in the discs. Bone mineral density (BMD), micro-computed tomography, and biomechanical tests were conducted to determine the biological properties of the vertebrae. RESULTS The OVX+ALN group exhibited significantly reduced morphologic degenerative alterations in both the nucleus pulposus and annulus fibrosus, with a markedly lower IDD score than that of the OVX+V group. The OVX+ALN samples showed increased disc height and decreased cartilage end plate thickness and bony area compared with the OVX+V group. Compared with saline, ALN administration markedly inhibited the type I collagen, matrix metalloprotease (MMP)-1, and MMP-13 expression levels while increasing the type II collagen and aggrecan expression levels in the disc matrix. Compared with the OVX+V group, OVX+ALN vertebrae revealed significantly enhanced BMD with increased biomechanical strength, as well as increased percent bone volume and trabecular thickness. CONCLUSIONS ALN has favorable effects on disc degeneration with bone loss and helps to alleviate IDD while enhancing the biological and mechanical properties of vertebrae and end plates.
Collapse
Affiliation(s)
- Huiping Song
- Department of Orthopaedic Surgery, The Affiliated Hospital of North China University of Science and Technology, 73 Jianshe Rd, Tangshan 063000, China
| | - Yang Luo
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Rd, Shijiazhuang, 050051, China
| | - Wenya Wang
- Department of Pathology, School of Basic Medical Sciences, North China University of Science and Technology, 73 Jianshe Rd, Tangshan, 063000, China
| | - Shuyang Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of North China University of Science and Technology, 73 Jianshe Rd, Tangshan 063000, China
| | - Kai Yang
- Department of Orthopaedic Surgery, The Affiliated Hospital of North China University of Science and Technology, 73 Jianshe Rd, Tangshan 063000, China
| | - Muwei Dai
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Rd, Shijiazhuang, 050051, China
| | - Yong Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Rd, Shijiazhuang, 050051, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Rd, Shijiazhuang, 050051, China
| | - Liu Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of North China University of Science and Technology, 73 Jianshe Rd, Tangshan 063000, China.
| |
Collapse
|
27
|
Tian FM, Li SY, Yang K, Luo Y, Dai MW, Liu GY, Song HP, Zhang L. Orally administered simvastatin partially preserves lumbar vertebral bone mass but not integrity of intervertebral discs in ovariectomized rats. Exp Ther Med 2017; 13:877-884. [PMID: 28450913 PMCID: PMC5403518 DOI: 10.3892/etm.2017.4043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/10/2016] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to investigate the effect of orally administered simvastatin on lumbar vertebral bone mass and intervertebral disc (IVD) degeneration in ovariectomized (OVX) rats. A total of 30 female Sprague-Dawley (SD) rats were subjected to either bilateral ovariectomy (n=20) or sham surgery (n=10). After 12 weeks, the OVX rats were orally administered either saline vehicle (OVX + V group; n=10), or 5 mg/kg/day simvastatin (OVX + SIM group; n=10). Following 12 weeks of treatment, necropsy was conducted and bone mineral density (BMD) was determined in the L5-6 vertebrae. Furthermore, the microstructure and biomechanical properties of the L3 vertebrae were detected by micro-computed tomography and compression testing, respectively. The L5-6 vertebrae were analyzed by measurement of IVD height, observation of histological changes by van Gieson staining, and evaluation of collagen-II (col-II), aggrecan (AGG) and collagen I (col-I) expression by immunohistochemical analysis. Rats in the OVX+V group had lower BMD, bone volume/trabecular volume ratio, maximum load and elastic modulus than the sham group. Rats in the OVX + SIM group had higher BMD and biomechanical strength values than the rats in the OVX+V group. Histological analysis showed that the OVX + V and OVX + SIM groups exhibited significantly higher disc degeneration scores and significantly lower IVD height than the sham group. Immunohistochemical analysis revealed lower expression levels of col-II and AGG, but higher levels of col-I in the annulus fibrosis and endplate in OVX+V rats compared with the sham group. The OVX + SIM group exhibited levels of col-II, AGG and col-I expression comparable with those of OVX+V rats, with the exception of an upregulation of col-II expression in the annulus fibrosis. These data demonstrate that simvastatin treatment partially prevented bone loss and the deterioration of biomechanical properties of lumbar vertebrae, but not the progression of IVD degeneration in OVX rats.
Collapse
Affiliation(s)
- Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shu-Yang Li
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Kai Yang
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yang Luo
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Mu-Wei Dai
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Guang-Yuan Liu
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Hui-Ping Song
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Liu Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
28
|
Li P, Gan Y, Xu Y, Wang L, Ouyang B, Zhang C, Luo L, Zhao C, Zhou Q. 17beta-estradiol Attenuates TNF-α-Induced Premature Senescence of Nucleus Pulposus Cells through Regulating the ROS/NF-κB Pathway. Int J Biol Sci 2017; 13:145-156. [PMID: 28255267 PMCID: PMC5332869 DOI: 10.7150/ijbs.16770] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background: Accelerated cellular senescence within the nucleus pulposus (NP) region is a common feature of disc degeneration. Our previous work indicated that TNF-α promoted NP cell senescence. Although the intervertebral disc has been reported to be an estrogen-sensitive tissue, it is unclear whether estrogen can inhibit premature senescence of NP cells. Objective: To investigate whether 17beta-estradiol (E2) can attenuate TNF-α-induced premature senescence of NP cells and the potential mechanism behind this regulatory process. Methods: Isolated NP cells and intact intervertebral discs from healthy rats were cultured with or without TNF-α, E2 or their combination. The pan estrogen receptor (ER) antagonist ICI 182780 was used to investigate the role of ER. Direct and indirect indicators including cell proliferation, SA-β-Gal activity, telomerase activity, cell cycle, and the expression of matrix macromolecules (aggrecan and collagen II) and senescence markers (p16 and p53) were used to evaluate the premature senescence of NP cells. Additionally, intracellular reactive oxygen species (ROS) and NF-κB/p65 activity were also detected in the NP cell cultures. Results: In the NP cell cultures, E2 significantly increased cell proliferation potency, telomerase activity and the expression of matrix macromolecules but attenuated SA-β-Gal activity, senescence marker (p53 and p16) expression and G1 cycle arrest in TNF-α-treated NP cells. Furthermore, E2 inhibited ROS generation and phospho-NF-κB/p65 expression in the TNF-α-treated NP cells. However, the ER antagonist ICI 182780 abolished the effects of E2 on TNF-α-treated NP cells. In the disc organ cultures, E2 also significantly increased matrix synthesis, whereas it decreased senescence marker (p53 and p16) expression, which could be abolished by the ER antagonist ICI 182780. Conclusion: The interaction between E2 and ER can attenuate TNF-α-induced premature senescence of rat NP cells through interfering with the ROS/NF-κB pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bin Ouyang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Luo
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chen Zhao
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
29
|
Oestrogen and parathyroid hormone alleviate lumbar intervertebral disc degeneration in ovariectomized rats and enhance Wnt/β-catenin pathway activity. Sci Rep 2016; 6:27521. [PMID: 27279629 PMCID: PMC4899752 DOI: 10.1038/srep27521] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/09/2016] [Indexed: 11/08/2022] Open
Abstract
To investigate the mitigation effect and mechanism of oestrogen and PTH on disc degeneration in rats after ovariectomy, as well as on Wnt/β-catenin pathway activity, thirty 3-month-old rats were ovariectomized and divided into three groups. Ten additional rats were used as controls. Eight weeks later, the rats were administered oestrogen or PTH for 12 weeks, and then discs were collected for tests. Results showed that nucleus pulposus cells in the Sham group were mostly notochord cells, while in the OVX group, cells gradually developed into chondrocyte-like cells. Oestrogen or PTH could partly recover the notochord cell number. After ovariectomy, the endplate roughened and endplate porosity decreased. After oestrogen or PTH treatment, the smoothness and porosity of endplate recovered. Compared with the Sham group, Aggrecan, Col2a and Wnt/β-catenin pathway expression in OVX group decreased, and either oestrogen or PTH treatment improved their expression. The biomechanical properties of intervertebral disc significantly changed after ovariectomy, and oestrogen or PTH treatment partly recovered them. Disc degeneration occurred with low oestrogen, and the underlying mechanisms involve nutrition supply disorders, cell type changes and decreased Wnt/β-catenin pathway activity. Oestrogen and PTH can retard disc degeneration in OVX rats and enhance Wnt/β-catenin pathway activity in nucleus pulposus.
Collapse
|
30
|
The effects of intervertebral disc degeneration combined with osteoporosis on vascularization and microarchitecture of the endplate in rhesus monkeys. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:2705-15. [PMID: 27220969 DOI: 10.1007/s00586-016-4593-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate the influence of osteoporosis on the microarchitecture and vascularization of the endplate in rhesus monkeys with or without intervertebral disc (IVD) degeneration using micro-computerized tomography (micro-CT), and to further analyze the correlation between osteoporosis and IVD degeneration. METHODS Twelve rhesus monkeys were randomly divided into the ovariectomy (OVX, n = 6) and the sham group (n = 6). The subchondral bone adjacent to the lumbar IVDs (from L4/5 to L6/7) of each monkey was randomly injected with 4 ml pingyangmycin (PYM) solution (1.5 mg/ml, PYM), or 4 ml phosphate buffered saline (PBS) as vehicle treatment, or exteriorized but not injected anything as control (Cntrl). Degenerative and osteoporotic processes were evaluated at different time points. Micro-CT and histology were performed to analyze microarchitecture, calcification area and vascularization of the endplate. RESULTS OVX resulted in significant decrease of bone mineral density (BMD). PYM injection induced progressively IVD degeneration, which was more progressive when combined with OVX. There was a negative correlation between BMD and Pfirrmann grade in the subgroups with PYM injection. The micro-CT analysis showed the combination of osteoporosis and IVD degeneration led to more calcification of endplate than any one thereof. The decrease of vascular volume percent in the endplate of the OVX-PYM subgroup was significantly greater than that in the Sham-PYM subgroup, both of which showed significant less vascularization compared to the other subgroups. CONCLUSION In conclusion the osteoporosis could accumulate the calcification and decrease the vascularization in the endplates adjacent to the degenerated IVDs, which subsequently exacerbated degeneration of the degenerated IVDs.
Collapse
|
31
|
Wei A, Shen B, Williams LA, Bhargav D, Yan F, Chong BH, Diwan AD. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc. J Steroid Biochem Mol Biol 2016; 158:46-55. [PMID: 26815911 DOI: 10.1016/j.jsbmb.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/21/2023]
Abstract
Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors.
Collapse
Affiliation(s)
- Aiqun Wei
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Bojiang Shen
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Lisa A Williams
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Divya Bhargav
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Feng Yan
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Beng H Chong
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Ashish D Diwan
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia.
| |
Collapse
|
32
|
Zhou Z, Tian FM, Gou Y, Wang P, Zhang H, Song HP, Shen Y, Zhang YZ, Zhang L. Enhancement of Lumbar Fusion and Alleviation of Adjacent Segment Disc Degeneration by Intermittent PTH(1-34) in Ovariectomized Rats. J Bone Miner Res 2016; 31:828-38. [PMID: 26542457 DOI: 10.1002/jbmr.2736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023]
Abstract
Osteoporosis, which is prevalent in postmenopausal or aged populations, is thought to be a contributing factor to adjacent segment disc degeneration (ASDD), and the incidence and extent of ASDD may be augmented by osteopenia. Parathyroid hormone (PTH) (1-34) has already been shown to be beneficial in osteoporosis, lumbar fusion and matrix homeostasis of intervertebral discs. However, whether PTH(1-34) has a reversing or retarding effect on ASDD in osteopenia has not been confirmed. In the present study, we evaluated the effects of intermittent PTH(1-34) on ASDD in an ovariectomized (OVX) rat model. One hundred 3-month-old female Sprague-Dawley rats underwent L4 -L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after OVX surgery. Control groups were established accordingly. PTH(1-34) was intermittently administered immediately after PLF surgery and lasted for 8 weeks using the following groups (n = 20) (V = vehicle): Sham+V, OVX+V, Sham+PLF+V, OVX+PLF+V, OVX+PLF+PTH. The fused segments showed clear evidence of eliminated motion on the fusion-segment based on manual palpation. Greater new bone formation in histology was observed in PTH-treated animals compared to the control group. The extent of ASDD was significantly increased by ovariotomy. Intermittent PTH(1-34) significantly alleviated ASDD by preserving disc height, microvessel density, relative area of vascular buds, endplate thickness and the relative area of endplate calcification. Moreover, protein expression results showed that PTH(1-34) not only inhibited matrix degradation by decreasing MMP-13, ADAMTS-4 and Col-I, but also promote matrix synthesis by increasing Col-II and Aggrecan. In conclusion, PTH(1-34), which effectively improves lumbar fusion and alleviates ASDD in ovariectomized rats, may be a potential candidate to ameliorate the prognosis of lumbar fusion in osteopenia.
Collapse
Affiliation(s)
- Zhuang Zhou
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Yu Gou
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Peng Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Heng Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Hui-Ping Song
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yong Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying-Ze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liu Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
33
|
Tian FM, Yang K, Wang WY, Luo Y, Li SY, Song HP, Zhang YZ, Shen Y, Zhang L. Calcitonin suppresses intervertebral disk degeneration and preserves lumbar vertebral bone mineral density and bone strength in ovariectomized rats. Osteoporos Int 2015; 26:2853-61. [PMID: 26104796 DOI: 10.1007/s00198-015-3202-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED We investigated the effect of calcitonin (CT) on lumbar intervertebral disk degeneration (LIDD) in rats with ovariectomy-induced osteopenia. CT protected ovariectomized rats from LIDD by, at least in part, modifying extracellular matrix metabolism of the disks and preserving the microarchitecture and biomechanical properties of adjacent vertebrae. INTRODUCTION The present study aimed to investigate the effect of CT on lumbar vertebral bone mineral density and intervertebral disk degeneration in ovariectomized (OVX) rats. METHODS We first subjected 50 3-month-old female rats to either OVX (n = 30) or sham (n = 20). Twelve weeks later, ten OVX and ten sham rats were necropsied. The remaining OVX rats began to receive either saline vehicle (OVX + V, n = 10), or salmon CT (OVX + CT, 16 IU/kg/2 days, n = 10). After 12 weeks of treatment, necropsy was conducted and bone mineral density was determined in L3-4 and L5-6 vertebrae. The microstructure and biomechanical properties of L3 vertebrae were detected by micro-computed tomography and compression test, respectively. L5-6 was also used to measure intervertebral disk height and observe intervertebral disk histological changes by Van Gieson staining and histological scores, as well as immunohistochemistry (IHC) analysis of matrix metalloprotease (MMP)-1, MMP-13, and collagen II expression. RESULTS At 12 weeks post-OVX, OVX rats had lower BV/TV and Tb.N and higher intervertebral disk histological score than sham rats. After 24 weeks, OVX + CT rats had higher BMD, BV/TV, Tb.N, and bone biomechanical strength values than OVX + V rats. Histological analysis showed OVX + CT rats had significantly lower disk degeneration scores than OVX + V rats. IHC analysis revealed CT treatment decreased expression of MMP-1 and MMP-13 and increased expression of collagen II compared with OVX + V rats. CONCLUSIONS Our data demonstrate that CT-treated OVX rats display less intervertebral disk degeneration and favorable changes in intervertebral disk metabolism, associated with higher trabecular bone mass, better trabecular microarchitecture, and better biomechanical strength when compared to vehicle-treated OVX rats.
Collapse
Affiliation(s)
- F-m Tian
- Medical Research Center, Affiliated Hospital of Hebei United University, Tangshan, People's Republic of China
| | - K Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei United University, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China
| | - W-y Wang
- Department of Pathology of Basic Medical Sciences School, Hebei United University, Tangshan, People's Republic of China
| | - Y Luo
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - S-y Li
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei United University, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China
| | - H-p Song
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei United University, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China
| | - Y-z Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Y Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - L Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei United University, No. 73 Jianshe South Rd, Tangshan, 063000, Hebei, People's Republic of China.
| |
Collapse
|
34
|
Liu CC, Tian FM, Zhou Z, Wang P, Gou Y, Zhang H, Wang WY, Shen Y, Zhang YZ, Zhang L. Protective effect of calcitonin on lumbar fusion-induced adjacent-segment disc degeneration in ovariectomized rat. BMC Musculoskelet Disord 2015; 16:342. [PMID: 26552386 PMCID: PMC4640157 DOI: 10.1186/s12891-015-0788-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration and pathological changes in the spinal cord are major causes of back pain. In addition to its well-established anti-resorptive effect on bone, calcitonin (CT) potentially exerts protective effects on IVD degeneration in ovariectomized rats. However, possible therapeutic effects of CT on lumbar fusion-induced adjacent-segment disc degeneration (ASDD) have not been investigated yet. In this study, we examined the effects of CT on IVD degeneration adjacent to a lumbar fusion in ovariectomized rats. Methods Posterolateral lumbar fusion (PLF) at L4–5 was performed 4 weeks after ovariectomy (OVX) or sham surgery in female Sprague–Dawley rats. Following PLF + OVX, rats received either salmon CT (OVX + PLF + sCT, 16 IU/Kg/2d) or vehicle (OVX + PLF + V) treatment for 12 weeks; the remaining rats were divided into Sham + V, OVX + V, and PLF + V groups. Fusion status was analyzed by manual palpation and radiography. Adjacent segment disc was assessed by histological, histomorphometric, immunohistochemical analysis. L6 vertebrae microstructures were evaluated by micro-computed tomography. Results Histological analysis showed more severe ASDD occurred in OVX + PLF + V rats compared with the OVX + V or PLF + V groups. CT treatment suppressed the score for ASDD, increased disc height, and decreased the area of endplate calcification. Immunohistochemical staining demonstrated that CT decreased the expression of collagen type-I, matrix metalloproteinase-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4, whereas it increased the expression of collagen type-II and aggrecan in the disc. Micro-computed tomography indicated that CT increased bone mass and improved the microstructure of the L6 vertebrae. Conclusions These results suggest that CT can prevent ASDD, induce beneficial changes in IVD metabolism, and inhibit deterioration of the trabecular microarchitecture of vertebrae in osteoporotic rats with lumbar fusion.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- Orthopaedic Research Institution of Hebei, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, 063000, P. R. China.
| | - Zhuang Zhou
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd., Tangshan, Hebei, 063000, P.R. China.
| | - Peng Wang
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd., Tangshan, Hebei, 063000, P.R. China.
| | - Yu Gou
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd., Tangshan, Hebei, 063000, P.R. China.
| | - Heng Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd., Tangshan, Hebei, 063000, P.R. China.
| | - Wen-Ya Wang
- Department of Pathology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, P. R. China.
| | - Yong Shen
- Orthopaedic Research Institution of Hebei, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| | - Ying-Ze Zhang
- Orthopaedic Research Institution of Hebei, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| | - Liu Zhang
- Orthopaedic Research Institution of Hebei, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Rd., Tangshan, Hebei, 063000, P.R. China.
| |
Collapse
|
35
|
Alendronate Prevents Intervertebral Disc Degeneration Adjacent to a Lumbar Fusion in Ovariectomized Rats. Spine (Phila Pa 1976) 2015; 40:E1073-83. [PMID: 26731708 DOI: 10.1097/brs.0000000000001092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A model of disc degeneration adjacent to a lumbar fusion in osteoporotic rats. OBJECTIVE We determined the effect of alendronate (ALN) on the disc degeneration adjacent to a lumbar fusion in ovariectomized rats. SUMMARY OF BACKGROUND DATA Adjacent-segment disc degeneration (ASDD) is one of the negative sequelae of spinal fusion. Previous studies have shown that ALN can alleviate disc degeneration. However, no data have been documented regarding the effect of ALN on ASDD after posterolateral lumbar fusion (PLF) in osteoporosis. METHODS 50 female Sprague-Dawley rats underwent either a sham operation (sham) (n = 20) or bilateral ovariectomy (OVX) (n = 30). 4 weeks later, all but 10 rats from each group underwent PLF consisting of an intertransverse process spinal fusion using autologous-iliac-bone grafts with spinous-process wire fixation at the L4-L5 segment. Animals were subcutaneously administered vehicle (V) or ALN (70 μg/kg/wk) for 12 weeks post-PLF as follows: Sham+V, OVX+V, PLF+V, OVX+PLF+V, and OVX+PLF+ALN. Fusion status was analyzed by manual palpation and radiography. Adjacent-segment disc was assessed by histological, histomorphometric, immunohistochemical, and mRNA analysis. L6 vertebrae microstructures were evaluated by microcomputed tomography. RESULTS The fused segments showed clear evidence of fusion based on manual palpation and radiographs. The OVX+PLF+V group showed more severe degenerative alterations and higher histological scores in the disc than the Sham+V, OVX+V, and PLF+V groups (P < 0.05). Compared with the OVX+PLF+V group, the OVX+PLF+ALN group exhibited significantly improved bone mass and vertebrae microstructures (P < 0.05), an increased disc height, and a decreased endplate calcification area (P < 0.05). ALN also significantly decreased Col-I, MMP-13, and ADAMTS-4 expression and increased Col-II and Aggrecan expression in the disc matrix (P < 0.05). CONCLUSION ALN effectively alleviated ASDD post-PLF in ovariectomized rats. These data indicate that ALN can be used as a potential therapeutic agent to attenuate ASDD progression in osteoporosis.
Collapse
|
36
|
Abstract
STUDY DESIGN Animal experimental study. OBJECTIVE To establish a slowly progressive and reproducible intervertebral disc degeneration model and determine the performance of T1ρ magnetic resonance imaging in the evaluation of disc degeneration. SUMMARY OF BACKGROUND DATA Recently, one of the hotspots of research efforts was related to management of early stage of disc degeneration. To our knowledge, a functional animal model that mimics ischemic and slowly progressive disc degeneration of humans does not exist. METHODS The subchondral bone adjacent to the lumbar intervertebral discs (from L3-L4 to L6-L7) of 8 rhesus monkeys was randomly injected with 4 mL of Pingyangmycin (PYM) solution (1.5 mg/mL, PYM), or 4 mL of phosphate buffered saline (Vehicle control), or exteriorized but not injected anything (Sham), respectively. The degenerative process was investigated by using radiography and T1ρ magnetic resonance imaging at 1, 3, 6, 9, 12, and 15 months postoperatively. Histological scoring, immunohistochemistry, and real-time polymerase chain reaction were performed at 15 months. RESULTS The mean T1ρ values of nucleus pulposus and annulus fibrosus in the PYM group significantly decreased after 3 and 6 months, respectively, followed by slow decrease, and the histological score was significantly higher at 15 months, compared with the control groups. The results of molecular analysis revealed a significant increase matrix metalloprotease-3, A disintegrin and metalloproteinase with thrombospondin motifs -5, tumor necrosis factor α, interleukin-1β, interleukin-6 expressions, and marked reduction in aggrecan, type II collagen, von Willebrand factor expressions at the messenger RNA levels in the PYM group. Spearman correlation analysis of Pfirrmann grades showed significantly inverse correlation with T1ρ values of nucleus pulposus and annulus fibrosus (r = -0.634, -0.617, respectively, P < 0.01). CONCLUSION Injection of PYM into the subchondral bone adjacent to the lumbar intervertebral discs of rhesus monkeys can results in mild, slowly progressive disc degeneration, which mimics the onset of human disc degeneration, and the T1ρ magnetic resonance imaging is suited for evaluating intervertebral disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
37
|
Bedeutung von Östrogenen für Knorpelgewebe und Bandscheiben. GYNAKOLOGISCHE ENDOKRINOLOGIE 2015. [DOI: 10.1007/s10304-014-0645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Zhang YZ. The inhibitory effect of salmon calcitonin on intervertebral disc degeneration in an ovariectomized rat model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1691-701. [PMID: 25304649 DOI: 10.1007/s00586-014-3611-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Intervertebral disc degeneration related to postmenopausal osteoporosis is an important issue in spinal disorder research. This study aimed to investigate the effects of salmon calcitonin (sCT), as an antiresorptive medication, on lumbar intervertebral disc degeneration using a rat ovariectomy (OVX) model. METHODS Thirty 3-month-old female Sprague-Dawley rats were randomly divided into three groups: the sham-operated (Sham) group and two ovariectomized groups treated with vehicle (OVX+V) or sCT (OVX+CT; 16 IU/kg, sc) on alternate days for 6 months. Treatment began after OVX and continued for 6 months. At the end of the experiment, bone mineral density (BMD), micro-CT analysis, biomechanical testing, histology, and immunohistochemistry were performed for all groups. RESULTS Salmon calcitonin significantly maintained vertebrae BMD, percent bone volume, and biomechanical strength, when compared with the OVX+V group. The changes of mucoid degeneration in the nucleus pulposus and calcification in the middle cartilage endplate were more moderate in the OVX+CT group compared with the OVX+V group, and immunohistochemistry revealed a significant increase in aggrecan and type II collagen expressions, but marked reductions in matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 expressions in the OVX+CT group. CONCLUSIONS Salmon calcitonin treatment was effective in delaying the process of the disc degeneration in OVX rats. The underlying mechanisms may be related to preservation of structural integrity and function of vertebrae, and affecting extracellular matrix metabolism by modulating the expressions of MMPs, aggrecan and type II collagen to protect the disc from degeneration.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
39
|
Lou C, Chen HL, Feng XZ, Xiang GH, Zhu SP, Tian NF, Jin YL, Fang MQ, Wang C, Xu HZ. Menopause is associated with lumbar disc degeneration: a review of 4230 intervertebral discs. Climacteric 2014; 17:700-4. [DOI: 10.3109/13697137.2014.933409] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Ding Y, Jiang J, Zhou J, Wu X, Huang Z, Chen J, Zhu Q. The effects of osteoporosis and disc degeneration on vertebral cartilage endplate lesions in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1848-55. [PMID: 24806259 DOI: 10.1007/s00586-014-3324-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Evidence has shown that osteoporosis or intervertebral disc degeneration (IDD) led to cartilage endplate lesions (CEL), but their combined effects on the lesion remain unknown. This study developed an innovative rat model combined ovariectomy (OVX) and cervical muscle section (CMS), and aimed to evaluate the combined effects of osteoporosis and IDD on cartilage endplate lesions of cervical spine. METHODS Fifty-two Sprague-Dawley female rats were assigned randomly into four groups as follows: the sham group (n = 10) underwent sham surgery; the OVX group (n = 14) was subjected to bilateral ovariectomy; the CMS group (n = 14) had posterior paraspinal muscles cut from C2 to C7; the CMS-OVX group (n = 14) underwent the OVX and CMS surgeries consecutively. Samples of C6-C7 segments were harvested at 12, 18 and 24 weeks post-surgery. Micro-CT analysis was performed to evaluate the CEL, intervertebral disc height (IDH) and structural indices. Histological analysis with Safranine O/fast green stain and histological score were used to observe the characteristics of the degenerative discs. RESULTS Ovariectomy surgery resulted in significant changes of most structural indices of the C6 body, such as decrease of percent bone volume and number of bone trabecula at 12 weeks, and greater changes at 18 and 24 weeks. The CEL following CMS surgery was seen on the ventral, while the CEL in the OVX and sham groups on the peripheral. The CEL was greatest in the CMS-OVX group and significantly greater than that in the CMS and OVX groups at 12 and 18 weeks (P < 0.05). The CMS surgery resulted in significant IDH decrease at 12, 18 and 24 weeks (P < 0.05), while the OVX surgery resulted in mild IDH decrease when compared with the sham group. The IDH in the CMS-OVX group was significantly lower than that in the CMS group at 24 weeks (P < 0.05). Histological evaluation suggested cartilage endplate abrasion at 12 weeks, and in situ calcification at 18 and 24 weeks in the CMS and CMS-OVX groups. Disc degenerative scores were higher following CMS or OVX surgery, and correlated with the CEL and IDH (P < 0.01), respectively. CONCLUSIONS The present study suggested that a combination of OVX and CMS led to more lesion of cartilage endplate than any one thereof, as well as more decrease of IDH. The lesion and IDH decrease were associated with the disc degeneration levels. The cartilage endplate was worn out at the early stage and calcified in situ later. The results indicate that osteoporosis may deteriorate the disc degeneration at specific time.
Collapse
Affiliation(s)
- Yin Ding
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Song XX, Yu YJ, Li XF, Liu ZD, Yu BW, Guo Z. Estrogen receptor expression in lumbar intervertebral disc of the elderly: Gender- and degeneration degree-related variations. Joint Bone Spine 2014; 81:250-3. [DOI: 10.1016/j.jbspin.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022]
|
42
|
Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Su YL, Zhang YZ. Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats. Bone 2013; 55:439-48. [PMID: 23500174 DOI: 10.1016/j.bone.2013.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/24/2013] [Accepted: 03/05/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Increasing evidence has revealed a positive correlation between postmenopausal osteoporosis and intervertebral disc degeneration, the underlying mechanism of which might be associated with changes in the vertebral bone and endplate. Alendronate (ALN) can increase bone mass and improve the microstructure of osteoporotic vertebrae, which might be helpful in preserving disc morphology and mechanical properties. This study aims to investigate the effects of ALN on lumbar intervertebral disc degeneration related to osteoporosis using an ovariectomized (OVX) rat model. METHODS Thirty female Sprague-Dawley rats aged 3 months were randomly divided into three groups (with 10 rats each) as follows: the Sham group underwent sham surgery; the OVX + ALN group had twice-a-week subcutaneous injections of ALN (15 μg/kg) for 6 months. The OVX + V group received an equivalent volume of saline solution as placebo post-OVX. After animals were sacrificed at 6 months post-OVX, the L3-6 spinal segments were harvested. Bone mineral density (BMD), micro-CT analysis and biomechanical testing were performed to evaluate the bone quality and microstructural changes in the lumbar vertebral bodies. Histological analysis with van Gieson stain and the histological score were used to identify the characteristics of the degenerative discs. The disc height and the thickness of the cartilage endplate were measured and compared. Immunohistochemistry and real-time PCR measurements for aggrecan, type I collagen, type II collagen, and matrix metalloprotease (MMP)-1, MMP-3 and MMP-13 expressions on the disc were performed to assess the underlying molecular signaling changes in matrix metabolism during intervertebral disc degeneration. RESULTS The OVX + ALN group significantly maintained vertebrae BMD, percent bone volume and biomechanical strength, when compared with the OVX + V group. Histological evaluation suggests that there was no significant difference in disc height between the OVX + ALN and Sham groups, and ALN significantly prevented cartilage endplate thickening and the development of abnormal bony tissues within the cartilage endplate. The histological score in the OVX + ALN group was significantly lower than the OVX + V group, suggesting that ALN treatment was effective in delaying the process of the disc degeneration. The results of molecular analysis revealed a significant increase in aggrecan and type II collagen expressions, but marked reductions in MMP-1, MMP-3 and MMP-13 expressions at both the protein and mRNA levels in the OVX + ALN group. CONCLUSIONS ALN can retard the progression of lumbar intervertebral disc degeneration in OVX rats. The underlying mechanisms might be related to preservation of the structural integrity and function of the adjacent structures, including the vertebrae and endplates, which further links with modulations in extracellular matrix metabolism to protect the disc from degeneration. These results suggest that ALN might be a promising drug agent for preventing lumbar intervertebral disc degeneration related to osteoporosis.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Mattei TA. Osteoporosis delays intervertebral disc degeneration by increasing intradiscal diffusive transport of nutrients through both mechanical and vascular pathophysiological pathways. Med Hypotheses 2013; 80:582-6. [PMID: 23452642 DOI: 10.1016/j.mehy.2013.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/22/2013] [Accepted: 01/26/2013] [Indexed: 01/10/2023]
Abstract
Several studies have demonstrated an inverse correlation between osteoporosis and degenerative disc disease, so that patients with lower bone mass index, despite presenting greater risks of vertebral fractures, would paradoxically present delayed intervertebral disc degeneration. However the exact pathophysiological mechanisms underlying such phenomenon are not yet completely elucidated. In this article the author provides a general scheme to explain the causal relation between osteoporosis and delayed intervertebral disc degeneration by two main pathophysiological pathways: a vascular and a mechanical one. According to such model, osteoporosis positively affects disc nutrient diffusion through several mechanisms such as: increased endplate vascularization, decreased endplate resistance and decreased intradiscal strain. In the sequence a comprehensive review of the current literature on the issue is performed in order to provide a general overview about the current degree of evidence about the role of each factor postulated to be involved in such pathophysiological scheme. Finally the author provides overall directions for future research on the issue with special attention to the causal links which are supported by weak scientific evidence or by evidence from single studies.
Collapse
Affiliation(s)
- Tobias A Mattei
- Department of Neurosurgery, University of Illinois at Peoria, Peoria, IL 61603, USA.
| |
Collapse
|
44
|
Deng M, Griffith JF, Zhu XM, Poon WS, Ahuja AT, Wang YXJ. Effect of ovariectomy on contrast agent diffusion into lumbar intervertebral disc: a dynamic contrast-enhanced MRI study in female rats. Magn Reson Imaging 2012; 30:683-8. [DOI: 10.1016/j.mri.2012.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/14/2011] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
|
45
|
Wang YXJ, Kwok AWL, Griffith JF, Leung JCS, Ma HT, Ahuja AT, Leung PC. Relationship between hip bone mineral density and lumbar disc degeneration: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. J Magn Reson Imaging 2011; 33:916-20. [PMID: 21448958 DOI: 10.1002/jmri.22518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study the relationship between hip bone mineral density (BMD), lumbar disc degeneration, and lumbar disc space narrowing in elderly subjects. MATERIALS AND METHODS The study cohort comprised 196 females and 163 males (age range, 67-89 years) with no age difference between the two groups. Anteroposterior total hip areal BMD was measured with DXA and lumbar spine MRI was acquired using a 1.5 Tesla scanner. Lumbar disc degeneration was assessed using an eight-level grading system wherein each grade represents a stepwise progression from normal disc to severe disc degeneration and disc space narrowing. RESULTS After controlling for the age effect, no significant relationship was observed between total hip T-score status and severity of disc degeneration. There was no significant difference in total hip BMD in the subjects with or without the disc space narrowing (P < 0.05). Female subjects are more likely to have a narrowed disc space than males at all levels, and being statistically significant at L3/4 and L4/5 levels, and with an overall significance of P = 0.007. CONCLUSION There was no association observed between hip BMD and lumbar disc degeneration. Elderly females were more likely to have a narrowed lumbar disc space than elderly males.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Menopause causes vertebral endplate degeneration and decrease in nutrient diffusion to the intervertebral discs. Med Hypotheses 2011; 77:18-20. [DOI: 10.1016/j.mehy.2011.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/07/2011] [Indexed: 01/07/2023]
|
47
|
Wang YXJ, Griffith JF, Ma HT, Kwok AWL, Leung JCS, Yeung DKW, Ahuja AT, Leung PC. Relationship between gender, bone mineral density, and disc degeneration in the lumbar spine: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. Osteoporos Int 2011; 22:91-6. [PMID: 20352410 DOI: 10.1007/s00198-010-1200-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
Abstract
UNLABELLED The study cohort comprised 196 females and 163 males. Lumbar spine bone mineral density (BMD) and magnetic resonance imaging (MRI) were acquired. Females had more severe disc degeneration than males. Lumbar spine lower BMD was associated with less severe disc degeneration. Lumbar disc spaces were more likely to be narrower when vertebral BMD was higher. INTRODUCTION The purpose of this paper is to study the relationship between gender, BMD, and disc degeneration in the lumbar spine. METHODS The study cohort comprised 196 females and 163 males (age range 67-89 years) with no age difference between the two groups. Lumbar spine BMD was measured with dual X-ray densitometry, and MRI was acquired at 1.5 T. A subgroup of 48 males had additional lumbar vertebral quantitative computerized tomography densitometry. Lumbar disc degeneration was assessed using a MRI-based eight-level grading system. RESULTS Female subjects had more severe disc degeneration than male subjects. After removing age effect, a positive trend was observed between T-score and severity of lumbar disc degeneration. This was significant in female subjects while not significant in male subjects. Lumbar disc spaces were more likely to be narrowed when vertebral BMD was higher. These observations were more significant in the midlumbar region (L3/4 and L4/5) and less so at the thoracolumbar junction. CONCLUSION Female subjects tended to have slightly more severe lumbar disc degeneration than male subjects. Lower lumbar spine BMD was associated with less severe disc degeneration.
Collapse
Affiliation(s)
- Y-X J Wang
- Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang YXJ, Griffith JF. Effect of Menopause on Lumbar Disk Degeneration: Potential Etiology. Radiology 2010; 257:318-320. [DOI: 10.1148/radiol.10100775] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
49
|
Cake M, Melrose J. Intervertebral disc is an alternate tissue source of circulating C-telopeptide of type II collagen after menopause or ovariectomy: comment on the article by Sondergaard et al. ARTHRITIS AND RHEUMATISM 2008; 58:1560. [PMID: 18438826 DOI: 10.1002/art.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
50
|
Hoogendoorn RJ, Wuisman PI, Smit TH, Everts VE, Helder MN. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine (Phila Pa 1976) 2007; 32:1816-25. [PMID: 17762288 DOI: 10.1097/brs.0b013e31811ebac5] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In 2 studies, the injection of chondroitinase ABC into intervertebral discs of mature goats was evaluated as an experimental disc degeneration model. The first study analyzed the development of degeneration in time; the second study determined the optimal enzyme concentration. OBJECTIVES To develop reproducible, slowly progressive disc degeneration in a large animal model. SUMMARY OF BACKGROUND DATA Currently available, small animal models of intervertebral disc degeneration have shortcomings in the comparability to humans in terms of size, geometry, and cell population. Also, the methods to induce degeneration in the current models do not mimic human degeneration, which starts with the loss of proteoglycans. Injecting the enzyme chondroitinase ABC into the nucleus pulposus mimics the loss of proteoglycans. METHODS In Study 1, lumbar intervertebral discs of 17 goats were injected with chondroitinase ABC (0.25 U/mL) or phosphate-buffered saline. Degeneration was analyzed with radiograph analysis, MR imaging, and macroscopic and histologic scoring at 5 different time points (4, 8, 12, 18, and 26 weeks). Six control goats were analyzed. The second study used 6 goats in which 4 different concentrations of chondroitinase ABC (0.2-0.35 U/mL) or phosphate-buffered saline were injected. After 12 weeks, similar analyses as in Study 1 were performed. RESULTS After 12 weeks, degenerative signs were observed in all parameters in Study 1. The degeneration increased up to 18 weeks and leveled off after 26 weeks. The variability, however, was high. The second study showed a concentration dependent effect of chondroitinase ABC with all analyzed parameters. The injection of 0.25 U/mL chondroitinase ABC resulted in disc degeneration after 12 weeks without signs of severe degeneration. CONCLUSION Injection of chondroitinase ABC in the caprine intervertebral disc results in mild, slowly progressive disc degeneration. This effect was optimal at a concentration of 0.25 U/mL. This is a promising model of disc degeneration that deserves further study.
Collapse
Affiliation(s)
- Roel J Hoogendoorn
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|