1
|
Sertel Meyvaci S, Bamaç B, Duran B, Çolak T, Memişoğlu K. Effect of surgical and natural menopause on proximal femur morphometry in obese women. Ann Anat 2019; 227:151416. [PMID: 31541687 DOI: 10.1016/j.aanat.2019.151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The purpose of this study is to determine whether there are differences in proximal femur parameters of women subjected to menopause surgically or naturally. In this study, 10 parameters belonging to proximal femur of a total of 60 women cases of whom 30 had a mean age of 55.53 ± 4.57 years; body mass index, 33.06 ± 4.21 kg/m2; menopause age, 48.10 ± 5.92; and menopause years, 7.50 ± 4.58; and who were subjected to natural menopause; and 30 women whose mean age was 56.10 ± 6.87 years; body mass index, 33.33 ± 3.76 kg/m2; menopause age, 48.00 ± 4.64 years and menopause year, 8.10 ± 7.29; who were subjected to surgical menopause, and who did not use hormone replacement, were examined by radiography. Their anthropometric measurements, body compositions, blood hormone analyses (FSH, LH, estradiol, progesterone) and bone mineral densities (femur neck, femur total, lumbar t-score) were evaluated. It was found that there was no difference between surgical and natural menopause with respect to proximal femur parameters (p > 0.05). It was also found that FSH levels were high in the surgical menopause group and there were significant differences between the groups (p < 0.040). No significant difference was found even though bone mineral density t-score tests were lower in the surgical menopause group (p > 0.05). It was found that the difference in low bone mineral density level and high FSH values in the surgical menopause group do not have a relationship with proximal femur morphometry. It was determined that even though the women did not have ovaries, there was no difference between surgical menopause women and natural menopause women with respect to proximal femur morphometry.
Collapse
Affiliation(s)
- Seda Sertel Meyvaci
- Department of Anatomy, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Belgin Bamaç
- Department of Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Bülent Duran
- Gynecology and Obstetrics Clinic, Ada Tıp Hospitals, Sakarya, Turkey
| | - Tuncay Çolak
- Department of Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Kaya Memişoğlu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
2
|
Karasik D, Demissie S, Lu D, Broe KE, Boyd SK, Liu CT, Hsu YH, Bouxsein ML, Kiel DP. Bone Strength Estimated by Micro-Finite Element Analysis (µFEA) Is Heritable and Shares Genetic Predisposition With Areal BMD: The Framingham Study. J Bone Miner Res 2017; 32:2151-2156. [PMID: 28722129 PMCID: PMC5685872 DOI: 10.1002/jbmr.3200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 11/07/2022]
Abstract
Genetic factors contribute to the risk of bone fractures, partly because of effects on bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) estimates bone strength using micro-finite element analysis (µFEA). The goal of this study was to investigate if the bone failure load estimated by HR-pQCT-based µFEA is heritable and to what extent it shares genetic regulation with areal bone mineral density (aBMD). Bone microarchitecture was measured by HR-pQCT at the ultradistal tibia and ultradistal radius in adults from the Framingham Heart Study (n = 1087, mean age 72 years; 57% women). Radial and tibial failure load in compression were estimated by µFEA. Femoral neck (FN) and ultradistal forearm (UD) aBMD were measured by dual-energy X-ray absorptiometry (DXA). Heritability (h2 ) of failure load and aBMD and genetic correlations between them was estimated adjusting for covariates (age and sex). Failure load values at the non-weight-bearing ultradistal radius and at the weight-bearing ultradistal tibia were highly correlated (r = 0.906; p < 0.001). Estimates of h2 adjusted for covariates were 0.522 for the radius and 0.497 for the tibia. Additional adjustment for height did not impact on the h2 results, but adjustment for aBMD at the UD and FN somewhat decreased h2 point estimates: 0.222 and 0.380 for radius and tibia, respectively. In bivariate analysis, there was a high phenotypic and genetic correlation between covariate-adjusted failure load at the radius and UD aBMD (ρP = 0.826, ρG = 0.954, respectively), whereas environmental correlations were lower (ρE = 0.696), all highly significant (p < 0.001). Similar correlations were observed between tibial failure load and femoral neck aBMD (ρP = 0.577, ρG = 0.703, both p < 0.001; ρE = 0.432, p < 0.05). These data from adult members of families from a population-based cohort suggest that bone strength of distal extremities estimated by micro-finite element analysis is heritable and shares some genetic composition with areal BMD, regardless of the skeletal site. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Serkalem Demissie
- Biostatistics, Boston University School of Public Health, Boston, MA
| | - Darlene Lu
- Biostatistics, Boston University School of Public Health, Boston, MA
| | - Kerry E. Broe
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Steven K. Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of Harvard & MIT
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, MA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Broad Institute of Harvard & MIT
| |
Collapse
|
3
|
Atypical Femoral Shaft Fractures in Female Bisphosphonate Users Were Associated with an Increased Anterolateral Femoral Bow and a Thicker Lateral Cortex: A Case-Control Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5932496. [PMID: 28459066 PMCID: PMC5387805 DOI: 10.1155/2017/5932496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
Abstract
The purpose of our study was to investigate the radiographic characteristics of atypical femoral shaft fractures (AFSFs) in females with a particular focus on femoral bow and cortical thickness. We performed a fracture location-, age-, gender-, and ethnicity-matched case-control study. Forty-two AFSFs in 29 patients and 22 typical osteoporotic femoral shaft fractures in 22 patients were enrolled in AFSF group and control group, respectively. With comparing demographics between two groups, radiographically measured femoral bow and cortical thicknesses of AFSF group were compared with control group. All AFSF patients were females with a mean age of 74.4 years (range, 58–85 years). All had a history of bisphosphonate (BP) use with a mean duration of 7.3 years (range 1–17 years). Femoral bow of AFSF group was significantly higher than control group on both anteroposterior (AP) and lateral radiographs after age correction. Mean femoral bow on an AP radiograph was 12.39° ± 5.38° in AFSF group and 3.97 ± 3.62° in control group (P < 0.0001). Mean femoral bow on the lateral radiograph was 15.71° ± 5.62° in AFSF group and 10.72° ± 4.61° in control group (after age correction P = 0.003). And cortical thicknesses of AFSF group demonstrated marked disparity between tensile and compressive side of bowed femurs in this study. An adjusted lateral cortical thickness was 10.5 ± 1.4 mm in AFSF group and 8.1 ± 1.3 mm in control group (after age correction P < 0.0001) while medial cortical thickness of AFSF group was not statistically different from control group. Correlation analysis showed that the lateral femoral bow on the AP radiograph was solely related to lateral CTI (R = 0.378, P = 0.002). AFSFs in female BP users were associated with an increased anterolateral femoral bow and a thicker lateral cortex of femurs.
Collapse
|
4
|
Karasik D, Demissie S, Zhou Y, Lu D, Broe KE, Bouxsein ML, Cupples LA, Kiel DP. Heritability and Genetic Correlations for Bone Microarchitecture: The Framingham Study Families. J Bone Miner Res 2017; 32:106-114. [PMID: 27419666 PMCID: PMC5310688 DOI: 10.1002/jbmr.2915] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) measures bone microarchitecture and volumetric bone mineral density (vBMD), important risk factors for osteoporotic fractures. We estimated the heritability (h2 ) of bone microstructure indices and vBMD, measured by HR-pQCT, and genetic correlations (ρG ) among them and between them and regional aBMD measured by dual-energy X-ray absorptiometry (DXA), in adult relatives from the Framingham Heart Study. Cortical (Ct) and trabecular (Tb) traits were measured at the distal radius and tibia in up to 1047 participants, and ultradistal radius (UD) aBMD was obtained by DXA. Heritability estimates, adjusted for age, sex, and estrogenic status (in women), ranged from 19.3% (trabecular number) to 82.8% (p < 0.01, Ct.vBMD) in the radius and from 51.9% (trabecular thickness) to 98.3% (cortical cross-sectional area fraction) in the tibia. Additional adjustments for height, weight, and radial aBMD had no major effect on h2 estimates. In bivariate analyses, moderate to high genetic correlations were found between radial total vBMD and microarchitecture traits (ρG from 0.227 to 0.913), except for cortical porosity. At the tibia, a similar pattern of genetic correlations was observed (ρG from 0.274 to 0.948), except for cortical porosity. Environmental correlations between the microarchitecture traits were also substantial. There were high genetic correlations between UD aBMD and multivariable-adjusted total and trabecular vBMD at the radius (ρG = 0.811 and 0.917, respectively). In summary, in related men and women from a population-based cohort, cortical and trabecular microarchitecture and vBMD at the radius and tibia were heritable and shared some h2 with regional aBMD measured by DXA. These findings of high heritability of HR-pQCT traits, with a slight attenuation when adjusting for aBMD, supports further work to identify the specific variants underlying volumetric bone density and fine structure of long bones. Knowledge that some of these traits are genetically correlated can serve to reduce the number of traits for genetic association studies. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Serkalem Demissie
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanhua Zhou
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Darlene Lu
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kerry E Broe
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Framingham Heart Study, Framingham, MA, USA
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Connor E, Cowie JG, Wuestemann T, Howell JR, Whitehouse SL, Crawford RW. The use of a 3-dimensional computed tomography bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone. J Orthop Surg (Hong Kong) 2016; 24:312-316. [PMID: 28031497 DOI: 10.1177/1602400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To use a 3-dimensional computed tomography (CT) bone database to evaluate the risk of distal contact between the rasp tip and the endosteal cortical bone. METHODS Using a 3-dimensional CT bone database, the rasps for Exeter stems of 125 mm in length and body size 1, with a femoral offset of 37.5, 44, or 50 mm were compared with those for Exeter stems of 150 mm in length and same body size with the corresponding femoral offset. Rasp geometry was determined using an engineering drawing software. RESULTS Of the 631 femurs in the database, 238 (187 Caucasian and 51 Asian) were of appropriate femoral offset and proximal body size to receive a stem with an offset of 37.5, 44, or 50 mm. Of these, 145 (115 Caucasian and 30 Asian) femurs were of champagne-flute type; the prevalence was comparable between the 2 populations (61% vs. 59%, p=0.729). When using the 150-mm rasp, 70 (55 Caucasian and 15 Asian) of the 238 femurs had distal contact between the rasp and femoral cortex; the prevalence was comparable between the 2 populations (29% vs. 29%, relative risk=1.0, p=1.0). Distal contact between the rasp and femoral cortex occurred more commonly in champagne-flute-type femurs than other femurs in the anteroposterior plane (28% [41/145] vs. 2% [2/93], relative risk=13.1, p<0.001) and in the mediolateral plane (27% [39/145] vs. 14% [13/93], relative risk=1.92, p=0.019). When using the 125-mm rasp, only one femur (with a canal flare index of 4.52) had distal contact in the mediolateral plane with an offset of 37.5 mm. Distal contact between the rasp and femoral cortex occurred more often with the 150-mm rasp than the 125-mm rasp in both planes (p<0.001). CONCLUSION The use of a shorter stem may enhance anatomic fit in patients with a narrow femoral canal and prevent distal contact between the rasp and femoral cortex.
Collapse
Affiliation(s)
| | - Jonathan G Cowie
- Institute of Health and Biomedical Innovation, Queensland University of Technology, The Prince Charles Hospital, Chermside, Brisbane, Queensland, Australia
| | | | - Jonathan R Howell
- Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Sarah L Whitehouse
- Institute of Health and Biomedical Innovation, Queensland University of Technology, The Prince Charles Hospital, Chermside, Brisbane, Queensland, Australia
| | - Ross W Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, The Prince Charles Hospital, Chermside, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Kazemi SM, Qoreishy M, Keipourfard A, Sajjadi MM, Shokraneh S. Effects of Hip Geometry on Fracture Patterns of Proximal Femur. THE ARCHIVES OF BONE AND JOINT SURGERY 2016; 4:248-252. [PMID: 27517071 PMCID: PMC4969372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Some studies have previously shown that geometry of proximal femur can affect the probability of fracture and type of fracture. It happens since the geometry of the proximal femur determines how a force is applied to its different parts. In this study, we have compared proximal femur's geometric characteristics in femoral neck (FNF), intertrochanteric (ITF) and Subtrochanteric (STF) fractures. METHODS In this study, 60 patients who had hip fractures were studied as case studies. They were divided into FNF, ITF and STF groups based on their fracture types (20 patients in each group). Patients were studied with x-ray radiography and CT scans. Radiological parameters including femoral neck length from lateral cortex to center of femoral head (FNL), diameter of femoral head (FHD), diameter of femoral neck (FND), femoral head neck offset (FHNO), neck-shaft angle (alpha), femoral neck anteversion (beta) were measured and compared in all three groups. RESULTS Amount of FNL was significantly higher in STF group compared to FNF (0.011) while ITF and STF as well as FNT and ITF did not show a significant different. Also, FND in FNF group was significantly lower than the other two groups, i.e. ITF and STF. In other cases there were no instances of significant statistical difference. CONCLUSION Hip geometry can be used to identify individuals who are at the risk of fracture with special pattern. Also, it is important to have more studies in different populations and more in men.
Collapse
Affiliation(s)
| | - Mohamad Qoreishy
- Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Keipourfard
- Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahram Shokraneh
- Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Morin SN, Wall M, Belzile EL, Godbout B, Moser TP, Michou L, Ste-Marie LG, de Guise JA, Rahme E, Brown JP. Assessment of femur geometrical parameters using EOS™ imaging technology in patients with atypical femur fractures; preliminary results. Bone 2016; 83:184-189. [PMID: 26541215 DOI: 10.1016/j.bone.2015.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Atypical femur fractures (AFF) arise in the subtrochanteric and diaphyseal regions. Because of this unique distribution, we hypothesized that patients with AFF demonstrate specific geometrical variations of their lower limb whereby baseline tensile forces applied to the lateral cortex are higher and might favor the appearance of these rare stress fractures, when exposed to bisphosphonates. Using the low irradiation 2D-3D X-ray scanner EOS™ imaging technology we aimed to characterize and compare femur geometric parameters between women who sustained bisphosphonate-associated AFF and those who had experienced similar duration of exposure to bisphosphonates but did not sustain fractures. Conditional logistic regression models were constructed to estimate the association between selected geometric parameters and the occurrence of AFF. We identified 16 Caucasian women with AFF and recruited 16 ethnicity-, sex-, age-, height- and cumulative bisphosphonate exposure-matched controls from local osteoporosis clinics. Compared to controls, those with AFF had more lateral femur bowing (-3.2° SD [3.4] versus -0.8° SD [1.9] p=0.02). In regression analysis, lateral femur bowing was associated with the risk of AFF (aOR 1.54; 95% CI 1.04-2.28, p=0.03). Women who sustained a subtrochanteric AFF demonstrated a lesser femoral neck shaft angle (varus geometry) than those with a fracture at a diaphyseal site (121.9 [3.6]° versus 127.6 [7.2]°, p=0.07), whereas femur bowing was more prominent in those with a diaphyseal fracture compared to those with a subtrochanteric fracture (-4.3 [3.2]° versus -0.9 [2.7]°, p=0.07). Our analyses support that subjects with AFF exhibit femoral geometry parameters that result in higher tensile mechanical load on the lateral femur. This may play a critical role in the pathogenesis of AFF and requires further evaluation in a larger size population.
Collapse
Affiliation(s)
- Suzanne N Morin
- McGill University, Montreal, Canada; McGill University Health Center Research Institute, Montreal, Canada.
| | - Michelle Wall
- McGill University Health Center Research Institute, Montreal, Canada
| | - Etienne L Belzile
- Laval University, Quebec City, Canada; CHU de Québec Research Centre, Quebec City, Canada
| | - Benoit Godbout
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | - Thomas P Moser
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Montreal, Canada
| | - Laëtitia Michou
- Laval University, Quebec City, Canada; CHU de Québec Research Centre, Quebec City, Canada
| | - Louis-Georges Ste-Marie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Montreal, Canada
| | - Jacques A de Guise
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Montreal, Canada
| | - Elham Rahme
- McGill University, Montreal, Canada; McGill University Health Center Research Institute, Montreal, Canada
| | - Jacques P Brown
- Laval University, Quebec City, Canada; CHU de Québec Research Centre, Quebec City, Canada
| |
Collapse
|
8
|
Genetic regulation of bone strength: a review of animal model studies. BONEKEY REPORTS 2015; 4:714. [PMID: 26157577 DOI: 10.1038/bonekey.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Population- and family-based studies have established that fragility fracture risk is heritable; yet, the genome-wide association studies published to date have only accounted for a small fraction of the known variation for fracture risk of either the femur or the lumbar spine. Much work has been carried out using animal models toward finding genetic loci that are associated with bone strength. Studies using animal models overcome some of the issues associated with using patient data, but caution is needed when interpreting the results. In this review, we examine the types of tests that have been used for forward genetics mapping in animal models to identify loci and/or genes that regulate bone strength and discuss the limitations of these test methods. In addition, we present a summary of the quantitative trait loci that have been mapped for bone strength in mice, rats and chickens. The majority of these loci co-map with loci for bone size and/or geometry and thus likely dictate strength via modulating bone size. Differences in bone matrix composition have been demonstrated when comparing inbred strains of mice, and these matrix differences may be associated with differences in bone strength. However, additional work is needed to identify loci that act on bone strength at the materials level.
Collapse
|
9
|
Souto JC, Pena G, Ziyatdinov A, Buil A, López S, Fontcuberta J, Soria JM. A genomewide study of body mass index and its genetic correlation with thromboembolic risk. Results from the GAIT project. Thromb Haemost 2014; 112:1036-43. [PMID: 25118907 DOI: 10.1160/th14-03-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 11/05/2022]
Abstract
Thrombosis and obesity are complex epidemiologically associated diseases. The mechanism of this association is not yet understood. It was the objective of this study to identify genetic components of body mass index (BMI) and their possible role in the risk of thromboembolic disease. With the self-reported BMI of 397 individuals from 21 extended families enrolled in the GAIT (Genetic Analysis of Idiopathic Thrombophilia) Project, we estimated the heritability of BMI and the genetic correlation with the risk of thrombosis. Subjects were genotyped for an autosomal genome-wide scan with 363 highly-informative DNA markers. Univariate and bivariate multipoint linkage analyses were performed. The heritability for BMI was 0.31 (p=2.9×10⁻⁵). Thromboembolic disease (including venous and arterial) and BMI had a significant genetic correlation (ρG=0.54, p=0.005). Two linkage signals for BMI were obtained, one at 13q34 (LOD=3.36, p=0.0004) and other at 2q34, highly suggestive of linkage (LOD=1.95). Bivariate linkage analysis with BMI and thrombosis risk also showed a significant signal at 13q34 (LOD=3), indicating that this locus influences at the same time normal variation in the BMI phenotype as well as susceptibility to thrombosis. In conclusion, BMI and thrombosis are genetically correlated. The locus 13q34, which showed pleiotropy with both phenotypes, contains two candidate genes, which may explain our linkage pleiotropic signal and deserve further investigation as possible risk factors for obesity and thrombosis.
Collapse
Affiliation(s)
- Juan Carlos Souto
- Juan Carlos Souto, MD, PhD, Unitat d'Hemostàsia i Trombosi, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025, Barcelona, Spain, Tel.: +34 93 5537151, Fax: +34 93 5537153, E-mail:
| | | | | | | | | | | | | |
Collapse
|
10
|
Duren DL, Blangero J, Sherwood RJ, Seselj M, Dyer T, Cole SA, Lee M, Choh AC, Chumlea WC, Siervogel RM, Czerwinski SA, Towne B. Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children. Bone 2011; 49:1213-8. [PMID: 21907839 PMCID: PMC3221785 DOI: 10.1016/j.bone.2011.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/15/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Genes play an important role in lifelong skeletal health. Genes that influence bone building during childhood have the potential to affect bone health not only throughout childhood but also into adulthood. Given that peak bone mass is a significant predictor of adult fracture risk, it is imperative that the genetic underpinnings of the normal pediatric skeleton are uncovered. In a sample of 600 10-year-old children from 144 families in the Fels Longitudinal Study, we examined radiographic cortical bone measures of the second metacarpal. Morphometic measurements included bone width, medial and lateral cortical thicknesses, and the calculated cortical index representing the amount of cortex relative to bone width. We then conducted genome-wide linkage analysis on these traits in 440 genotyped individuals using the SOLAR analytic platform. Significant quantitative trait loci (QTL) were identified for bone traits on three separate chromosomes. A QTL for medial cortical thickness was localized to chromosome 2p25.2. A QTL for lateral cortical thickness was localized to chromosomal region 3p26.1-3p25.3. Finally, a QTL detected for cortical index was localized to the 17q21.2 chromosomal region. Each region contains plausible candidate genes for pediatric skeletal health, some of which confirm findings from studies of adulthood bone, and for others represent novel candidate genes for skeletal health.
Collapse
Affiliation(s)
- Dana L Duren
- Department of Community Health, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Advances in diagnostic and treatment regimens that aim to reduce fracture incidence will benefit from a better understanding of how bone morphology and tissue quality define whole-bone mechanical properties. QUESTIONS/PURPOSES The goal of this article was to review what is known about the interactions among morphologic and tissue quality traits and how these interactions contribute to bone quality (ie, whole-bone mechanical function). Several questions were addressed. First, how do interactions among morphology and tissue quality traits relate to functional adaptation? Second, what are the emergent patterns of functionally adapted trait sets in long bones? Third, how effective is phenotypic integration at establishing function across a population? Fourth, what are the emergent patterns of functionally adapted trait sets in corticocancellous structures? Fifth, how do functional interactions change with aging? METHODS A literature review was conducted with papers identified primarily through citations listed in reference sections as well as general searches using Google Scholar and PubMed. RESULTS The interactions among adult traits or phenotypic integration are an emergent property of the compensatory mechanisms complex systems used to establish function or homeostasis. Traits are not regulated independently but vary simultaneously (ie, covary) in specific ways to establish function. This covariation results in individuals acquiring unique sets of traits to establish bone quality. CONCLUSIONS AND CLINICAL RELEVANCE Biologic constraints imposed on the skeletal system result in a population showing a pattern of trait sets that is predictable based on external bone size and that can be used to identify individuals with reduced bone quality relative to their bone size and body size.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, Box 1188, One Gustave Levy Place, New York, NY 10029, USA.
| |
Collapse
|
12
|
Karasik D. How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging. AGE (DORDRECHT, NETHERLANDS) 2011; 33:49-62. [PMID: 20596786 PMCID: PMC3063644 DOI: 10.1007/s11357-010-9159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/14/2010] [Indexed: 04/16/2023]
Abstract
Genetic study can provide insight into the biologic mechanisms underlying inter-individual differences in susceptibility to (or resistance to) organisms' aging. Recent advances in molecular genetics and genetic epidemiology provide the necessary tools to perform a study of the genetic sources of biological aging. However, to be successful, the genetic study of a complex condition requires a heritable phenotype to be developed and validated. Genome-wide association studies offer an unbiased approach to identify new candidate genes for human diseases. It is hypothesized that convergent results from multiple aging-related traits will point out the genes responsible for the general aging of the organism. This perspective focuses on the musculoskeletal aging as an example of an approach to identify a downstream common pathway that summarizes aging processes. Since the musculoskeletal traits are linked to the state of many vital functions, disability, and ultimately survival rates, we postulate that there is significance in studying musculoskeletal aging. Construction of an integrated phenotype of aging can be achieved based on shared genetics among multiple musculoskeletal biomarkers. Valid biomarkers from other systems of the organism should be similarly explored. The new composite aging score needs to be validated by determining whether it predicts all-cause mortality, incidences of major chronic diseases, and disability late in life. Comprehensive databases on biomarkers of musculoskeletal aging in multiple large cohort studies, along with information on various health outcomes, are needed to validate the proposed measure of biological aging.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre Street, Boston, MA 02131, USA.
| |
Collapse
|
13
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jepsen KJ, Courtland HW, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res 2010; 25:1581-93. [PMID: 20200957 PMCID: PMC3154000 DOI: 10.1002/jbmr.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/26/2009] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
15
|
Yang F, Tang Z, Deng H. Bivariate association analysis for quantitative traits using generalized estimation equation. J Genet Genomics 2010; 36:733-43. [PMID: 20129400 DOI: 10.1016/s1673-8527(08)60166-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 02/04/2023]
Abstract
Quantitative traits often underlie risk for complex diseases. Many studies collect multiple correlated quantitative phenotypes and perform univariate analyses on each of them respectively. However, this strategy may not be powerful and has limitations to detect pleiotropic genes that may underlie correlated quantitative traits. In addition, testing multiple traits individually will exacerbate perplexing problem of multiple testing. In this study, generalized estimating equation 2 (GEE2) is applied to association mapping of two correlated quantitative traits. We suppose that a quantitative trait locus is located in a chromosome region that exerts pleiotropic effects on multiple quantitative traits. In that region, multiple SNPs are genotyped. Genotypes of these SNPs and the two quantitative traits affected by a causal SNP were simulated under various parameter values: residual correlation coefficient between two traits, causal SNP heritability, minor allele frequency of the causal SNP, extent of linkage disequilibrium with the causal SNP, and the test sample size. By power analytical analyses, it is showed that the bivariate method is generally more powerful than the univariate method. This method is robust and yields false-positive rates close to the pre-set nominal significance level. Our real data analyses attested to the usefulness of the method.
Collapse
Affiliation(s)
- Fang Yang
- Hunan Normal University, Changsha, China
| | | | | |
Collapse
|
16
|
Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol 2010; 23:741-53. [PMID: 19945686 DOI: 10.1016/j.berh.2009.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a bone to resist fracture depends on the amount of bone present, the spatial distribution of the bone mass as cortical and trabecular bone and the intrinsic properties of the bone material. Whereas low areal bone mineral density (aBMD) predicts fractures, its sensitivity and specificity is low, as over 50% of fractures occur in persons without osteoporosis by BMD testing and most women with osteoporosis do not sustain a fracture. New non-invasive imaging techniques, including three-dimensional (3D) assessments of bone density and geometry, microarchitecture and integrated measurements of bone strength such as finite element analysis (FEA), provide estimates of bone strength that can be used to increase the sensitivity and specificity of fracture risk assessment. Initial observations have shown that these techniques provide information that will improve our understanding of the pathophysiology of skeletal fragility and suggest that these techniques are likely to have a role in the clinical management of individuals at risk for fracture.
Collapse
Affiliation(s)
- Mary L Bouxsein
- Orthopaedic Surgery, Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Department of Orthopaedic Surgery, Harvard Medical School, RN115, 330 Brookline Ave, Boston, MA 02215, USA.
| | | |
Collapse
|
17
|
Interindividual variation in functionally adapted trait sets is established during postnatal growth and predictable based on bone robustness. J Bone Miner Res 2009; 24:1969-80. [PMID: 20001599 PMCID: PMC2791514 DOI: 10.1359/jbmr.090525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adults acquire unique sets of morphological and tissue-quality bone traits that are predictable based on robustness and deterministic of strength and fragility. How and when individual trait sets arise during growth has not been established. Longitudinal structural changes of the metacarpal diaphysis were measured for boys and girls from 3 mo to 8 yr of age using hand radiographs obtained from the Bolton-Brush collection. Robustness varied approximately 2-fold among boys and girls, and individual values were established by 2 yr of age, indicating that genetic and environmental factors controlling the relationship between growth in width and growth in length were established early during postnatal growth. Significant negative correlations between robustness and relative cortical area and a significant positive correlation between robustness and a novel measure capturing the efficiency of growth indicated that coordination of the subperiosteal and endocortical surfaces was responsible for this population acquiring a narrow range of trait sets that was predictable based on robustness. Boys and girls with robust diaphyses had proportionally thinner cortices to minimize mass, whereas children with slender diaphyses had proportionally thicker cortices to maximize stiffness. Girls had more slender metacarpals with proportionally thicker cortices compared with boys at all prepubertal ages. Although postnatal growth patterns varied in fundamentally different ways with sex and robustness, the dependence of trait sets on robustness indicated that children sustained variants affecting subperiosteal growth because they shared a common biological factor regulating functional adaptation. Considering the natural variation in acquired trait sets may help identify determinants of fracture risk, because age-related bone loss and gain will affect slender and robust structures differently.
Collapse
|
18
|
Jepsen KJ. Systems analysis of bone. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:73-88. [PMID: 20046860 PMCID: PMC2790199 DOI: 10.1002/wsbm.15] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genetic variants contributing to variability in skeletal traits has been well studied, and several hundred QTLs have been mapped and several genes contributing to trait variation have been identified. However, many questions remain unanswered. In particular, it is unclear whether variation in a single gene leads to alterations in function. Bone is a highly adaptive system and genetic variants affecting one trait are often accompanied by compensatory changes in other traits. The functional interactions among traits, which is known as phenotypic integration, has been observed in many biological systems, including bone. Phenotypic integration is a property of bone that is critically important for establishing a mechanically functional structure that is capable of supporting the forces imparted during daily activities. In this paper, bone is reviewed as a system and primarily in the context of functionality. A better understanding of the system properties of bone will lead to novel targets for future genetic analyses and the identification of genes that are directly responsible for regulating bone strength. This systems analysis has the added benefit of leaving a trail of valuable information about how the skeletal system works. This information will provide novel approaches to assessing skeletal health during growth and aging and for developing novel treatment strategies to reduce the morbidity and mortality associated with fragility fractures.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
19
|
Abstract
The risk of osteoporotic fracture is a function of both applied muscle mass and bone tissue distribution. Leg lean mass (LLM) and femoral bone geometry are both known to have substantial genetic components. Therefore, we estimated shared heritability (h(2)) and performed linkage analysis to identify chromosomal regions governing both LLM and bone geometry. A genome-wide scan (using 636 microsatellite markers) for linkage analyses was performed on 1346 adults from 327 extended families of the Framingham study. DXA measures were LLM, femoral neck length, neck-shaft angle (NSA), subperiosteal width, cross-sectional area (CSA), and section modulus (Z) at the femoral narrow neck and shaft (S) regions. Variance component linkage analysis was performed on normalized residuals (adjusted for age, height, BMI, and estrogen status in women). The results indicated substantial h(2) for LLM (0.42 +/- 0.07) that was comparable to bone geometry traits. Phenotypic correlations between LLM and bone geometry phenotypes ranged from 0.033 with NSA (p > 0.05) to 0.251 with S_Z (p < 0.001); genetic correlations ranged from 0.087 (NSA, p > 0.05) to 0.454 (S_Z, p < 0.001). Univariate linkage analysis of covariate-adjusted LLM identified no chromosomal regions with LOD scores >or=2.0; however, bivariate analysis identified two loci with LOD scores >3.0, shared by LLM with S_CSA on chromosome 12p12.3-12p13.2, and with NSA, on 14q21.3-22.1. In conclusion, we identified chromosomal regions potentially linked to both LLM and femoral bone geometry. Identification and subsequent characterization of these shared loci may further elucidate the genetic contributions to both osteoporosis and sarcopenia.
Collapse
|
20
|
Karasik D, Shimabuku NA, Zhou Y, Zhang Y, Cupples LA, Kiel DP, Demissie S. A genome wide linkage scan of metacarpal size and geometry in the Framingham Study. Am J Hum Biol 2009; 20:663-70. [PMID: 18449921 DOI: 10.1002/ajhb.20791] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone geometry is a significant component of bone strength, and has a clinical utility in predicting fractures and quantifying bone loss. Bone geometry is known to have a substantial genetic component. We performed linkage analysis to identify chromosomal regions governing metacarpal bone geometry. A genome-wide scan (with a set of 615 markers with spacing of approximately 5.7 cM) was performed on 1,702 individuals from 330 extended families of the Framingham Study. Midshaft width was measured and several indices calculated, namely Metacarpal Cortical Thickness (MCT), Cortical Index (MCI), and Section Modulus (MZ), using digitized X-rays of 1,380 participants (men, n = 666, mean age 55.2 yr, women, n = 714, 55.5 yr). Metacarpals 2, 3, and 4 were averaged. Heritability was significant for all indices, ranging from 0.51 to 0.72. Linkage analysis of indices adjusted for age, age(2), and estrogen status in women, identified chromosomal regions 6p21, 9p21, 11q21-q22, and Xq26-Xq27, with LOD scores >2.0. Additional adjustment for smoking, height, and BMI, generally reduced the LOD scores. Finally, bivariate linkage analysis confirmed that a QTL on chr. 6 (51 cM) was shared by midshaft width and MZ (LOD = 2.40, adjusted for all covariates). Neither MCT nor MCI shared linkage loci with width or MZ. In conclusion, we have identified chromosomal regions potentially linked to bone geometry. Genes in these regions may regulate bone geometry via effects on body size. Identification and subsequent characterization of loci for bone geometry can further elucidate the genetic contributions to bone's resistance to stress.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts 02131, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gregory JS, Aspden RM. Femoral geometry as a risk factor for osteoporotic hip fracture in men and women. Med Eng Phys 2008; 30:1275-86. [PMID: 18976949 DOI: 10.1016/j.medengphy.2008.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Osteoporotic hip fracture is associated with high mortality and morbidity and often results in a loss of mobility and independence. Osteoporosis is diagnosed by measuring Bone Mineral Density (BMD), a measure of the amount of mineral in a bone. Although BMD continues to serve well it does not fully account for bone strength and only partially accounts for the risk of hip fracture. The shape and structure of the proximal femur also help to determine how forces act in the hip in a fall and their measurement can aid the prediction of hip fracture. This review examines the link between simple geometrical measures of the proximal femur and hip fracture, or bone strength. It will explore how they relate to each other and to anthropometric factors such as sex, height, weight and age. Limitations in these measures will be identified and new methods of analysis reviewed that encompass many different aspects of the shape of the femur. These new methods show great promise for improving the prediction of fracture risk in the future.
Collapse
Affiliation(s)
- Jennifer S Gregory
- Bone and Musculoskeletal Programme, Division of Applied Medicine, University of Aberdeen, UK.
| | | |
Collapse
|
22
|
Streeten EA, Beck TJ, O'Connell JR, Rampersand E, McBride DJ, Takala SL, Pollin TI, Uusi-Rasi K, Mitchell BD, Shuldiner AR. Autosome-wide linkage analysis of hip structural phenotypes in the Old Order Amish. Bone 2008; 43:607-12. [PMID: 18555766 PMCID: PMC2591020 DOI: 10.1016/j.bone.2008.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/28/2008] [Accepted: 04/12/2008] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Fracture risk is associated with bone mineral density (BMD) and with other indices of bone strength, including hip geometry. While the heritability and associated fracture risk of BMD are well described, less is known about genetic influences of bone geometry. We derived hip structural phenotypes using the Hip Structural Analysis program (HSA) and performed autosome-wide linkage analysis of hip geometric structural phenotypes. MATERIALS AND METHODS The Amish Family Osteoporosis Study was designed to identify genes affecting bone health. BMD was measured at the hip using dual X-ray absorptiometry (DXA) in 879 participants (mean age+/-SD=49.8+/-16.1 years, range 18-91 years) from large multigenerational families. From DXA scans, we computed structural measures of hip geometry at the femoral neck (NN) and shaft (S) by HSA, including cross-sectional area (CSA), endocortical or inner diameter (ID), outer diameter (OD) buckling ratio (BR) and section modulus (Z). Genotyping of 731 highly polymorphic microsatellite markers (average spacing of 5.4 cM) and autosome-wide multipoint linkage analysis was performed. RESULTS The heritability of HSA-derived hip phenotypes ranged from 40 to 84%. In the group as a whole, autosome-wide linkage analysis suggested evidence of linkage for QTLs related to NN_Z on chromosome 1p36 (LOD=2.36). In subgroup analysis, ten additional suggestive regions of linkage were found on chromosomes 1, 2, 5, 6, 11, 12, 14, 15 and 17, all with LOD>2.3 except for our linkage at 17q11.2-13 for men and women age 50 and under for NN_CSA, which had a lower LOD of 2.16, but confirmed a previous linkage report. CONCLUSIONS We found HSA-derived measures of hip structure to be highly heritable independent of BMD. No strong evidence of linkage was found for any phenotype. Confirmatory evidence of linkage was found on chromosome 17q11.2-12 for NN_CSA. Modest evidence was found for genes affecting hip structural phenotypes at ten other chromosomal locations.
Collapse
Affiliation(s)
- E A Streeten
- University of Maryland School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|