1
|
In Situ Gene Expression in Native Cryofixed Bone Tissue. Biomedicines 2022; 10:biomedicines10020484. [PMID: 35203694 PMCID: PMC8962289 DOI: 10.3390/biomedicines10020484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Bone is a very complex tissue that is constantly changing throughout the lifespan. The precise mechanism of bone regeneration remains poorly understood. Large bone defects can be caused by gunshot injury, trauma, accidents, congenital anomalies and tissue resection due to cancer. Therefore, understanding bone homeostasis and regeneration has considerable clinical and scientific importance in the development of bone therapy. Macrophages are well known innate immune cells secreting different combinations of cytokines and their role in bone regeneration during bone healing is essential. Here, we present a method to identify mRNA transcripts in cryosections of non-decalcified rat bone using in situ hybridization and hybridization chain reaction to explore gene expression in situ for better understanding the gene expression of the bone tissues.
Collapse
|
2
|
Abstract
Cartilage and bone are specialized skeletal tissues composed of unique extracellular matrices. Bone, in particular, has a highly calcified or mineralized matrix that makes microtomy and standard histological studies very challenging. Therefore, methods to appropriately fix and decalcify mineralized skeletal tissues have been developed to allow for paraffin processing and standard microtomy. In this chapter, we will illustrate methods for tissue grossing, fixation, decalcification, paraffin processing, embedding, sectioning, and routine histological staining of demineralized murine skeletal tissues. We will also discuss methods for decalcified frozen sectioning of skeletal tissues with and without the use of a tape-transfer system.
Collapse
Affiliation(s)
- Anthony J Mirando
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke Cellular, Developmental, and Genome Laboratories, Durham, NC, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery and Cell Biology, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
3
|
Yang Y, Liu Q, Zhang L, Fu X, Chen J, Hong D. A modified tape transfer approach for rapidly preparing high-quality cryosections of undecalcified adult rodent bones. J Orthop Translat 2020; 26:92-100. [PMID: 33437628 PMCID: PMC7773961 DOI: 10.1016/j.jot.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Background/Objective Histology-based analyses are important tools to dissect cellular and molecular mechanisms of skeletal homeostasis, diseases, and regeneration. The success of these efforts is highly dependent on rapidly obtaining high-quality sections of mineralized skeletal tissues suitable for various analyses. However, the current techniques for preparing such sections are still far from satisfactory. This study aimed to develop a new approach for preparing high-quality undecalcified bone sections applicable to various histological analyses. Methods Two important modifications were made to the conventional Cryojane Tape-Transfer System, including utilization of an optimized adhesive to prepare adhesive glass slides for improving the transfer efficiency, and a cheap conventional benchtop UV transilluminator for UV curing. Cryosections of undecalcified rodent bones were prepared using this modified tape transfer approach, and their tissue morphology and structural integrity were visually examined. A variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as 5-Ethynyl-2’-deoxyuridine (EdU) and TUNEL assays, were performed on these sections. Results We developed a modified version of tape transfer approach that can prepare cryosections of undecalcified rodent adult bones within 4 days at a low cost. Bone sections prepared by this approach exhibited good tissue morphology and structural integrity. Moreover, these sections were applicable to a variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as EdU and TUNEL assays. Conclusion The tape transfer approach we developed provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections valuable for bone research. The translational potential of this article Our research provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections that can be potentially used for accurate diagnosis of various bone disorders and evaluation of the efficacy of different therapies in the treatment of these diseases.
Collapse
Affiliation(s)
- Yanjun Yang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingbai Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, Lianshui County People's Hospital, Huaian, Jiangsu, China
| | - Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuejie Fu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
4
|
Pinskiy V, Jones J, Tolpygo AS, Franciotti N, Weber K, Mitra PP. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique. PLoS One 2015; 10:e0102363. [PMID: 26181725 PMCID: PMC4504703 DOI: 10.1371/journal.pone.0102363] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey.
Collapse
Affiliation(s)
- Vadim Pinskiy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Department of Biomedical Engineering at Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| | - Jamie Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Alexander S. Tolpygo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Neil Franciotti
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Kevin Weber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
5
|
Abstract
Cartilage and bone are specialized skeletal tissues composed of unique extracellular matrices. Bone, in particular, has a highly calcified or mineralized matrix that makes microtomy and standard histological studies very challenging. Therefore, methods to appropriately fix and decalcify mineralized skeletal tissues have been developed to allow for paraffin processing and standard microtomy. In this chapter, we illustrate methods for tissue grossing, fixation, decalcification, paraffin processing, embedding, sectioning, and routine histological staining of demineralized murine skeletal tissues. We also discuss methods for decalcified frozen sectioning of skeletal tissues with and without the use of a tape-transfer system.
Collapse
Affiliation(s)
- Sarah A Mack
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
6
|
Pinskiy V, Tolpygo AS, Jones J, Weber K, Franciotti N, Mitra PP. A low-cost technique to cryo-protect and freeze rodent brains, precisely aligned to stereotaxic coordinates for whole-brain cryosectioning. J Neurosci Methods 2013; 218:206-13. [PMID: 23541995 DOI: 10.1016/j.jneumeth.2013.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
Abstract
A major challenge in the histological sectioning of brain tissue is achieving accurate alignment in the standard coronal, horizontal, or sagittal planes. Correct alignment is desirable for ease of subsequent analysis and is a prerequisite for computational registration and algorithm-based quantification of experimental data. We have developed a simple and low-cost technique for whole-brain cryosectioning of rodent brains that reliably results in a precise alignment of stereotactic coordinates. The system utilises a 3-D printed model of a mouse brain to create a tailored cavity that is used to align and support the brain during freezing. The alignment of the frozen block is achieved in relation to the fixed edge of the mold. The system also allows for two brains to be frozen and sectioned simultaneously. System components, procedural steps, and examples of the end results are presented.
Collapse
Affiliation(s)
- Vadim Pinskiy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Mödder UI, Rudnik V, Liu G, Khosla S, Monroe DG. A DNA binding mutation in estrogen receptor-α leads to suppression of Wnt signaling via β-catenin destabilization in osteoblasts. J Cell Biochem 2012; 113:2248-55. [PMID: 22573547 DOI: 10.1002/jcb.24095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Estrogen receptors (ERs) play vital roles in the function and remodeling of bone. Their cellular mechanisms can broadly be categorized into those involving direct DNA binding (classical) or indirect DNA binding (non-classical). The generation of non-classical ER knock-in (ERα(-/NERKI) ) mice provides a unique opportunity to define these pathways in bone. We previously demonstrated that ERα(-/NERKI) mice exhibit an osteoporotic phenotype; however, the mechanism(s) for this remain unresolved. Gene expression analyses of cortical bone from ERα(-/NERKI) mice revealed suppression of lymphoid enhancer factor-1 (Lef1), a classic Wnt-responsive transcription factor that associates with β-catenin. Since Wnt signaling is generally considered bone anabolic, this observation leads to the hypothesis that NERKI-induced suppression of Wnt signaling may contribute to the low bone mass phenotype. We generated ERα(-/NERKI) mice crossed with the Wnt-responsive TOPGAL transgenic mouse model and observed significantly less β-galactosidase activity in ERα(-/NERKI) mice, confirming suppression of Wnt activity in vivo. Adenoviral expression of the NERKI receptor using an in vitro cell system resulted in the induction of several secreted antagonists of Wnt signaling. Furthermore, expression of NERKI abrogated Wnt10b-dependent Wnt activation using a lentiviral-mediated reporter assay. Finally, expression of NERKI destabilized β-catenin cellular protein levels and disrupted ER/β-catenin interactions. Collectively, these data suggest the osteoporotic phenotype of ERα(-/NERKI) mice may involve the suppression of Lef1-mediated Wnt signaling through both the stimulation of secreted Wnt inhibitors and/or disruption of normal β-catenin function.
Collapse
Affiliation(s)
- Ulrike I Mödder
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
8
|
Ushiku C, Adams DJ, Jiang X, Wang L, Rowe DW. Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J Orthop Res 2010; 28:1338-47. [PMID: 20839319 DOI: 10.1002/jor.21105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GFP reporter mice previously developed to assess levels of osteoblast differentiation were employed in a tibial long bone fracture model using a histological method that preserves fluorescent signals in non-decalcified sections of bone. Two reporters, based on Col1A1 (Col3.6GFPcyan) and osteocalcin (OcGFPtpz) promoter fragments, were bred into the same mice to reflect an early and late stage of osteoblast differentiation. Three observations were apparent from this examination. First, the osteoprogenitor cells that arise from the flanking periosteum proliferate and progress to fill the fracture zone. These cells differentiate to osteoblasts, chondrocytes, to from the outer cortical shell. Second, the hypertrophic chondrocytes are dispersed and the cartilage matrix mineralized by the advancing Col3.6+ osteoblasts. The endochondral matrix is removed by the following osteoclasts. Third, a new cortical shell develops over the cartilage core and undergoes a remodeling process of bone formation on the inner surface and resorption on the outer surface. The original fractured cortex undergoes resorption as the outer cortical shell remodels inward to become the new diaphyseal bone. The fluorescent microscopy and GFP reporter mice used in this study provide a powerful tool for appreciating the molecular and cellular processes that control these fundamental steps in fracture repair, and may provide a basis for understanding fracture nonunion.
Collapse
Affiliation(s)
- Chikara Ushiku
- Department of Orthopedic Surgery, New England Musculoskeletal Institute, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | |
Collapse
|
9
|
Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 2010; 46:680-94. [PMID: 19857617 DOI: 10.1016/j.bone.2009.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/09/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/pathology
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cells, Cultured
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Female
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Hypertrophy
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Osteoblasts/pathology
- Osteoclasts/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Rishard Salie
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Begum F, Zhu W, Namaka MP, Frost EE. A novel decalcification method for adult rodent bone for histological analysis of peripheral-central nervous system connections. J Neurosci Methods 2009; 187:59-66. [PMID: 20043948 DOI: 10.1016/j.jneumeth.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/01/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
Histological analysis of bone encased tissue is severely hampered by technical difficulties associated with sectioning calcified tissue. Cryosectioning of bone is possible but requires significant technical adaptation and expensive materials and is often time-consuming. Some decalcifying reagents in common use result in successful cryosectioning in less time but the integrity of the soft tissue of the spinal column is often compromised during processing. This can result in significant loss of cellular detail. In order to find a method that would allow cryosectioning of the bone without loss of structural integrity of the underlying soft tissue we assessed the efficacy of four different decalcifying reagents with respect to their effects on the cellular structure of the myelin of the grey and white matter of the spinal cord. The antigenic integrity of the spinal cord white matter was evaluated using tissue structural integrity and quality of myelin basic protein immunostaining. The result of this research shows that 6% TCA not only decalcifies intact spinal column suitably for cryosectioning but does so without compromising the antigenic integrity of the tissue. The ease of application, speed of processing and a favorable cost-effective profile were secondary benefits noted with the use of the 6% TCA decalcifying solution. The ability to utilize a decalcifying solution that allows for both histomorphometry and immunohistochemistry in the same spinal column segment represents a novel technique that will provide new insights into pathophysiological aspects and therapeutic approaches ispinal cord damage or disease.
Collapse
Affiliation(s)
- Farhana Begum
- Faculty of Pharmacy, University of Manitoba, Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|