1
|
Verleyen M, He Y, Burssens A, Silva MS, Callewaert B, Audenaert E. A systematic review and cross-database analysis of single nucleotide polymorphisms underlying hip morphology and osteoarthritis reveals shared mechanisms. Osteoarthritis Cartilage 2024; 32:872-885. [PMID: 38852879 DOI: 10.1016/j.joca.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Understanding the mechanisms of hip disease, such as osteoarthritis (OA), is crucial to advance their treatment. Such hip diseases often involve specific morphological changes. Genetic variations, called single nucleotide polymorphisms (SNPs), influence various hip morphological parameters. This study investigated the biological relevance of SNPs correlated to hip morphology in genome-wide association studies (GWAS). The SNP-associated genes were compared to genes associated with OA in other joints, aiming to see if the same genes play a role in both hip development and the risk of OA in other lower limb joints. METHODOLOGY A systematic literature review was conducted to identify SNPs correlated with hip morphology, based on the Population, Intervention, Comparison, Outcome, and Study (PICOS) framework. Afterwards, Gene Ontology (GO) analysis was performed, using EnrichR, on the SNP-associated genes and compared with non-hip OA-associated genes, across different databases. RESULTS Reviewing 49 GWAS identified 436 SNPs associated with hip joint morphology, encompassing variance in bone size, structure and shape. Among the SNP-associated genes, SOX9 plays a pivotal role in size, GDF5 impacts bone structure, and BMP7 affects shape. Overall, skeletal system development, regulation of cell differentiation, and chondrocyte differentiation emerged as crucial processes influencing hip morphology. Eighteen percent of GWAS-identified genes related to hip morphology were also associated with non-hip OA. CONCLUSION Our findings indicate the existence of multiple shared genetic mechanisms across hip morphology and OA, highlighting the necessity for more extensive research in this area, as in contrast to the hip, the genetic background on knee or foot morphology remains largely understudied.
Collapse
Affiliation(s)
- Marlies Verleyen
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Yukun He
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Arne Burssens
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | | | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Emmanuel Audenaert
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Al Anouti F, Taha Z, Shamim S, Khalaf K, Al Kaabi L, Alsafar H. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep 2019; 11:100216. [PMID: 31372373 PMCID: PMC6661363 DOI: 10.1016/j.bonr.2019.100216] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Considered as one of the major epidemics of the 21st century, osteoporosis affects approximately 200 million people globally, with significant worldwide impact on rates of morbidity and mortality and massive socioeconomic burdens. Mainly characterized by decreased bone mineral density (BMD) and increased risk of bone fragility/deterioration, this devastating silent epidemic typically has no symptoms until a fracture occurs. The multifactorial disease, osteoporosis is instigated by complex interactions between genetic, metabolic and environmental factors, with severe impact on the biomechanics of the musculoskeletal system. This article provides a review of the epidemiology, genetic and biomechanical aspects of primary osteoporosis. The review begins with a summary of the epidemiology and global prevalence of osteoporosis. Sections 1 and 2 discuss the genetic associations and molecular signaling pathways involved in normal and pathological osteogenesis while Section 3 explores the biomechanics of osteoporosis and its quantitative damaging effects on critical bone mechanical properties, and associated bone remodeling. Overall, this review summarizes the recent findings about osteoporosis and emphasizes the importance of an integrative holistic approach in investigating osteoporosis towards providing better informed, more effective preventive and treatment modalities. Importantly, this work also explores the limited available literature on the various aspects of osteoporosis in the United Arab Emirates (UAE), Gulf Cooperation Council (GCC), and Middle East despite its alarming prevalence in the region, and highlights the need for further research and studies taking into consideration the importance of the vitamin D receptor (VDR) gene influencing the development of osteoporosis.
Collapse
Affiliation(s)
- Fatme Al Anouti
- Zayed University, College of Natural and Health Sciences, Abu Dhabi, United Arab Emirates
| | - Zainab Taha
- Zayed University, College of Natural and Health Sciences, Abu Dhabi, United Arab Emirates
| | - Sadia Shamim
- Khalifa University Center for Biotechnology, Abu Dhabi, United Arab emirates
| | - Kinda Khalaf
- Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| | - Leena Al Kaabi
- Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Khalifa University Center for Biotechnology, Abu Dhabi, United Arab emirates.,Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Association between the methylenetetrahydrofolate reductase c.677C>T polymorphism and bone mineral density: an updated meta-analysis. Mol Genet Genomics 2015; 291:169-80. [PMID: 26231982 DOI: 10.1007/s00438-015-1101-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Many studies have reported an association between the methylenetetrahydrofolate reductase (MTHFR) c.677C>T polymorphism and reduced bone mineral density (BMD), but results have been inconsistent. We, therefore, performed a meta-analysis to further explore this association. Twenty-one studies, comprising 33,045 subjects, analyzed the association of MTHFR c.677C>T with femoral neck BMD. Significant association with reduced BMD was observed in Caucasians (recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.008 to -0.006), post-menopausal women (recessive model: WMD = -0.005 g/cm(2), 95 % CI -0.007 to -0.003), men (dominant model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; TT vs. CC: WMD = -0.006 g/cm(2), 95 % CI -0.006 to -0.006; CT vs. CC: WMD = -0.003 g/cm(2), 95 % CI -0.003 to -0.003), and cohort studies (recessive model: WMD = -0.003 g/cm(2), 95 % CI -0.006 to -0.001). Twenty-two studies, which included 32,271 subjects, analyzed the MTHFR c.677C>T association with lumbar spine BMD. Significant association with reduced BMD was observed in Caucasians, women, post-menopausal women, men, and cohort studies. Seven studies, comprising 6806 subjects, analyzed the MTHFR c.677C>T association with total hip BMD, but no significant association was observed in any population. Nine studies involving 5591 subjects analyzed the association with total body BMD. Significant association with reduced BMD was observed in overall and women subgroup analyses. In summary, this meta-analysis indicates that the MTHFR c.677C>T polymorphism is associated with reduced BMD in lumbar spine and femoral neck in Caucasians, post-menopausal women, and men, and with total body BMD in women. In addition, our results suggest that new studies examining the association between MTHFR c.677C>T polymorphism and BMD of lumbar spine and femoral neck in Asians is warranted, because I (2) > 75.0 % was observed.
Collapse
|
4
|
Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis. J Biomed Res 2013; 24:417-23. [PMID: 23554658 PMCID: PMC3596689 DOI: 10.1016/s1674-8301(10)60056-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 09/29/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022] Open
Abstract
Osteoporosis is a condition characterized by low bone mineral density (BMD) and micro-architectural changes in the bone tissue. The risk of osteoporosis is partly determined by genetic factors. The role of C677T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene has been investigated in postmenopausal osteoporosis. However, the relationship between MTHFR polymorphism and BMD is still controversial. We carried out a meta-analysis of 5,833 subjects to evaluate the association of MTHFR and BMD in postmenopausal women. Databases of MEDLINE, Web of Science, Scopus and CNKI were retrieved for all publications relating to MTHFR polymorphism and BMD in postmenopausal women. Five eligible studies were selected for meta-analysis. All these articles studied the association of MTHFR polymorphism and BMD of the femoral neck and lumbar spine in postmenopausal women. Our analysis suggested that postmenopausal women with the TT genotype had lower femoral neck BMD than the women with the CC/CT genotype, and the weighted mean difference (WMD) was -0.01 g/cm(2) [95% confidence interval (CI): (-0.01, -0.01), P < 0.01]. However, BMD of the lumbar spine of postmenopausal women with the TT genotype was not significantly different from that of women with the CC/CT genotype. In the random effects model, the WMD between the TT and TC/CC genotype was -0.01 g/cm(2) [95% CI: (-0.04, 0.01), P = 0.32]. The C677T polymorphism of the MTHFR gene is associated with BMD of the femoral neck in postmenopausal women. Women with the TT genotype of the MTHFR gene have lower BMD, suggesting that the TT genotype may be a risk factor for postmenopausal osteoporosis.
Collapse
|
5
|
Husted LB, Harsløf T, Stenkjær L, Carstens M, Jørgensen NR, Langdahl BL. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis. Osteoporos Int 2013; 24:949-59. [PMID: 22707062 DOI: 10.1007/s00198-012-2035-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted to investigate the effect of these polymorphisms on BMD and risk of vertebral fractures in a case-control study including 798 individuals. METHODS Genotyping was carried out using TaqMan assays. BMD was measured using dual energy X-ray absorptiometry, and vertebral fractures were assessed by lateral spinal X-rays. RESULTS The rare allele of a splice site polymorphism, 151 + 1: G-T, was associated with increased fracture risk and reduced BMD in women. Two other loss-of-function polymorphisms, Glu496Ala and Gly150Arg, were also associated with BMD. The Glu496Ala variant allele was associated with decreased lumbar spine BMD in women and decreased total hip BMD in men. The 150Arg allele was associated with decreased total hip BMD in women and men combined. The minor allele of the gain-of-function polymorphism, Ala348Thr, was associated with reduced fracture risk and increased BMD at all sites in men. The Gln460Arg variant allele, which has been associated with increased receptor function in monocytes, was associated with increased total hip BMD in women. With the exception of His155Tyr for which we found conflicting results in men and women, our results are consistent with the phenotype of the knockout mouse. Analysis of a haplotype containing Ala348Thr, Gln460Arg, and Glu496Ala showed that the effects of the haplotypes on BMD and fracture were driven by Ala348Thr in men and by Gln460Arg and Glu496Ala in women. CONCLUSION In conclusion, we found that functional polymorphisms in the P2X(7) receptor gene and haplotypes containing three of these polymorphisms are associated with osteoporosis.
Collapse
Affiliation(s)
- L B Husted
- Department of Endocrinology and Internal Medicine, THG, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
6
|
Massart F, Marini F, Bianchi G, Minisola S, Luisetto G, Pirazzoli A, Salvi S, Micheli D, Miccoli M, Baggiani A, Giusti F, Brandi ML. Genetic predictors of skeletal outcomes in healthy fertile women: the Bonturno study. Joint Bone Spine 2012; 80:414-9. [PMID: 23238007 DOI: 10.1016/j.jbspin.2012.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Skeletal traits as height (Ht) or bone mineral density (BMD) are strongly inherited. Low-density lipoprotein receptor-related protein 5 (LRP5) and farnesyl diphosphonate synthase (FDPS) are candidate genes for bone phenotypes. From Bonturno study, we genotyped 570 healthy Caucasian women aged 20 to 50 years (yrs) for LRP5 rs4988321 (A/G) and rs3736228 (C/T) and FDPS rs2297480 (A/C) single nucleotide polymorphisms. Serum C-telopeptide of type I collagen (CTX), osteocalcin (OC), and N-terminal propeptide of type I procollagen (P1NP) were measured in BMD-evaluated subjects at lumbar spine (LS), total hip (TH) and femoral neck (FN) sites. LRP5 rs4988321 locus correlated with FN-BMD (P = 0.0230), while LRP5 rs3736228 genotypes differed in LS-BMD (P = 0.0428). When clustered by age, lower FN-BMD was detected in LRP5 GG (P = 0.030) subjects of 41 to 50 years but not in younger. Both LRP5 GG and CC genotypes showed higher age-adjusted values of OC, CTX and P1NP. Increased CTX values were in LRP5 GGCC subjects than in those having at least one LRP5 A plus T alleles (P = 0.0190). LRP5 CC, GG or GGCC subjects with at least one FDPS C allele showed higher levels of CTX and OC in 31 to 40 yrs or older subjects. In conclusion, LRP5 and FDPS loci age-specifically affect skeletal traits in healthy fertile women.
Collapse
Affiliation(s)
- Francesco Massart
- Pediatric Unit, Santa Chiara University Hospital of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bai R, Liu W, Zhao A, Zhao Z, Jiang D. Quantitative assessment of the associations between MTHFR C677T and A1298C polymorphisms and risk of fractures: a meta-analysis. Mol Biol Rep 2012; 40:2419-30. [DOI: 10.1007/s11033-012-2322-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023]
|
8
|
Wang H, Liu C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int 2012; 23:2625-2634. [PMID: 22187009 DOI: 10.1007/s00198-011-1885-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/08/2011] [Indexed: 11/26/2022]
Abstract
UNLABELLED This meta-analysis investigated the association of C677T polymorphism in MTHFR gene with bone mineral density (BMD) and fracture risk. The results suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively. INTRODUCTION The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated in the regulation of BMD and, thus, may serve as a potential risk factor for the development of fracture. However, results have been inconsistent. In this study, a meta-analysis was performed to clarify the association of C677T polymorphism in MTHFR gene with BMD and fracture risk. METHODS Published literature from PubMed and EMBASE were searched for eligible publications. Pooled odds ratio (OR) or weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using a fixed- or random-effects model. RESULTS Twenty studies (3,525 cases and 17,909 controls) were included in this meta-analysis. The TT genotype of C677T polymorphism was marginally associated with an increased risk of fracture under recessive model (TT vs. TC + CC: OR = 1.23, 95% CI 1.04-1.47). Using this model, similar results were found among East Asians (OR = 1.40, 95% CI 1.07-1.83), female subpopulation (1.27, 95% CI 1.04-1.55), cohort studies (OR = 1.24, 95% CI 1.08-1.44), and subjects younger than aged 60 years (OR = 1.51, 95% CI 1.10-2.07). In addition, under homogeneous co-dominant model, there was a modest association of C677T polymorphism with BMD of lumbar spine (WMD = -0.017 g/cm(2); 95%CI, -0.030-(-0.005) g/cm(2)), femoral neck (WMD = -0.010 g/cm(2); 95% CI -0.017-(-0.003) g/cm(2)), total hip (WMD = -0.013 g/cm(2), 95% CI -0.022-(-0.004) g/cm(2)), and total body (WMD = -0.020 g/cm(2); 95% CI -0.027-(-0.013) g/cm(2)), respectively. CONCLUSIONS This meta-analysis suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively.
Collapse
Affiliation(s)
- H Wang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, China
| | | |
Collapse
|
9
|
Kumar J, Swanberg M, McGuigan F, Callreus M, Gerdhem P, Akesson K. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone 2011; 49:343-8. [PMID: 21645651 DOI: 10.1016/j.bone.2011.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
Osteoporosis is a common complex disorder in postmenopausal women leading to changes in the micro-architecture of bone and increased risk of fracture. Members of the low-density lipoprotein receptor-related protein (LRP) gene family regulates the development and physiology of bone through the Wnt/β-catenin (Wnt) pathway that in turn cross-talks with the bone morphogenetic protein (BMP) pathway. In two cohorts of Swedish women: OPRA (n=1002; age 75 years) and PEAK-25 (n=1005; age 25 years), eleven single nucleotide polymorphisms (SNPs) from Wnt pathway genes (LRP4; LRP5; G protein-coupled receptor 177, GPR177) were analyzed for association with Bone Mineral Density (BMD), rate of bone loss, hip geometry, quantitative ultrasound and fracture. Additionally, interaction of LRP4 with LRP5, GPR177 and BMP2 were analyzed. LRP4 (rs6485702) was associated with higher total body (TB) and lumbar spine (LS) BMD in the PEAK-25 cohort (p=0.006 and 0.005 respectively), and interaction was observed with LRP5 (p=0.007) and BMP2 (p=0.004) for TB BMD. LRP4 also showed significant interaction with LRP5 for femoral neck (FN) and LS BMD in this cohort. In the OPRA cohort, LRP4 polymorphisms were associated with significantly lower fracture incidence overall (p=0.008-0.001) and fewer hip fractures (rs3816614, p=0.006). Significant interaction in the OPRA cohort was observed for LRP4 with BMP2 and GPR177 for FN BMD as well as for rate of bone loss at TB and FN (p=0.007-0.0001). In conclusion, LRP4 and interaction between LRP4 and genes in the Wnt and BMP signaling pathways modulate bone phenotypes including peak bone mass and fracture, the clinical endpoint of osteoporosis.
Collapse
Affiliation(s)
- Jitender Kumar
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Lee DY, Kim H, Ku SY, Kim SH, Choi YM, Kim JG. Association between polymorphisms in Wnt signaling pathway genes and bone mineral density in postmenopausal Korean women. Menopause 2010; 17:1064-1070. [PMID: 20613673 DOI: 10.1097/gme.0b013e3181da4da3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the association between single nucleotide polymorphisms in Wnt signal pathway genes and circulating osteoprotegerin (OPG), soluble receptor activator of the nuclear factor-κB ligand (sRANKL) levels, bone turnover markers, and bone mineral density (BMD) in postmenopausal Korean women. METHODS Wnt9a c256G>A; low-density lipoprotein receptor-related protein (LRP) 5 c266A>G, c2245C>G, c3893C>T, and c4099G>A; secreted frizzled-related protein (sFRP) 4 c1019G>A; axin II c148C>T and c1615G>A; glycogen synthase kinase binding protein (GBP) c455C>A; β-catenin c94G>T and c101G>T; T-cell factor 1 c663G>T, c734C>T, and c766G>A; and adenomatous polyposis coli c5465T>A polymorphisms were analyzed in 392 postmenopausal Korean women. Serum levels of OPG, sRANKL, and bone turnover markers were measured, and BMDs at the lumbar spine and femoral neck were examined. RESULTS Wnt9a c256G>A, LRP5 c2245C>G and c4099G>A, axin II c1615G>A, GBP c455C>A, β-catenin c94G>T and c101G>T, and T-cell factor 1 c663G>T and c734C>T single nucleotide polymorphisms were not observed. Among the genes showing polymorphisms, only the sFRP4 c1019G>A polymorphism was associated with BMD. The AA genotype in the sFRP4 c1019G>A polymorphism showed significantly lower lumbar spine BMD and a higher serum bone alkaline phosphatase level than did the GG genotype and showed a 6.39 times higher risk for osteoporosis at the lumbar spine compared with the GG genotype. No significant differences in bone turnover markers, OPG, and sRANKL were detected among the other single genotypes or the LRP haplotype genotype. CONCLUSIONS Our results suggest that the sFRP4 c1019G>A polymorphism may be one of the genetic factors affecting lumbar spine BMD in postmenopausal Korean women.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Agueda L, Urreizti R, Bustamante M, Jurado S, Garcia-Giralt N, Díez-Pérez A, Nogués X, Mellibovsky L, Grinberg D, Balcells S. Analysis of three functional polymorphisms in relation to osteoporosis phenotypes: replication in a Spanish cohort. Calcif Tissue Int 2010; 87:14-24. [PMID: 20390408 DOI: 10.1007/s00223-010-9361-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a complex disease involving many putative genetic factors. Association analysis of functional SNPs in candidate genes is an important tool for their identification. However, this approach is affected by limited power, population stratification, and other drawbacks that lead to discordant results. Replication in independent cohorts is essential. We performed association analyses of three functional polymorphisms previously associated with bone phenotypes--namely, Ala222Val in MTHFR, Ile1062Val in LRP6, and -13910C>T in LCT--in a cohort of 944 postmenopausal Spanish women, all of them with lumbar spine (LS) bone mineral density (BMD) data and most with femoral neck (FN) BMD and fracture data. We found significant differences between genotypes only for the MTHFR polymorphism and vertebral factures, with an OR of 2.27 (95% CI 1.17-4.38) for the TT vs. CC/CT genotypes, P = 0.018. We present genotype and allele frequency data for LCT -13910C>T for a Spanish population, where the T allele (conferring lactase persistence) has a frequency of 38.6%. Genotype frequencies were consistent with observed clines in Europe and with the prevalence of lactase nonpersistence. The LCT -13910C>T polymorphism was significantly associated with height and weight, such that T allele carriers were 0.88 cm taller (95% CI 0.08-1.59 cm, P = 0.032, adjusted by age) than CC individuals and TT homozygotes were 1.91 kg heavier than CC/CT individuals (95% CI 0.11-3.71 kg, P = 0.038, adjusted by age). In conclusion, no significant association was observed between the studied polymorphisms and LS BMD or FN BMD in postmenopausal Spanish women, and only MTHFR Ala222Val was associated with vertebral fractures.
Collapse
Affiliation(s)
- Lídia Agueda
- Department of Genetics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Piters E, Balemans W, Nielsen TL, Andersen M, Boudin E, Brixen K, Van Hul W. Common genetic variation in the DKK1 gene is associated with hip axis length but not with bone mineral density and bone turnover markers in young adult men: results from the Odense Androgen Study. Calcif Tissue Int 2010; 86:271-81. [PMID: 20101398 DOI: 10.1007/s00223-010-9334-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/02/2010] [Indexed: 12/17/2022]
Abstract
LRP5 was recently confirmed as an important susceptibility gene for osteoporosis. Our objective was to evaluate the effect of DKK1 polymorphisms on bone mineral density (BMD), hip geometry, and bone turnover. DKK1 is a secreted protein that binds to LRP5/6 receptors and inhibits canonical Wnt signaling. Using HapMap, we selected three SNPs covering the genetic variation in a 13.53-kb region comprising DKK1. The Odense Androgen Study is a population-based study comprising 783 Caucasian men aged 20-29 years. BMD and hip structural parameters were available for study. Bone turnover markers were used as a secondary end point. All analyses were repeated after adjusting for covariables and in subgroups according to physical activity. We found no significant association between DKK1 and BMD or markers of bone turnover; however, a significant association (P = 0.012) was found for rs1569198 with hip axis length (HAL), independent of BMD and height. Moreover, the association seemed to be driven by the non-sedentary subgroup (P = 0.004). Haplotype analysis further confirmed the association of rs1569198 with HAL. Furthermore, we obtained indications for interaction between DKK1 and LRP5 genotypes for different hip geometry parameters. As almost all variance within the DKK1 gene was covered, we conclude that common variation in this gene does not markedly influence BMD or bone turnover markers in young men. In this population, however, a common SNP in DKK1 does have a significant effect on HAL, implying a possible effect on hip fracture risk in the general population. This finding could be of interest but needs replication in independent populations.
Collapse
Affiliation(s)
- Elke Piters
- Department of Medical Genetics, University of Antwerp and University Hospital, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|