1
|
Makita K, Hojo H, Oyoshi H, Fujisawa T, Nakamura M, Uchida G, Koike Y, Zhou Y, Tomizawa K, Fukushi K, Zenda S. High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years. Curr Oncol 2024; 31:7437-7444. [PMID: 39727672 PMCID: PMC11674494 DOI: 10.3390/curroncol31120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Bone-modifying agents (BMAs) have been widely used to reduce skeletal-related events, including pathological fractures. Herein, we aimed to clarify the incidence of pathological fractures caused by high-risk femoral bone metastases after palliative radiotherapy (RT) in the BMA era and evaluate the necessity of prophylactic surgical stabilization. We assessed 90 patients with high-risk femoral bone metastases, indicated by Mirels' scores ≥ 8, without pathological fractures and surgical fixations, who received palliative RT at our institution between January 2009 and December 2018. Pathological fracture incidence was analyzed using the Kaplan-Meier method and was 22.8% and 31.0% at 2 and 6 months, respectively. Pathological fractures were caused by 17 of 65 lesions (26.2%) and 9 of 25 lesions (36.0%) in patients who received BMAs and those who did not, respectively (p = 0.44). Additionally, 17 of 42 lesions (40.5%) and 9 of 48 lesions (18.8%) with axial cortical involvement ≥30 and <30 mm, respectively, caused pathological fractures (p = 0.02). The incidence of pathological fractures was high among patients with high-risk femoral bone metastases treated with palliative RT, particularly those with axial cortical involvement ≥30 mm. Therefore, aggressive indications for prophylactic surgical stabilization are warranted for high-risk femoral metastases despite BMA administration.
Collapse
Affiliation(s)
- Kenji Makita
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama 791-0280, Ehime, Japan
| | - Hidehiro Hojo
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Hidekazu Oyoshi
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Takeshi Fujisawa
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Masaki Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Gyo Uchida
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Yume Koike
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Yuzheng Zhou
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Kento Tomizawa
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Keiko Fukushi
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| | - Sadamoto Zenda
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan; (H.H.); (H.O.); (T.F.); (M.N.); (G.U.); (Y.K.); (Y.Z.); (K.T.); (K.F.); (S.Z.)
| |
Collapse
|
2
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
3
|
Pendleton MM, Emerzian SR, Sadoughi S, Li A, Liu JW, Tang SY, O'Connell GD, Sibonga JD, Alwood JS, Keaveny TM. Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice. JBMR Plus 2021; 5:e10545. [PMID: 34761148 PMCID: PMC8567491 DOI: 10.1002/jbm4.10545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross‐linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic‐loading fatigue life, we conducted total‐body, acute, gamma‐irradiation experiments on skeletally mature (17‐week‐old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short‐term (11‐day) or long‐term (12‐week) time point after exposure. Micro‐computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post‐exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross‐links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total‐body irradiation on the trabecular bone morphology and collagen cross‐links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post‐exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Saghi Sadoughi
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Alfred Li
- Endocrine Research Unit University of California and Veteran Affairs Medical Center San Francisco CA USA
| | - Jennifer W Liu
- Department of Orthopaedic Surgery Washington University St. Louis MO USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery Washington University St. Louis MO USA.,Department of Biomedical Engineering Washington University St. Louis MO USA.,Department of Mechanical Engineering and Materials Science Washington University St. Louis MO USA
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Orthopaedic Surgery University of California San Francisco CA USA
| | - Jean D Sibonga
- Biomedical Research and Environmental Sciences Division NASA Johnson Space Center Houston TX USA
| | - Joshua S Alwood
- Space Biosciences Division NASA Ames Research Center Moffett Field CA USA
| | - Tony M Keaveny
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Bioengineering University of California Berkeley CA USA
| |
Collapse
|
4
|
Zhang C, Song C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front Pharmacol 2021; 11:607017. [PMID: 33584284 PMCID: PMC7874063 DOI: 10.3389/fphar.2020.607017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive drugs have been widely used for osteoporosis. Intermittent parathyroid hormone (PTH), an anabolic agent, increases osteoblast production rate and inhibits apoptosis of osteoblasts, thus increasing skeletal mass besides improving bone microarchitecture and strength. Combination therapy for osteoporosis produced great interests and controversies. Therefore, we performed a systematic literature search from PubMed, EMBASE, Scopus, Web of Science, CINDHL, and the Cochrane Database of Systematic Reviews using the search terms PTH or teriparatide combined with bisphosphonate, alendronate, ibandronate, risedronate, raloxifene, denosumab, and zoledronic acid with the limit osteoporosis. At last, 36 related articles were included for further analysis. Findings from previous studies revealed that combination therapy in different conditions of naive or previous bisphosphonate treatment might have different outcomes. The use of combination therapy, however, may be an alternative option among osteoporotic patients with a history of bisphosphonate use. Combined teriparatide with denosumab appear to show the most substantial and clinically relevant skeletal benefits to osteoporotic patients. Additional research is necessary to define optimal methods of developing sequential and/or cyclical combinations of PTH and antiresorptive agents.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
5
|
Costa S, Reagan MR. Therapeutic Irradiation: Consequences for Bone and Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2019; 10:587. [PMID: 31555210 PMCID: PMC6727661 DOI: 10.3389/fendo.2019.00587] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy continues to be one of the most accepted medical treatments for cancer. Localized irradiation is the most common treatment for prostate, pancreatic, rectal, cervical and endometrial malignancies. Conventional localized fractions are total doses of 30-62Gy at 1.8-2Gy per fraction, with administration of ~60Gy often used for tumor ablation. However, even the lowest dose of localized irradiation exposure can result in adverse complications to adjacent organs, tissues, and vessels, which absorb a portion of the treatment. Skeletal complications are common amongst cancer patients undergoing these localized treatments. Irradiation exposure causes deterioration to the overall quantity and quality of bone by interfering with the trabecular architecture through increased osteoclast activity and decreased osteoblast activity. Irradiation-induced bone damage parallels adipocyte infiltration of the bone marrow (BM) resulting in compositional alterations of the microenvironment that may further affect bone quality and disease state. There may also be direct effects of irradiation on the BM adipocyte/pre-adipocyte, although in vitro findings do not always agree and cellular response is dependent on irradiation dosage. Hematopoietic cells also become apoptotic upon irradiation, which causes a range of skeletal effects. Bone loss leaves patients at a greater risk for osteopenia, osteoporosis, osteonecrosis, and skeletal fractures that drastically reduce quality of life. Osteoanabolic agents stimulate bone formation and reduce fracture risk in patients with low bone density; thus, osteoanabolic or anti-resorptive agents may be useful co-treatments with irradiation. This review discusses these topics and proposes further research directions using novel or combination therapies to enhance bone health during irradiation.
Collapse
Affiliation(s)
- Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Michaela R. Reagan
| |
Collapse
|
6
|
Zoledronic Acid Induces Site-Specific Structural Changes and Decreases Vascular Area in the Alveolar Bone. J Oral Maxillofac Surg 2018; 76:1893-1901. [DOI: 10.1016/j.joms.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
|
7
|
Gomes CC, Freitas DQ, Medeiros Araújo AM, Ramírez-Sotelo LR, Yamamoto-Silva FP, de Freitas Silva BS, de Melo Távora D, Almeida SM. Effect of Alendronate on Bone Microarchitecture in Irradiated Rats With Osteoporosis: Micro-CT and Histomorphometric Analysis. J Oral Maxillofac Surg 2017; 76:972-981. [PMID: 29247623 DOI: 10.1016/j.joms.2017.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of the present study was to evaluate the effect of alendronate (ALN) on the bone microarchitecture of irradiated rats with estrogen deficiency, using microcomputed tomography (micro-CT) and histomorphometric analysis. MATERIALS AND METHODS Forty adult Wistar rats were subjected to ovariectomy and randomly divided into the following groups: control (CON), ALN, irradiated (IRR), and ALN/irradiated (ALN/IRR). Approximately 50 days after ovariectomy, the hind limbs of the rats in the IRR and ALN/IRR groups were irradiated with 15 Gy of x-radiation. The rats were euthanized 7 and 30 days after irradiation. The bone microarchitecture was analyzed using micro-CT and histomorphometry. The bone microarchitecture was evaluated using the Mann-Whitney U test, analysis of variance, and the post hoc Tukey test, with statistical significance set at 5%. RESULTS Irradiation had increased the thickness of the cortical bone at 7 days (P < .05) and also decreased the number of trabeculae per unit length and increased the average distance between the trabeculae (P < .05) at 30 days. ALN inhibited the deleterious effect of x-radiation, preventing the distance between the trabeculae from increasing and the number of trabeculae per unit length from decreasing (P < .05). CONCLUSIONS The present results have demonstrated that the initial effect of ALN could be positive, because it checked the deleterious action in the bone tissue submitted to x-radiation.
Collapse
Affiliation(s)
- Carolina Cintra Gomes
- Professor, Division of Oral Radiology, Department of Oral Diagnosis, School of Dentistry, University of Anápolis, Anápolis, Brazil
| | - Deborah Queiroz Freitas
- Professor, Division of Oral Radiology, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Amanda Maria Medeiros Araújo
- Professor, Division of Oral Radiology, Department of Clinical Dentistry, School of Dentistry, Federal University of Paraíba, João Pessoa, Brazil
| | - Laura Ricardina Ramírez-Sotelo
- Postgraduate Student, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Fernanda Paula Yamamoto-Silva
- Professor of Oral Radiology, Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Brunno Santos de Freitas Silva
- Professor, Division of Oral Pathology, Department of Oral Diagnosis, School of Dentistry, University of Anápolis, Anápolis, Brazil.
| | - Débora de Melo Távora
- Professor, Division of Oral Radiology, Department of Radiology, School of Dentistry, University of Metropolitana da Grande Fortaleza, Metropolitana da Grande Fortaleza, Brazil
| | - Solange Maria Almeida
- Professor, Division of Oral Radiology, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| |
Collapse
|
8
|
Bartlow CM, Oest ME, Mann KA, Zimmerman ND, Butt BB, Damron TA. PTH(1-34) and zoledronic acid have differing longitudinal effects on juvenile mouse femur strength and morphology. J Orthop Res 2017; 35:1707-1715. [PMID: 27653318 PMCID: PMC5489362 DOI: 10.1002/jor.23442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/15/2016] [Indexed: 02/04/2023]
Abstract
Treatment of secondary pediatric osteoporosis-particularly that due to chronic diseases, immobilization, and necessary medical treatments-is currently limited by a poor understanding of the long-term efficacy and safety of skeletal metabolism modifying drugs. This study aimed to characterize longitudinal effects of representative anabolic (parathyroid hormone, PTH) and anti-catabolic (zoledronic acid, ZA) drugs on skeletal morphology, mechanical strength, and growth in juvenile mice. BALB/cJ mice aged 4 weeks were given PTH(1-34) or vehicle (control) daily for 8 weeks, or 4 weekly doses of ZA, and evaluated at time points 0-26 weeks after treatment initiation. There were no enduring differences in body length or mass between treatment groups. ZA increased femur size as early as week 0, including increased distal femur bone volume and diaphyseal cross-sectional area, persisting through week 26. PTH treatment only transiently increased bone size, including distal femur volume at weeks 4-12. ZA decreased diaphyseal cortical tissue mineral density (TMD) at 12-26 weeks versus controls; PTH decreased TMD only at 2 weeks (vs. controls). ZA increased bending strength at 0-12 weeks and flexural strength at week 4 (vs. controls), but decreased flexural strength and modulus at week 26. PTH treatment increased bending strength only at 4 weeks, and did not affect flexural strength. Overall, ZA rapidly and persistently increased femur strength and size, but compromised bone material quality long-term. In healthy juvenile mice, limited-duration PTH treatment did not exert a strong anabolic effect, and had no adverse effects on femur strength, morphology, or growth. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1707-1715, 2017.
Collapse
Affiliation(s)
- Christopher M Bartlow
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| | - Megan E Oest
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| | - Kenneth A Mann
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| | - Nicholas D Zimmerman
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| | - Bilal B Butt
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| | - Timothy A Damron
- Department of Orthopedic Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, New York
| |
Collapse
|
9
|
Govey PM, Zhang Y, Donahue HJ. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice. PLoS One 2016; 11:e0167673. [PMID: 27936104 PMCID: PMC5147933 DOI: 10.1371/journal.pone.0167673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Collapse
Affiliation(s)
- Peter M. Govey
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Penn State College of Engineering, University Park, PA, United States of America
| | - Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth College of Engineering, Richmond, VA, United States of America
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Penn State College of Engineering, University Park, PA, United States of America
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth College of Engineering, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, Schneider P, Müller R. Effect of combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus structure and composition. Bone 2016; 92:70-78. [PMID: 27542660 DOI: 10.1016/j.bone.2016.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022]
Abstract
In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n=8-10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments. We therefore consider PTH+ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Janelle Herelle
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Marcel Thomas
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rowan Softley
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - Philipp Schneider
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| | - Ralph Müller
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Combination Therapy with Zoledronic Acid and Parathyroid Hormone Improves Bone Architecture and Strength following a Clinically-Relevant Dose of Stereotactic Radiation Therapy for the Local Treatment of Canine Osteosarcoma in Athymic Rats. PLoS One 2016; 11:e0158005. [PMID: 27332712 PMCID: PMC4917251 DOI: 10.1371/journal.pone.0158005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 01/24/2023] Open
Abstract
Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local treatment of canine osteosarcoma (OSA) have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy). Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total). Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma.
Collapse
|
12
|
Oest ME, Mann KA, Zimmerman ND, Damron TA. Parathyroid Hormone (1-34) Transiently Protects Against Radiation-Induced Bone Fragility. Calcif Tissue Int 2016; 98:619-30. [PMID: 26847434 PMCID: PMC4860360 DOI: 10.1007/s00223-016-0111-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1-34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility.
Collapse
Affiliation(s)
- Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Nicholas D Zimmerman
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Timothy A Damron
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| |
Collapse
|
13
|
The effect of radiotherapy, and radiotherapy combined with bisphosphonates or RANK ligand inhibitors on bone quality in bone metastases. A systematic review. Radiother Oncol 2016; 119:194-201. [DOI: 10.1016/j.radonc.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
14
|
Gierloff M, Reutemann M, Gülses A, Niehoff P, Wiltfang J, Açil Y. Effects of zoledronate on the radiation-induced collagen breakdown: a prospective randomized clinical trial. Clin Transl Oncol 2014; 17:454-61. [PMID: 25425023 DOI: 10.1007/s12094-014-1257-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/10/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND A negative side effect of therapeutic irradiation is the radiation-induced bone loss which can lead, in long term, to pathological fractures. Until today, the detailed mechanism is unknown. If osteoclasts would mainly contribute to the pathological bone loss, bisphosphonates could potentially counteract the osteolytic process and possibly help to prevent long-term complications. The aim of this study was to evaluate the effect of zoledronic acid on the early radiation-induced degradation of bone collagen fibrils by monitoring the urinary excretion of hydroxylysylpyridinoline and lysylpyridinoline under radiotherapy. PATIENTS AND METHODS A total of 40 patients with skeletal metastases were assigned for a local radiotherapy and bisphosphonate treatment. The patients were prospectively randomized into two treatment groups: group A (n = 20) received the first zoledronate administration after and group B (n = 20) prior to the radiotherapy. Urine samples were collected from each patient on the first day, in the middle, and on the last day of the radiation therapy. Measurement of the bone metabolites hydroxylysylpyridinoline and lysylpyridinoline was performed by high-performance liquid chromatography. Statistical analysis was performed using the Mann-Whitney U test. RESULTS The hydroxylysylpyridinoline and lysylpyridinoline excretion decreased significantly in the combined bisphosphonate and radiotherapy group (p = 0.02, p = 0.08). No significant change of the hydroxylysylpyridinoline and lysylpyridinoline excretion was determined in the patients that received solely irradiation. CONCLUSION The results indicate the ability of zoledronate to prevent the early radiation-induced bone collagen degradation suggesting that the radiation-induced bone loss is mainly caused by osteoclastic bone resorption rather than by a direct radiation-induced damage.
Collapse
Affiliation(s)
- M Gierloff
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, Haus 26, 24105, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Green DE, Rubin CT. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 2014; 63:87-94. [PMID: 24607941 PMCID: PMC4005928 DOI: 10.1016/j.bone.2014.02.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation.
Collapse
Affiliation(s)
- Danielle E Green
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
16
|
Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. Risedronate Positively Affects Osteogenic Differentiation of Human Mesenchymal Stromal Cells. Arch Med Res 2013; 44:325-34. [DOI: 10.1016/j.arcmed.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 05/08/2013] [Indexed: 01/05/2023]
|
17
|
Keenawinna L, Oest ME, Mann KA, Spadaro J, Damron TA. Zoledronic acid prevents loss of trabecular bone after focal irradiation in mice. Radiat Res 2013; 180:89-99. [PMID: 23772924 DOI: 10.1667/rr3200.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation therapy for soft tissue sarcomas and metastatic disease can adversely affect bone, leading to late-onset fragility fractures. Adjunct administration of bisphosphonates has been postulated as means of minimizing these adverse effects. Using a murine model of focal hindlimb irradiation, we examined the potential for zoledronic acid treatment to minimize the deleterious effects of localized radiotherapy (RTx) on bone. Mice received a single, unilateral hindlimb exposure of 20 Gy. Beginning 4 days prior to irradiation, and at 1, 2 and 3 weeks post-irradiation, animals were treated with zoledronic acid or saline/vehicle injections. Areal bone mineral density was assessed at 4 days, and 2, 4 and 12 weeks post-irradiation by dual-energy X-ray absorptiometry (DXA). Micro-computed tomography and axial compression testing were used to quantify changes in morphological and mechanical properties of femurs at 4 and 12 weeks post-irradiation. Radiation had differential effects on cortical and trabecular bone, increasing cortical bone mineral content (BMC), cortical bone volume (BV) and trabecular separation (Tb.Sp) while decreasing trabecular number (Tb.N) by 12 weeks after localized radiotherapy. Administration of zoledronic acid increased hindlimb areal bone mineral density in both the presence and absence of radiotherapy, increased cortical bone mineral content and bone volume, increased trabecular bone volume (BV/TV), increased trabecular number, increased trabecular thickness (Tb.Th), and decreased trabecular separation compared to irradiated and vehicle control femurs. Despite these improvements in morphology with zoledronic acid, no biomechanical advantage was observed. Further work is needed to define the role of bisphosphonates in prevention of post-irradiation fragility fractures.
Collapse
Affiliation(s)
- Lihini Keenawinna
- Department of Orthopedics and Musculoskeletal Sciences Laboratory, Institute for Human Performance, Upstate Medical University, Syracuse, New York 13057, USA
| | | | | | | | | |
Collapse
|
18
|
Açil Y, Gierloff M, Behrens C, Möller B, Gassling V, Niehoff P, Wiltfang J, Simon M. Effects of zoledronate on irradiated bone in vivo: analysis of the collagen types I, V and their cross-links lysylpyridinoline, hydroxylysylpyridinoline and hydroxyproline. Calcif Tissue Int 2013. [PMID: 23179106 DOI: 10.1007/s00223-012-9676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Radiotherapy can lead to a reduction of bone density with an increased risk of pathological fractures. Bisphosphonates may represent a preventive treatment option by increasing the density of anorganic bone mineral. Yet it is unknown how bisphosphonates act on irradiated collagen cross-links, which play an essential role for the mechanical stability of bone. The aim of this study was to evaluate the effects of zoledronate on bone collagens and their cross-links after irradiation. The right femur of 37 rats was irradiated with a single dose of 9.5 Gy at a high dose rate using an afterloading machine. Half of the rats (n=18) received additionally a single dose zoledronate (0.1 mg/kg body weight). Fourteen and 100 days after irradiation the femora were collected for histologic evaluation and determination of the collagen cross-links lysylpyridinoline, hydroxylysylpyridinoline, and hydroxyproline. The collagen types were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Fourteen days after treatment the lysylpyridinoline levels of all treatment groups were significantly lower compared to the untreated control. After 100 days, in the combined radiotherapy+zoledronate group significantly lower lysylpyridinoline values were determined (p=0.009). Radiotherapy and/or zoledronate did not change significantly the level of hydroxylysylpyridinoline. The concentration of hydroxyproline was 14 days after irradiation significantly higher in the combined treatment group compared to the control. No significant differences were observed 100 days after treatment. Zoledronate does not have the ability to restore the physiological bone collagen cross-link levels after radiotherapy. However, this would be necessary for regaining the physiological mechanical stability of bone after irradiation and therefore to prevent effectively radiation-induced fractures.
Collapse
Affiliation(s)
- Yahya Açil
- Department of Oral and Maxillofacial Surgery, UK-SH, Campus Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee SH, Kim IY, Kim SH. Anti-resorptive and Anabolic Activity of 3-(3,5-Dimethoxyphenyl)-6-methoxybenzofuran-4-carboxylate. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|