1
|
Tao ZS, Ma T, Yang M. Cyclosporine a inhibits bone regeneration and induces bone loss in a rat model. Int Immunopharmacol 2024; 132:111951. [PMID: 38552293 DOI: 10.1016/j.intimp.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Cyclosporine A (CSA) is an immunosuppressant that has been extensively studied for its side effects on inhibiting osseointegration of titanium implants. However, the impact of CSA on bone healing in postmenopausal osteoporosis remains unknown. Therefore, this study aimed to investigate the effect of CSA on bone repair in an ovariectomized (OVX) rat model through both in vitro and in vivo experiments. We examined the interventions of CSA on osteoblast progenitor cells MC3T3-E1 and assessed their effects on biological function using RT-qPCR, CCK-8 assay, alizarin red staining, and alkaline phosphatase staining. Furthermore, we evaluated the effects of CSA on bone regeneration and bone mass in both OVX rat models and femoral diaphysis bone defect models. The results from the CCK-8 experiment indicated a positive influence of experimental doses of CSA on osteogenic differentiation of MC3T3-E1 cells. ALP expression levels and calcified nodules were also evaluated, suggesting that CSA intervention promoted osteogenic differentiation in MC3T3-E1 cells. Additionally, specific gene expressions including OPN, Runx-2, OC, and Col1a1 were up-regulated after CSA intervention. Biomechanical parameters aligned with histological analysis as well as micro-CT scans confirmed worse bone microstructure and strength following CSA intervention. Our findings preliminarily suggest that whether it is normal or osteoporotic bones, CSA has adverse effects on bone health which are associated with elevated-bone turnover.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Tao Ma
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| |
Collapse
|
2
|
Xu F, Wang Y, Zhu X. The Safety and Efficacy of Abaloparatide on Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis. Clin Ther 2024; 46:267-274. [PMID: 38307725 DOI: 10.1016/j.clinthera.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 02/04/2024]
Abstract
PURPOSE The aging of the population increases the incidence of postmenopausal osteoporosis, which threatens the health of elderly women. Abaloparatide is a synthetic peptide analogue of the human parathyroid hormone-related protein that has recently been approved for the treatment of postmenopausal osteoporosis. Its efficacy and safety have not been systematically evaluated. Therefore, studies on the efficacy and safety of abaloparatide could be of assistance in the clinical medication of postmenopausal osteoporosis. The aim of this study was to evaluate the clinical efficacy and safety of abaloparatide in postmenopausal osteoporosis. METHODS PubMed, Cochrane Library, EMBASE, and Web of Science databases were electronically searched from inception to July 6, 2023, for relevant randomized controlled trials. Two review authors independently conducted the study screening, quality assessment (based on the Risk of Bias Assessment Tool recommended in the Cochrane handbook), and data extraction. Outcome measures included bone mineral density (BMD), bone turnover and metabolic markers, incidence of fractures, and adverse events. Data analyses were processed by using Stata SE15. FINDINGS Ultimately, 8 randomized controlled trials, involving a total of 3705 postmenopausal women, were included. Meta-analysis showed that abaloparatide administration significantly increased the BMD of the lumbar vertebrae (standardized mean difference [SMD], 1.28 [95% CI, 0.81-1.76); I2 = 78.5%]), femoral neck (SMD, 0.70 [95% CI, 0.17-1.23; I2 = 75.7%]), and hip bone (SMD, 0.86 [95% CI, 0.53-1.20; I2 = 60.4%]) in postmenopausal women compared with the control group. Type I procollagen N-terminal propeptide, a bone formation marker, was also elevated after abaloparatide administration. The incidence of vertebral fracture was lower in the abaloparatide group than in the control group (risk ratio, 0.13; 95% CI, 0.06-0.26; I2 = 0%). There was no significant difference in the incidence of adverse events between the abaloparatide and the placebo groups (risk ratio, 1.03; 95% CI, 0.99-1.06; I2 = 0%). IMPLICATIONS Abaloparatide has a protective effect on women with postmenopausal osteoporosis. It could reduce their risk for vertebral fracture; increase their BMD of the lumbar spine, femoral neck, and hip; and alleviate symptoms and complications of postmenopausal osteoporosis with considerable safety. Limitations of this study include not searching the gray literature and not performing a subgroup analysis. PROSPERO Registration No.: CRD42022370944.
Collapse
Affiliation(s)
- Fuxin Xu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Yurun Wang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Zhou MS, Tao ZS. Systemic administration with melatonin in the daytime has a better effect on promoting osseointegration of titanium rods in ovariectomized rats. Bone Joint Res 2022; 11:751-762. [DOI: 10.1302/2046-3758.1111.bjr-2022-0017.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. Methods In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation. Results Micro-CT and histological evaluation showed that the bone microscopic parameters of femoral metaphysis trabecular bone and bone tissue around the titanium rod in the OVX + MD group demonstrated higher bone mineral density, bone volume fraction, trabecular number, connective density, trabecular thickness, and lower trabecular speculation (p = 0.004) than the OVX + MN group. Moreover, the biomechanical parameters of the OVX + MD group showed higher pull-out test and three-point bending test values, including fixation strength, interface stiffness, energy to failure, energy at break, ultimate load, and elastic modulus (p = 0.012) than the OVX + MN group. In addition, the bone metabolism index and oxidative stress indicators of the OVX + MD group show lower values of Type I collagen cross-linked C-telopeptide, procollagen type 1 N propeptide, and malondialdehyde (p = 0.013), and higher values of TAC and SOD (p = 0.002) compared with the OVX + MN group. Conclusion The results of our study suggest that systemic administration with melatonin at 9 am may improve the initial osseointegration of titanium rods under osteoporotic conditions more effectively than administration at 9 pm. Cite this article: Bone Joint Res 2022;11(11):751–762.
Collapse
Affiliation(s)
- Mao-Sheng Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
4
|
Fujimaki T, Ando T, Hata T, Takayama Y, Ohba T, Ichikawa J, Takiyama Y, Tatsuno R, Koyama K, Haro H. Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo. Bone 2021; 151:116029. [PMID: 34111645 DOI: 10.1016/j.bone.2021.116029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis commonly affects the elderly and is associated with significant morbidity and mortality. Loss of bone mineral density induces muscle atrophy and increases fracture risk. However, muscle lipid content and droplet size are increased by aging and mobility impairments, inversely correlated with muscle function, and a cause of reduced motor function. Teriparatide, the synthetic form of human parathyroid hormone (PTH) 1-34, has been widely used to treat osteoporosis. Although PTH positively affects muscle differentiation in vitro, the precise function and mechanisms of muscle mass and power preservation are still poorly understood, especially in vivo. In this study, we investigated the effect of PTH on skeletal muscle atrophy and dysfunction using an ovariectomized murine model. Eight-week-old female C57BL/6J mice were ovariectomized or sham-operated. Within each surgical group, the mice were divided into PTH injection or control subgroups. Motor function was evaluated based on grip strength, treadmill running, and lactic acid concentration. PTH receptor was expressed in skeletal muscle cells and myoblasts. PTH inhibited ovariectomy-induced bone loss but not uterine atrophy or increased body weight; PTH not only abolished ovariectomy-induced reduction in grip strength and maximum running speed, but also significantly reduced the ovariectomy-induced increase in lactic acid concentration (compared with that observed in the vehicle control). PTH also abrogated the ovariectomy-induced reduction in the oxidative capacity of muscle fibers, their cross-sectional area, and intramyocellular lipid content, and induced cell proliferation, cell migration, and muscle differentiation, while reducing lipid secretion by C2C12 myoblasts via the Wnt/β-catenin pathway. PTH significantly ameliorated muscle weakness and attenuated exercise-induced lactate levels in ovariectomized mice. Our in vitro study demonstrated that PTH/Wnt signaling regulated the proliferation, migration, and differentiation of myoblasts and also reduced lipid secretion in myoblasts. Thus, PTH could regulate several aspects of muscle function and physiology, and may represent a novel therapeutic strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Taro Fujimaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Takanori Hata
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Takayama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Rikito Tatsuno
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
5
|
Shah AA, Shah A, Lewis S, Ghate V, Saklani R, Narayana Kalkura S, Baby C, Singh PK, Nayak Y, Chourasia MK. Cyclodextrin based bone regenerative inclusion complex for resveratrol in postmenopausal osteoporosis. Eur J Pharm Biopharm 2021; 167:127-139. [PMID: 34329710 DOI: 10.1016/j.ejpb.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Recent preclinical studies have shown that resveratrol (RSV), is a promising remedy for osteoporosis owing to its estrogenic, anti-inflammatory, and antioxidant properties. However, RSV has met limited success due to its poor oral bioavailability and inefficient systemic delivery. In this study, we prepared the inclusion complex of RSV with sulfo-butyl ether β-cyclodextrin (SBE-β-CD) to enhance the aqueous solubility of RSV. The in-silico docking studies and Physico-chemical characterization assays were performed to understand the interaction of RSV inside the SBE-β-CD cavity. The in vivo safety assessment of RSV-SBE-β-CD inclusion complex (R-CDIC) was performed in healthy Wistar rats. The efficacy of the inclusion complex against postmenopausal osteoporosis was further investigated in ovariectomized (OVX) rat model. The alteration in the bone micro-architectural structure was evaluated by microcomputed tomographic scanning, serum biochemical estimations, biomechanical strength and histopathological investigation. Administration of RSV-SBE-β-CD inclusion complex was found to be safe and significantly improved micro-architectural deterioration induced by estrogen withdrawal. Results of bone morphometry and biomechanics study further emboldened the efficacy claim of the RSV-SBE-β-CD complex. Thus, the present study demonstrated the efficacy of the RSV-SBE-β-CD inclusion complex for treating osteolytic degradation in osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Abhishek Shah
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Ravi Saklani
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - S Narayana Kalkura
- Crystal Growth Centre, Anna University, Chennai, Tamil Nadu 600025, India
| | - C Baby
- FT-NMR Lab, Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India.
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| |
Collapse
|
6
|
Merlotti D, Falchetti A, Chiodini I, Gennari L. Efficacy and safety of abaloparatide for the treatment of post-menopausal osteoporosis. Expert Opin Pharmacother 2019; 20:805-811. [DOI: 10.1080/14656566.2019.1583208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D. Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - A. Falchetti
- EndOsMet, Villa Donatello Private Hospital, Florence, Italy
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - I. Chiodini
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Science and Community Health, University of Milan, Milan, Italy
| | - L. Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Lee S, Bice A, Hood B, Ruiz J, Kim J, Prisby RD. Intermittent PTH 1-34 administration improves the marrow microenvironment and endothelium-dependent vasodilation in bone arteries of aged rats. J Appl Physiol (1985) 2018; 124:1426-1437. [PMID: 29420158 DOI: 10.1152/japplphysiol.00847.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation coincides with diminished marrow function, vasodilation of blood vessels, and bone mass. Intermittent parathyroid hormone (PTH) administration independently improves marrow and vascular function, potentially impacting bone accrual. Currently, the influence of marrow and intermittent PTH administration on aged bone blood vessels has not been examined. Vasodilation of the femoral principal nutrient artery (PNA) was assessed in the presence and absence of marrow. Furthermore, we determined the influence of PTH 1-34 on 1) endothelium-dependent vasodilation and signaling pathways [i.e., nitric oxide (NO) and prostacyclin (PGI2)], 2) endothelium-independent vasodilation, 3) cytokine production by marrow cells, and 4) bone microarchitecture and bone static and dynamic properties. Young (4-6 mo) and old (22-24 mo) male Fischer-344 rats were treated with PTH 1-34 or a vehicle for 2 wk. In the absence and presence of marrow, femoral PNAs were given cumulative doses of acetylcholine, with and without the NO and PGI2 blockers, and diethylamine NONOate. Marrow-derived cytokines and bone parameters in the distal femur were assessed. Exposure to marrow diminished endothelium-dependent vasodilation in young rats. Reduced bone volume and NO-mediated vasodilation occurred with old age and were partially reversed with PTH. Additionally, PTH treatment in old rats restored endothelium-dependent vasodilation in the presence of marrow and augmented IL-10, an anti-inflammatory cytokine. Endothelium-independent vasodilation was unaltered, and PTH treatment reduced osteoid surfaces in old rats. In conclusion, the marrow microenvironment reduced vascular function in young rats, and PTH treatment improved the marrow microenvironment and vasodilation with age. NEW & NOTEWORTHY This study investigated the influence of the marrow microenvironment on bone vascular function in young and old rats. An inflamed marrow microenvironment may reduce vasodilator capacity of bone blood vessels, diminishing delivery of blood flow to the skeleton. In young rats, the presence of the marrow reduced vasodilation in the femoral principal nutrient artery (PNA). However, intermittent parathyroid hormone administration (i.e., a treatment for osteoporosis) improved the marrow microenvironment and vasodilator capacity in old PNAs.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Ashley Bice
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Brianna Hood
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Juan Ruiz
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Jahyun Kim
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Rhonda D Prisby
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
8
|
Milstrey A, Wieskoetter B, Hinze D, Grueneweller N, Stange R, Pap T, Raschke M, Garcia P. Dose-dependent effect of parathyroid hormone on fracture healing and bone formation in mice. J Surg Res 2017; 220:327-335. [PMID: 29180199 DOI: 10.1016/j.jss.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/10/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) is the only clinically approved osteoanabolic drug for osteoporosis treatment. However, PTH is not established for the treatment of fracture healing, and doses of PTH diverge significantly between different studies. We hypothesized that the effect of PTH on promoting fracture healing and bone formation is dose dependent. MATERIALS AND METHODS In vivo, mice were treated with PTH (10, 40, and 200 μg/kg) in a closed femoral fracture model. Fracture healing was analyzed after 4 weeks. The fourth lumbar vertebra was analyzed to assess systemic effects. In addition, osteoblasts from calvaria of mice were treated in vitro with PTH doses of 10-5-50 nM, and their differentiation was analyzed after 26 days. RESULTS In vivo, PTH dose-dependently stimulated bone formation in the fracture callus and the vertebral body. However, PTH treatment did not increase biomechanical stiffness of the fractured femora in a dose-dependent manner. The increased bone formation in the 200 μg/kg group was associated with a depletion of osteoclasts, indicating diminished bone remodeling. Of interest, in vitro, we observed diminished mineralization with the highest doses of PTH in osteoblast cultures. CONCLUSIONS PTH dose-dependently stimulates bone formation in vivo. However, during fracture healing, this did not result in a dose-dependent increase of the mechanical stiffness of the fracture callus. Taken together, our in vivo and in vitro data indicate that the dose-dependent effects of PTH during fracture healing are based on the actions on multiple cell types, thereby influencing not only bone formation but also osteoclastic callus remodeling.
Collapse
Affiliation(s)
- Alexander Milstrey
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany.
| | - Britta Wieskoetter
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany
| | - Daniel Hinze
- Institute for Experimental Muscoloskeletal Medicine, Westfaelische Wilhelms University, Muenster, Germany
| | - Niklas Grueneweller
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany
| | - Richard Stange
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany
| | - Thomas Pap
- Institute for Experimental Muscoloskeletal Medicine, Westfaelische Wilhelms University, Muenster, Germany
| | - Michael Raschke
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany
| | - Patric Garcia
- Department of Trauma-, Hand- and Reconstructive Surgery, Westfaelische Wilhelms University, Muenster, Germany
| |
Collapse
|
9
|
Ota M, Takahata M, Shimizu T, Kanehira Y, Kimura-Suda H, Kameda Y, Hamano H, Hiratsuka S, Sato D, Iwasaki N. Efficacy and safety of osteoporosis medications in a rat model of late-stage chronic kidney disease accompanied by secondary hyperparathyroidism and hyperphosphatemia. Osteoporos Int 2017; 28:1481-1490. [PMID: 27933339 DOI: 10.1007/s00198-016-3861-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/28/2016] [Indexed: 01/17/2023]
Abstract
UNLABELLED This study showed that bisphosphonate was safe and effective for the treatment of bone disorders in stage 4 chronic kidney disease (CKD) rats. Intermittent teriparatide therapy showed an anabolic action on bone even under secondary hyperparathyroidism conditions without having an adverse effect on mineral metabolism in late-stage CKD. INTRODUCTION Patients with late-stage CKD are at high risk for fragility fractures. However, there are no consensus on the efficacy and safety of osteoporosis medications for patients with late-stage CKD. In the present study, we aimed to examine the efficacy and safety of alendronate (ALN) and teriparatide (TPD) for treating bone disorder in late-stage CKD with pre-existing secondary hyperparathyroidism using a rat model of CKD. METHODS Male 10-week-old Sprague-Dawley rats were subjected to a 5/6 nephrectomy or sham surgery and randomized into the following four groups: sham, vehicle (saline subcutaneous (sc) daily), ALN (50 μg/kg sc daily), and TPD (40 μg/kg sc daily). Medications commenced at 24 weeks of age and continued for 4 weeks. Micro-computed tomography, histological analysis, infrared spectroscopic imaging, and serum assays were performed. RESULTS Nephrectomized rats developed hyperphosphatemia, secondary hyperparathyroidism (SHPT), and high creatinine, equivalent to CKD stage 4 in humans. ALN suppressed the bone turnover and increased the degree of mineralization in cortical bone, resulting in an improvement in the mechanical properties. TPD further increased the bone turnover and significantly increased the degree of mineralization, micro-geometry, and bone volume, resulting in a significant improvement in the mechanical properties. Both ALN and TPD had no adverse effect on renal function and mineral metabolism. CONCLUSIONS BP is safe and effective for the treatment of bone disorders in stage 4 CKD rats. Intermittent TPD therapy showed an anabolic action on bone even under SHPT conditions without having an adverse effect on mineral metabolism in late-stage CKD.
Collapse
Affiliation(s)
- M Ota
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - M Takahata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - T Shimizu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Y Kanehira
- Chitose Institute of Science and Technology, Chitose, Japan
| | - H Kimura-Suda
- Chitose Institute of Science and Technology, Chitose, Japan
| | - Y Kameda
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - H Hamano
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - S Hiratsuka
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - D Sato
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - N Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
10
|
Varela A, Chouinard L, Lesage E, Guldberg R, Smith SY, Kostenuik PJ, Hattersley G. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats. Bone 2017; 95:143-150. [PMID: 27894941 DOI: 10.1016/j.bone.2016.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength.
Collapse
Affiliation(s)
| | | | | | - Robert Guldberg
- Petit Institute for Bioengineering, Bioscience and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Paul J Kostenuik
- University of Michigan, Ann Arbor, MI, USA; Phylon Pharma Services, Newbury Park, CA, USA
| | | |
Collapse
|
11
|
Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017; 6:14-21. [PMID: 28062525 PMCID: PMC5227055 DOI: 10.1302/2046-3758.61.bjr-2016-0085.r1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called 'anabolic window'. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through 'coupled' and 'uncoupled' mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. CITE THIS ARTICLE L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14-21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.
Collapse
Affiliation(s)
- L Osagie-Clouard
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - A Sanghani
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Coathup
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - T Briggs
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Bostrom
- Hospital for Special Surgery, New York, New York, USA
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| |
Collapse
|
12
|
Abstract
Abaloparatide is an investigational analog of human PTHrP (1-34) being developed for the treatment of osteoporosis. The amino-acid sequence of abaloparatide is identical to that of PTHrP in the first 20 amino-acids, while over half of the remaining amino-acids are different. Some studies in animals and in humans reported that abaloparatide presented a potent anabolic activity with reduced effects on bone resorption as compared to that observed with teriparatide. This may be due to a more transient signaling response of abaloparatide related to differing affinities of the two drugs to the specific conformations of the PTH1 receptor. In the ACTIVE study, a phase 3 fracture prevention trial, 2460 postmenopausal osteoporotic women at high risk for fracture were randomized to receive 18-months of either daily abaloparatide 80 μg s.c., placebo or teriparatide 20 μg s.c. The reduction in vertebral fracture rate with respect to placebo was 86% in the abaloparatide group and 80% in the teriparatide group. Abaloparatide also produced a significant 43% reduction in the rate of nonvertebral fractures (2.7 vs 4.0% with placebo, p=0.04) whereas teriparatide determined a 28% reduction (2.9 vs 4.0% with placebo, p=NS). Abaloparatide or teriparatide showed similar increases in BMD at lumbar spine, while the patients of the abaloparatide group showed significantly greater increases in BMD at both total hip (4.18 vs 3.26%) and femoral neck (3.60 vs 2.66%). Therefore, if the preliminary data of the ACTIVE study is confirmed, abaloparatide may become an important option for the anabolic treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Esbrit P, Herrera S, Portal-Núñez S, Nogués X, Díez-Pérez A. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies. Calcif Tissue Int 2016; 98:359-69. [PMID: 26259869 DOI: 10.1007/s00223-015-0050-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies.
Collapse
Affiliation(s)
- Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sabina Herrera
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Nogués
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo Díez-Pérez
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Soares CD, Carvalho MGFD, Carvalho RAD, Trindade SRP, Rêgo ACMD, Araújo-Filho I, Marques MM. Chenopodium ambrosioides L. extract prevents bone loss. Acta Cir Bras 2015; 30:812-8. [DOI: 10.1590/s0102-865020150120000004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
|
15
|
Engraftment and bone mass are enhanced by PTHrP 1-34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging. Transgenic Res 2015; 24:955-69. [PMID: 26271486 DOI: 10.1007/s11248-015-9901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ≤ 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P < 0.0001). The total amount of bone observed histologically increased in both groups at 2 and 4 weeks (P ≤ 0.002); however, PTHrP 1-34 exceeded time-matched controls (P ≤ 0.044). A positive linear relationship existed between the percentage of trabecular bone and (1) total bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI.
Collapse
|
16
|
Polyzos SA, Makras P, Efstathiadou Z, Anastasilakis AD. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Expert Opin Investig Drugs 2014; 24:145-57. [PMID: 25316089 DOI: 10.1517/13543784.2015.973021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Intermittent parathyroid hormone (PTH) administration, acting through multiple signaling pathways, exerts an osteoanabolic effect on the skeleton that surpasses the effect of other antiosteoporotic agents. However, its efficacy is limited by the coupling effect and relatively common adverse events. Thus, the development of more sophisticated PTH receptor analogs seems imperative. AREAS COVERED In this review, the authors summarize the role of PTH signaling pathway in bone remodeling. The authors also summarize investigational analogs targeting this pathway, which may be potential treatments for osteoporosis. EXPERT OPINION β-arrestins are multifunctional cytoplasmic molecules that are decisive for regulating intracellular PTH signaling. Recently, in preclinical studies, arrestin analogs have achieved the anabolic bone effect of PTH without an accompanying increase in bone resorption. However, it is not yet known whether these analogs have adverse effects and there are no clinical data for their efficacy to date. On the other hand, several molecules derived either from PTH and PTH-related protein (PTHrP) molecules have been developed. Alternative routes of PTH 1 - 34 delivery (oral, transdermal), the PTH analog ostabolin and the N-terminal PTHrP analogs PTHrP 1 - 36 and abaloparatide, have recently been or are currently being tested in clinical trials and are more likely to become available for use in the near future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine , Boston, MA , USA
| | | | | | | |
Collapse
|
17
|
Rodríguez-de la Rosa L, López-Herradón A, Portal-Núñez S, Murillo-Cuesta S, Lozano D, Cediel R, Varela-Nieto I, Esbrit P. Treatment with N- and C-terminal peptides of parathyroid hormone-related protein partly compensate the skeletal abnormalities in IGF-I deficient mice. PLoS One 2014; 9:e87536. [PMID: 24503961 PMCID: PMC3913635 DOI: 10.1371/journal.pone.0087536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/31/2013] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Ana López-Herradón
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Daniel Lozano
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cediel
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|