1
|
Sumida KD, Smithers DL, Gerston A, Lagerborg KA, Jaque SV, Caporaso F. Impact of Resistance Training on Bone During 40% Caloric Restriction in Growing Female Rats. Calcif Tissue Int 2025; 116:38. [PMID: 39928164 PMCID: PMC11811438 DOI: 10.1007/s00223-025-01348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
There is a growing trend in the use of severe caloric restrictive diets among normal weight young females that can jeopardize bone health. Using an animal model, the purpose of this study was to determine whether resistance training (RT) could maintain bone health during a 6-week severe caloric restrictive (CR) diet in growing female rats. Twenty-four female rats (~ 8 weeks old) were randomly divided into the following groups: sedentary rats fed a normal diet (N = 8), sedentary rats fed a 40% CR diet (D = 8), and an RT group fed a 40% CR diet (DT = 8). The DT group climbed a vertical ladder four consecutive times (per exercise session) with weights appended to their tail 3 days/week for a total of 6 weeks. Tibial bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry scans and bone mechanical properties were measured. After 6 weeks, the body mass (Mean ± SD) of CR-fed groups (D & DT = 202.8 ± 10.7 g) was significantly lower than N (275.5 ± 25.3 g). Tibial BMD (g/cm2) for D (0.196 ± 0.012) was significantly lower vs. N (0.213 ± 0.013), resulting in a 7.9% decline. The tibial BMD for DT (0.206 ± 0.009) resulted in a 3.3% decline compared to N that was not significantly different. Bone mechanical properties were significantly greater for DT compared to D, but not significantly different compared to N. Resistance training has the potential to maintain bone health during severe caloric restriction in growing female rats.
Collapse
Affiliation(s)
- Ken D Sumida
- Department of Health Sciences and Food Science Orange, Chapman University, One University Drive, Orange, CA, 92866, USA.
| | - Daniel L Smithers
- Department of Health Sciences and Food Science Orange, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Aaron Gerston
- Department of Health Sciences and Food Science Orange, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Kim A Lagerborg
- Department of Health Sciences and Food Science Orange, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - S Victoria Jaque
- Department of Kinesiology, California State University, Northridge, Northridge, CA, USA
| | - Fred Caporaso
- Department of Health Sciences and Food Science Orange, Chapman University, One University Drive, Orange, CA, 92866, USA
| |
Collapse
|
2
|
van Rosmalen L, Zhu J, Maier G, Gacasan EG, Lin T, Zhemchuzhnikova E, Rothenberg V, Razu S, Deota S, Ramasamy RK, Sah RL, McCulloch AD, Hut RA, Panda S. Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport. Cell Metab 2024; 36:2015-2037.e6. [PMID: 39232281 PMCID: PMC11378950 DOI: 10.1016/j.cmet.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the "exercise-for-food" paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiaoyue Zhu
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Geraldine Maier
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica G Gacasan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Zhemchuzhnikova
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Vince Rothenberg
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swithin Razu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert L Sah
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D McCulloch
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Peng Y, Zhong Z, Huang C, Wang W. The effects of popular diets on bone health in the past decade: a narrative review. Front Endocrinol (Lausanne) 2024; 14:1287140. [PMID: 38665424 PMCID: PMC11044027 DOI: 10.3389/fendo.2023.1287140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 04/28/2024] Open
Abstract
Bone health encompasses not only bone mineral density but also bone architecture and mechanical properties that can impact bone strength. While specific dietary interventions have been proposed to treat various diseases such as obesity and diabetes, their effects on bone health remain unclear. The aim of this review is to examine literature published in the past decade, summarize the effects of currently popular diets on bone health, elucidate underlying mechanisms, and provide solutions to neutralize the side effects. The diets discussed in this review include a ketogenic diet (KD), a Mediterranean diet (MD), caloric restriction (CR), a high-protein diet (HP), and intermittent fasting (IF). Although detrimental effects on bone health have been noticed in the KD and CR diets, it is still controversial, while the MD and HP diets have shown protective effects, and the effects of IF diets are still uncertain. The mechanism of these effects and the attenuation methods have gained attention and have been discussed in recent years: the KD diet interrupts energy balance and calcium metabolism, which reduces bone quality. Ginsenoside-Rb2, metformin, and simvastatin have been shown to attenuate bone loss during KD. The CR diet influences energy imbalance, glucocorticoid levels, and adipose tissue, causing bone loss. Adequate vitamin D and calcium supplementation and exercise training can attenuate these effects. The olive oil in the MD may be an effective component that protects bone health. HP diets also have components that protect bone health, but their mechanism requires further investigation. In IF, animal studies have shown detrimental effects on bone health, while human studies have not. Therefore, the effects of diets on bone health vary accordingly.
Collapse
Affiliation(s)
- Yue Peng
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zikang Zhong
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Huang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| | - Weiguo Wang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Aikawa Y, Noma Y, Agata U, Kakutani Y, Hattori S, Ogata H, Kiyono K, Omi N. Running exercise and food restriction affect bone chemical properties in young female rats. Phys Act Nutr 2023; 27:62-69. [PMID: 37583073 PMCID: PMC10440179 DOI: 10.20463/pan.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE To investigate the effects of a combination of running and food restriction on the chemical properties of the bone in young female rats using Raman spectroscopy. Furthermore, we investigated whether the chemical property parameters correlated with the bone-breaking strength. METHODS Female Sprague-Dawley rats (7 weeks old) were randomly divided into four groups: sedentary and ad libitum feeding (SED, n = 8), voluntary running exercise and ad libitum feeding (EX, n = 8), sedentary and 30% food-restricted (SED-FR, n = 8), and voluntary running exercise and 30% food-restricted (EXFR, n = 8). The experiment was conducted for a period of 12 weeks. Four parameters measured by Raman spectroscopy were used to evaluate the bone chemical quality. RESULTS Exercise and restriction had significant interactions on the mineral to matrix ratio. The mineral- to-matrix ratio in the SED-FR group was significantly higher than that in the SED group and significantly lower in the EX-FR group than that in the SED-FR group. Running exercise had significant effects on increasing the crystallinity and carbonate-to-phosphate ratio. In the ad libitum intake condition, there were significant positive correlations between breaking energy and crystallinity (r = 0.593) and between breaking energy and carbonate-to-phosphate ratio (r = 0.854). CONCLUSION Our findings show that running exercise and food restriction, alone or in combination, affect the chemical properties of bone. Furthermore, under ad libitum intake conditions, positive correlations were found between the breaking energy and crystallinity, or carbonate-to-phosphate ratio.
Collapse
Affiliation(s)
- Yuki Aikawa
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Food and Nutrition, Tsu City College, Tsu, Japan
| | - Yuich Noma
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Umon Agata
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Ina-machi, Japan
| | - Yuya Kakutani
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Health and Nutrition, Osaka Shoin Women’s University, Higashi-Osaka, Japan
| | - Satoshi Hattori
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hitomi Ogata
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Hattori S, Aikawa Y, Omi N. Female Athlete Triad and Male Athlete Triad Syndrome Induced by Low Energy Availability: An Animal Model. Calcif Tissue Int 2022; 111:116-123. [PMID: 35522259 DOI: 10.1007/s00223-022-00983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Energy availability (EA) is defined the difference in energy intake and exercise energy expenditure. Reduction of EA (i.e. Low energy availability, LEA) often causes abnormalities of reproduction system and drastic bone loss in some female athletes, the phenomenon is called as female athlete triad. More than ever before, it is considered a serious problem, the reason of these are (1) the syndrome occurred in female athletes but also male athletes, (2) LEA is leads to dysfunction of various organs other than reproductive system (Relative energy deficiency in sport, RED-S). On the other hand, we have focused on this syndrome and have proposed novel insights into the physiological effects of LEA on bone and solutions through nutritional treatment by recreating it in animal models. In this review, we will summarize the epidemiological and physiological perspectives of these diseases from historical background to recent findings, and introduce the usefulness of using animal models to explore mechanisms and treatments.
Collapse
Affiliation(s)
- Satoshi Hattori
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yuki Aikawa
- Department of Science of Living, Tsu City College, 157 Isshinden-nakano, Tsu, Mie, 514-0112, Japan
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
6
|
Boudenot A, Pallu S, Uzbekov R, Dolleans E, Toumi H, Lespessailles E. Free-fall landing and interval running have different effects on trabecular bone mass and microarchitecture, serum osteocalcin, biomechanical properties, SOST expression and on osteocyte-related characteristics. Appl Physiol Nutr Metab 2021; 46:1525-1534. [PMID: 34370961 DOI: 10.1139/apnm-2020-0683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of treadmill interval training (IT) and free-fall exercise were evaluated on bone parameters including osteocyte related characteristics. Thirty-eight 4-month-old male Wistar rats were randomly divided into a control (C) group and exercise groups: IT, 10 free-fall impacts/day with a 10-s (FF10) or 20-s interval between drops (FF20), 5 days/week, for 9 weeks. We assessed bone mineral density (BMD); microarchitecture by µCT; mechanical strength by a 3-point bending test; density and occupancy of the osteocyte lacunae by toluidine blue staining; osteocalcin and NTx systemic levels by ELISA; and bone tissue Sost messenger RNA (mRNA) expression by RT-PCR. NTx levels were significantly lower in exercise groups as compared with the C group. In exercise groups the Sost mRNA expression was significantly lower than in C. Tb.N was significantly higher for IT and FF20 compared with the C group. Tb.Sp was significantly lower in FF10 compared with the C group. Both IT and FF20 were associated with higher tibial lacunar density as compared with FF10. compared with FF10, IT fat mass was lower, while tibial osteocyte lacunae occupancy and systemic osteocalcin level were higher. All exercise modes were efficient in reducing bone resorption. Both IT and free-fall impact with appropriate recovery periods, which may be beneficial for bone health and osteocyte-related characteristics. Novelty: Interval training is beneficial for bone mineral density. Exercises decreased both bone resorption and inhibition of bone formation (Sost mRNA). Longer interval recovery time favors osteocyte lacunae density.
Collapse
Affiliation(s)
- Arnaud Boudenot
- EA 4708 I3MTO Laboratory, University Orleans, Orleans 45067, France
| | - Stéphane Pallu
- CNRS, INSERM, B3OA, University of Paris, Paris 75010, France
| | - Rustem Uzbekov
- Department of Microscopy, University of Tours, Tours, France
| | - Eric Dolleans
- EA 4708 I3MTO Laboratory, University Orleans, Orleans 45067, France
| | - Hechmi Toumi
- EA 4708 I3MTO Laboratory, University Orleans, Orleans 45067, France
- Department of Rheumatology, Regional Hospital of Orleans, Orleans, France
- Plateforme Recherche Innovation Médicale Mutualisée d'Orléans, CHR, Orleans, France
| | - Eric Lespessailles
- EA 4708 I3MTO Laboratory, University Orleans, Orleans 45067, France
- Department of Rheumatology, Regional Hospital of Orleans, Orleans, France
- Plateforme Recherche Innovation Médicale Mutualisée d'Orléans, CHR, Orleans, France
| |
Collapse
|
7
|
Hattori S, Omi N. The effects of royal jelly protein on bone mineral density and strength in ovariectomized female rats. Phys Act Nutr 2021; 25:33-37. [PMID: 34315205 PMCID: PMC8342184 DOI: 10.20463/pan.2021.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Sex hormones deficiency leads to dramatically bone loss in particular postmenopausal women. Royal jelly has anti-osteoporosis effect due to maintain bone volume in that condition. We hypothesized that royal jelly protein (RJP, a latent residue after extracting royal jelly) also prevents bone deficient in ovariectomized (OVX) female rats, the animal model of postmenopausal women. [Methods] Female Sprague-Dawley rats (n = 30, 6 weeks age old) were sham operated (Sham; sham operated group, n = 7), OVX control group (OC, n = 7), OVX with low RJP intake group (ORL, n = 8), and OVX with high RJP intake group (ORH, n = 8) during 8 weeks experimental periods. In the end point of this experiment, the bone samples (lumbar spine, tibia, and femur) were surgically removed under anesthesia. These bone samples were evaluated bone mineral density (BMD) and bone strength. [Results] BMD of lumbar spine in RJP intake groups (ORL, ORH) were higher than that in OC group (p < 0.05 and p < 0.01) in RJP intake volume dependent manner. BMD of tibial proximal metaphysis and diaphysis in RJP intake groups were also higher than these in OC group (p < 0.01 and p < 0.01 / p < 0.05 and p < 0.001). In addition, breaking force of femur in RJP intake groups were significantly increase compared with that in OC group (p < 0.001 respectively). [Conclusion] These findings indicate that RJP contribute to prevent sex hormone related bone abnormality
Collapse
Affiliation(s)
- Satoshi Hattori
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Polisel EEC, Beck WR, Scariot PPM, Pejon TMM, Gobatto CA, Manchado-Gobatto FB. Effects of high-intensity interval training in more or less active mice on biomechanical, biophysical and biochemical bone parameters. Sci Rep 2021; 11:6414. [PMID: 33742012 PMCID: PMC7979708 DOI: 10.1038/s41598-021-85585-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
High-intensity interval training (HIIT) is of scientific interest due its role in improving physical fitness, but the effects of HIIT on bone health need be carefully explored. Further, it is necessary to know whether HIIT effects on bone health are dependent on the physical activity levels. This may be experimentally tested since we have built a large cage (LC) that allows animals to move freely, promoting an increase of spontaneous physical activity (SPA) in comparison to a small cage (SC). Thus, we examined the effects of HIIT on biophysical, biomechanical and biochemical parameters of bone tissue of C57BL/6J mice living in cages of two different sizes: small (SC) or large (LC) cages with 1320 cm2 and 4800 cm2 floor space, respectively. Male mice were subdivided into two groups within each housing type: Control (C) and Trained (T). At the end of the interventions, all mice were euthanized to extract the femur bone for biophysical, biomechanical and biochemical analyses. Based a significant interaction from two-way ANOVA, trained mice kept in large cage (but not for trained mice housed in SC) exhibited a reduction of tenacity and displacement at failure in bone. This suggests that long-term HIIT program, in addition with a more active lifestyle correlates with exerts negative effects on the bone of healthy mice. A caution must also be raised about the excessive adoption of physical training, at least regarding bone tissue. On the other hand, increased calcium was found in femur of mice housed in LC. In line with this, LC-C mice were more active (i.e. SPA) than other groups. This implies that an active lifestyle without long-term high intensity physical training seems to play a role in promoting benefits to bone tissue. Our data provides new insights for treatment of osteo-health related disorders.
Collapse
Affiliation(s)
- Emanuel E. C. Polisel
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Wladimir R. Beck
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP Brazil
| | - Pedro P. M. Scariot
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Taciane M. M. Pejon
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP Brazil
| | - Claudio A. Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Fúlvia B. Manchado-Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| |
Collapse
|
9
|
Dipla K, Kraemer RR, Constantini NW, Hackney AC. Relative energy deficiency in sports (RED-S): elucidation of endocrine changes affecting the health of males and females. Hormones (Athens) 2021; 20:35-47. [PMID: 32557402 DOI: 10.1007/s42000-020-00214-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
The purpose of this review is to present a different perspective of the relative energy deficiency syndrome, to improve understanding of associated endocrine alterations, and to highlight the need for further research in this area. The term "female athlete triad" was coined over 25 years ago to describe three interrelated components: disordered eating, menstrual dysfunction, and low bone mass. The syndrome's etiology is attributed to energy intake deficiency relative to energy expenditure required for health, function, and daily living. Recently, it became clear that there was a need to broaden the term, as the disorder is not an issue of only three interrelated problems but of a whole spectrum of insults resulting from low energy availability (LEA; i.e., insufficient energy availability to cover basic physiological demands) that can potentially affect any exerciser, irrespective of gender. The new model, termed relative energy deficiency in sport (RED-S), has received greater scrutiny in sports medicine due to its effects on both health and performance in athletes of both sexes. RED-S results from low-energy diets (intentional or unintentional) and/or excessive exercise. Energy deficiency reduces hypothalamic pulsatile release of gonadotropin-releasing hormone, this impairing anterior pituitary release of gonadotropins. In women, reduced FSH and LH pulsatility produces hypoestrogenism, causing functional hypothalamic amenorrhea and decreased bone mass. In men, it reduces testosterone and negatively affects bone health. Moreover, LEA alters other hormonal pathways, causing physiological consequences, such as alteration of the thyroid hormone signaling pathways, leptin levels, carbohydrate metabolism, the growth hormone/insulin-like growth factor-1 axis, and sympathetic/parasympathetic tone. This review explains and clarifies the effects of RED-S in both sexes.
Collapse
Affiliation(s)
- Konstantina Dipla
- Department of Sports Science, Exercise Physiology and Biochemistry Laboratory, Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert R Kraemer
- Department of Kinesiology and Health Studies, Exercise Physiology Laboratory, Southeastern Louisiana University, Hammond, LA, USA.
| | - Naama W Constantini
- Heidi Rotberg Sport Medicine Center, Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Pejon TMM, Gobatto CA, Fabrício V, Beck WR. Moderate intensity swimming training on bone mineral density preservation under food restriction in female rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2020. [DOI: 10.1590/s1980-6574202000040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Abstract
PURPOSE OF REVIEW Multiple dietary components have the potential to positively affect bone mineral density in early life and reduce loss of bone mass with aging. In addition, regular weight-bearing physical activity has a strong positive effect on bone through activation of osteocyte signaling. We will explore possible synergistic effects of dietary components and mechanical stimuli for bone health by identifying dietary components that have the potential to alter the response of osteocytes to mechanical loading. RECENT FINDINGS Several (sub)cellular aspects of osteocytes determine their signaling towards osteoblasts and osteoclasts in response to mechanical stimuli, such as the osteocyte cytoskeleton, estrogen receptor α, the vitamin D receptor, and the architecture of the lacunocanalicular system. Potential modulators of these features include 1,25-dihydroxy vitamin D3, several forms of vitamin K, and the phytoestrogen genistein. Multiple dietary components potentially affect osteocyte function and therefore may have a synergistic effect on bone health when combined with a regime of physical activity.
Collapse
Affiliation(s)
- Hubertine M E Willems
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Binder WJ, Cervantes KS, Meachen JA. Measures of Relative Dentary Strength in Rancho La Brea Smilodon fatalis over Time. PLoS One 2016; 11:e0162270. [PMID: 27598462 PMCID: PMC5012699 DOI: 10.1371/journal.pone.0162270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
The late Pleistocene megafaunal extinction of approximately 12,000 years ago, included the demise of Smilodon fatalis, a hypercarnivore from the Rancho La Brea deposits, which has been studied across time by looking at different deposits or pits to determine morphological size and shape changes and trends during this time. To better understand functional aspects of these changes, this study focused on a measure of jaw strength over time, which can give an indication of morphological changes within the jaw that cannot be seen using surface morphometrics. By radiographing dentaries, cortical bone can be seen, which provides an estimate of resistance to bending forces while biting, and can be measured and used as an indicator of jaw strength. Measurements were taken at repeatable locations on the dentary of the depth of the cortical bone, and of a standardized measure of cortical bone, which allows for the comparison between different individuals. Specimens included those of five different pits ranging from about 37 Kybp to 13 Kybp (just before the extinction of S. fatalis). No significant difference was found in the depth of jaws at any of the measurement points from any of the pits. However, significant differences were found in both the actual thickness of cortical bone, and the standardized thickness of cortical bone at the lower P4 between pit 13 (which had the lowest amount of bone) and pit 61/67 (which had the highest). These conclusions support other studies that have shown that individuals in pit 13 were under physiological and perhaps dietary stress, which may be reflected in the deposition of cortical bone, while the opposite trend is seen in the individuals in pit 61/67. Our results further support findings suggesting Smilodon did not appear to be morphologically most vulnerable right before its extinction.
Collapse
Affiliation(s)
- Wendy J. Binder
- Department of Biology, Loyola Marymount University, Los Angeles, California, United States of America
| | - Kassaundra S. Cervantes
- Department of Biology, Loyola Marymount University, Los Angeles, California, United States of America
| | - Julie A. Meachen
- Department of Anatomy, Des Moines University, Des Moines, Iowa, United States of America
| |
Collapse
|
13
|
Bott KN, Sacco SM, Turnbull PC, Longo AB, Ward WE, Peters SJ. Skeletal site-specific effects of endurance running on structure and strength of tibia, lumbar vertebrae, and mandible in male Sprague–Dawley rats. Appl Physiol Nutr Metab 2016; 41:597-604. [DOI: 10.1139/apnm-2015-0404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone microarchitecture, bone mineral density (BMD), and bone strength are affected positively by impact activities such as running; however, there are discrepancies in the magnitude of these effects. These inconsistencies are mainly a result of varying training protocols, analysis techniques, and whether or not the skeletal sites measured are weight bearing. This study’s purpose was to determine the effects of endurance running on sites that experience different weight bearing and load. Eight-week-old male Sprague–Dawley rats (n = 20) were randomly assigned to either a group with a progressive treadmill running protocol (25 m/min for 1 h, incline of 10%) or a nontrained control group for 8 weeks. The trabecular structure of the tibia, lumbar vertebra (L3), and mandible and the cortical structure at the tibia midpoint were measured using microcomputed tomography to quantify bone volume fraction (i.e., bone volume divided by total volume (BV/TV)), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and cortical thickness. BMD at the proximal tibia, lumbar vertebrae (L1–L3), and mandible was measured using dual energy X-ray absorptiometry. The tibia midpoint strength was measured by 3-point bending using a materials testing system. Endurance running resulted in superior bone structure at the proximal tibia (12% greater BV/TV (p = 0.03), 14% greater Tb.N (p = 0.01), and 19% lower Tb.Sp (p = 0.05)) but not at other sites. Contrary to our hypothesis, mandible bone structure was altered after endurance training (8% lower BV/TV (p < 0.01) and 15% lower Tb.Th (p < 0.01)), which may be explained by a lower food intake, resulting in less mechanical loading from chewing. These results highlight the site-specific effects of loading on the skeleton.
Collapse
Affiliation(s)
- Kirsten N. Bott
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Sandra M. Sacco
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Patrick C. Turnbull
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Amanda B. Longo
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Sandra J. Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
14
|
Hinton PS, Shankar K, Eaton LM, Rector RS. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running. Metabolism 2015; 64:905-16. [PMID: 25963848 DOI: 10.1016/j.metabol.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/25/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE To examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. METHODS This was a 36-week study of sedentary, hyperphagic, male OLETF rats (OLETF-SED), exercise-treated OLETF rats (OLETF-EX) and sedentary non-hyperphagic controls (LETO-SED) with data collection at 13, 20, and 40 weeks of age (n = 5-8 animals per group per timepoint). RESULTS Body mass and fat (%) were significantly greater in OLETF-SED versus controls. OLETF-SED were insulin resistant at 13 and 20 weeks, with overt diabetes by 40 weeks. At 13weeks, OLETF-SED had lower total body BMC and BMD and serum P1NP compared with LETO-SED. Differences in total body BMC and BMD between OLETF-SED and LETO-SED persisted at 20 weeks, with reductions in total and cortical BMD of the tibia. OLETF-SED also had lesser femur diameter, cross-sectional area, polar moment of area, and torque at fracture than LETO-SED. By 40 weeks, OLETF-SED had elevated bone resorption and reduced intrinsic bone strength. OLETF-EX did not show the excessive weight gain, obesity, insulin resistance or diabetes observed in OLETF-SED. OLETF-EX had greater BMD than OLETF-SED, and structural and material properties of the femur were significantly increased in OLETF-EX relative to OLETF-SED and LETO-SED. CONCLUSIONS The negative skeletal effects of excessive adiposity and insulin resistance were evident early in the progressive obesity with lasting negative impacts on intrinsic and extrinsic bone strength. Exercise protected against obesity-associated skeletal changes with marked benefits on the biomechanical properties of bone.
Collapse
Affiliation(s)
- Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - Kartik Shankar
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Lynn M Eaton
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, MO, USA
| | - R Scott Rector
- Research Service-Harry S Truman Memorial Veterans Medical Center, and Departments of Medicine-Division of Gastroenterology and Hepatology and Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
15
|
Hattori S, Park JH, Agata U, Oda M, Higano M, Aikawa Y, Akimoto T, Nabekura Y, Yamato H, Ezawa I, Omi N. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats. J Nutr Sci Vitaminol (Tokyo) 2014; 60:35-42. [PMID: 24759258 DOI: 10.3177/jnsv.60.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.
Collapse
|
16
|
Gaffney-Stomberg E, Cao JJ, Lin GG, Wulff CR, Murphy NE, Young AJ, McClung JP, Pasiakos SM. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J Nutr 2014; 144:821-9. [PMID: 24717364 DOI: 10.3945/jn.113.188532] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-protein (HP) diets may attenuate bone loss during energy restriction. The objective of the current study was to determine whether HP diets suppress bone turnover and improve bone quality in male rats during food restriction and whether dietary protein source affects this relation. Eighty 12-wk-old male Sprague Dawley rats were randomly assigned to consume 1 of 4 study diets under ad libitum (AL) control or restricted conditions [40% food restriction (FR)]: 1) 10% [normal-protein (NP)] milk protein; 2) 32% (HP) milk protein; 3) 10% (NP) soy protein; or 4) 32% (HP) soy protein. After 16 wk, markers of bone turnover, volumetric bone mineral density (vBMD), microarchitecture, strength, and expression of duodenal calcium channels were assessed. FR increased bone turnover and resulted in lower femoral trabecular bone volume (P < 0.05), higher cortical bone surface (P < 0.001), and reduced femur length (P < 0.01), bending moment (P < 0.05), and moment of inertia (P = 0.001) compared with AL. HP intake reduced bone turnover and tended to suppress parathyroid hormone (PTH) (P = 0.06) and increase trabecular vBMD (P < 0.05) compared with NP but did not affect bone strength. Compared with milk, soy suppressed PTH (P < 0.05) and increased cortical vBMD (P < 0.05) and calcium content of the femur (P < 0.01) but did not affect strength variables. During AL conditions, transient receptor potential cation channel, subfamily V, member 6 was higher for soy than milk (P < 0.05) and HP compared with NP (P < 0.05). These data demonstrate that both HP and soy diets suppress PTH, and HP attenuates bone turnover and increases vBMD regardless of FR, although these differences do not affect bone strength. The effects of HP and soy may be due in part to enhanced intestinal calcium transporter expression.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Jay J Cao
- USDA Agricultural Research Service Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - Gregory G Lin
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Charles R Wulff
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Nancy E Murphy
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| |
Collapse
|
17
|
Omi N. Influence of exercise and sports on bone. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|