1
|
Bromer FD, Brent MB, Thomsen JS, Brüel A. Drill-Hole Bone Defects in Animal Models of Bone Healing: Protocol for a Systematic Review. JMIR Res Protoc 2022; 11:e34887. [PMID: 35849443 PMCID: PMC9345022 DOI: 10.2196/34887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background Bone fractures are common conditions of the musculoskeletal system. Several animal models of bone fractures have been established to help elucidate the complex process of bone healing. In the last decades, drill-hole bone defects have emerged as a method to study bone healing. Animal models of drill-hole defects are easy to standardize and do not require external fixation of the bone. However, current studies of drill-hole bone defects lack detailed descriptions of techniques and interstudy standardization. Objective This systematic review aims to present a detailed description of the different methods used to induce drill-hole bone defects in long bones of laboratory animals and to provide a comprehensive overview of their methodology and potential for investigation of bone healing. Methods A systematic search of PubMed and Embase will be performed of abstracts containing variations of the following four keywords: “long bone,” “drill-hole,” “regeneration,” and “animal model.” Abstract screening and full-text screening will be performed independently by 2 reviewers, and data will be extracted to a predesigned extraction protocol. The primary outcome of the included studies is the technique used to create the drill-hole bone defect, and secondary outcomes are any measurements or analyses of bone defect and regeneration. A narrative synthesis will be used to present the primary outcome, while information on secondary outcomes will be displayed graphically. The study protocol follows the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-analysis Protocols) guidelines. Results Abstract and full-text screening is ongoing and is expected to be completed by October 2022. Data extraction will commence immediately after, and the manuscript is expected to be completed by December 2023. The systematic review will follow the PRISMA statement. Conclusions The strength of this systematic review is that it provides a comprehensive methodological overview of the different drill-hole methods and their advantages and disadvantages. This will assist researchers in choosing which model to use when studying different aspects of bone healing. Trial Registration International Prospective Register of Systematic Reviews CRD42020213076; https://tinyurl.com/bp56wdwe International Registered Report Identifier (IRRID) PRR1-10.2196/34887
Collapse
Affiliation(s)
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
2
|
The Effect of Strontium Ranelate on Fracture Healing: An Animal Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1085324. [PMID: 33415138 PMCID: PMC7768587 DOI: 10.1155/2020/1085324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
Background Strontium ranelate (StR) is an antiosteoporotic agent previously utilized for the enhancement of fracture union. We investigated the effects of StR on fracture healing using a rabbit model. Methods Forty adult female rabbits were included in the study and were divided in 2 equal groups, according to StR treatment or untreated controls. All animals were subjected to osteotomy of the ulna, while the contralateral ulna remained intact and served as a control for the biomechanical assessment of fracture healing. Animals in the study group received 600 mg/kg/day of StR orally. All animals received ordinary food. At 2 and 4 weeks, all animals were euthanatized and the osteotomy sites were evaluated for healing through radiological, biomechanical, and histopathological studies. Results The treatment group presented statistically significant higher callus diameter, total callus area, percentage of fibrous tissue (p < 0.001), vessels/mm2, number of total vessels, and lower osteoclast number/mm2 (p < 0.05) than the control group at 2 weeks. Additionally, the treatment group presented significantly higher percentages of new trabecular bone, vessels/mm2, osteoclast number/mm2, and lower values for callus diameter, as well as total callus area (p < 0.05), than the control group at 4 weeks. At 4 weeks, in the treatment group, force applied (p = 0.003), energy at failure (p = 0.004), and load at failure (p = 0.003) were all significantly higher in the forearm specimens with the osteotomized ulnae compared to those without. Radiological bone union was demonstrated for animals receiving StR at 4 weeks compared with controls (p = 0.045). Conclusion StR appears to enhance fracture healing but further studies are warranted in order to better elucidate the mechanisms and benefits of StR treatment.
Collapse
|
3
|
Miranda TS, Napimoga MH, De Franco L, Marins LM, Malta FDS, Pontes LA, Morelli FM, Duarte PM. Strontium ranelate improves alveolar bone healing in estrogen‐deficient rats. J Periodontol 2020; 91:1465-1474. [DOI: 10.1002/jper.19-0561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/13/2019] [Accepted: 01/24/2020] [Indexed: 11/07/2022]
Affiliation(s)
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic Instituto São Leopoldo Mandic Área de Imunologia Campinas São Paulo Brazil
| | - Leonardo De Franco
- Department of Periodontology Dental Research Division Guarulhos University Guarulhos São Paulo Brazil
| | - Letícia Macedo Marins
- Department of Periodontology Dental Research Division Guarulhos University Guarulhos São Paulo Brazil
| | - Fernando de Souza Malta
- Department of Periodontology Dental Research Division Guarulhos University Guarulhos São Paulo Brazil
| | - Louise Antonialice Pontes
- Department of Periodontology Dental Research Division Guarulhos University Guarulhos São Paulo Brazil
| | - Fernando Mendes Morelli
- Faculdade São Leopoldo Mandic Instituto São Leopoldo Mandic Área de Imunologia Campinas São Paulo Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology Dental Research Division Guarulhos University Guarulhos São Paulo Brazil
- Department of Periodontology College of Dentistry University of Florida Gainesville FL
| |
Collapse
|
4
|
Saul D, Harlas B, Ahrabi A, Kosinsky RL, Hoffmann DB, Wassmann M, Wigger R, Böker KO, Sehmisch S, Komrakova M. Effect of Strontium Ranelate on the Muscle and Vertebrae of Ovariectomized Rats. Calcif Tissue Int 2018; 102:705-719. [PMID: 29242963 DOI: 10.1007/s00223-017-0374-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Osteoporosis is often accompanied by sarcopenia. The effect of strontium ranelate (SR) on muscle tissue has not been investigated sufficiently. In this study, the effect of different SR treatments on muscle was studied. Additionally, the lumbar vertebrae were analyzed. Three-month-old female rats were divided into five groups (n = 12): Group 1: untreated (NON-OVX); Group 2: ovariectomized and left untreated (OVX); Group 3: SR after OVX until the study ended (13 weeks, SR prophylaxis and therapy = pr+th); Group 4: OVX and SR for 8 weeks (SR prophylaxis = pr); Group 5: SR for 5 weeks from the 8 week after OVX (SR therapy = SR th). SR was applied in food (630 mg/kg body weight). The size of muscle fibers, capillary density, metabolic enzymes, and mRNA expression were assessed in soleus, gastrocnemius, and longissimus muscles. The vertebral bodies underwent micro-CT, biomechanical, and ashing analyses. In general, SR did not alter the muscle histological parameters. The changes in fiber size and capillary ratio were related to the body weight. Myostatin mRNA was decreased in Sr pr+th; protein expression was not changed. SR th led to increase in mRNA expression of vascular endothelial growth factor (Vegf-B). In lumbar spine, SR pr+th enhanced biomechanical properties, bone mineral density, trabecular area, density, and thickness and cortical density. The reduced calcium/phosphate ratio in the SR pr+th group indicates the replacement of calcium by strontium ions. SR has no adverse effects on muscle tissue and it shows a favorable time-dependent effect on vertebrae. A functional analysis of muscles could verify these findings.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - B Harlas
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - A Ahrabi
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - R L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Göettingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - M Wassmann
- Medical Institute of General Hygiene and Environmental Health, University of Goettingen, 37075, Göettingen, Germany
| | - R Wigger
- Department of Animal Science, University of Goettingen, 37075, Göettingen, Germany
| | - K O Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Göettingen, Germany.
| |
Collapse
|
5
|
Brent MB, Thomsen JS, Brüel A. The effect of oral dabigatran etexilate on bone density, strength, and microstructure in healthy mice. Bone Rep 2018; 8:9-17. [PMID: 29963600 PMCID: PMC6021300 DOI: 10.1016/j.bonr.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
Thrombin is a key component in the coagulation cascade where it converts factor V, VIII, XI, and fibrinogen. In addition to the abundant production of thrombin in the liver, osteoclasts synthesize and secrete thrombin as well. Osteoblasts express thrombin receptors, and it has been reported that thrombin stimulates the expression of RANKL relatively to OPG, resulting in greater osteoclast activation and bone degradation. Pradaxa (dabigatran etexilate, DE) is a new anticoagulant, which has recently been approved for clinical use. DE is a direct thrombin inhibitor with potential to modulate the RANKL/OPG ratio and thereby limit osteoclast activation and bone degradation. The purpose of the study was to investigate whether DE can increase bone density, bone strength, and bone microstructure in healthy male and female mice and to investigate whether the effect of DE is sex-dependent. Twenty-eight 14-week-old male C57BL/6 mice were stratified by weight into 4 groups: 1. Control 3 weeks; 2. DE 3 weeks; 3. Control 6 weeks; 4. DE 6 weeks. An identical study design was applied to twenty-four 14-week-old female C57BL/6 mice. Chow mixed with DE was offered ad libitum, resulting in a dose of 1.70 mg DE/g body weight and 1.52 mg DE/g body weight, to female and male mice, respectively. The animals were euthanized after 3 or 6 weeks. Bone mineral density (aBMD) and bone mineral content (BMC) were evaluated with DEXA, 3D microstructural properties were determined with μCT, bone strength was determined with mechanical testing, and bone formation and resorption was evaluated with bone histomorphometry. In female mice, DE resulted in significant higher tibial aBMD values after 6 weeks of intervention. Furthermore, DE significantly increased tibial diaphyseal cortical bone area and tissue area, which was accompanied by significantly increased strength of the tibial shaft. DE had no effect on femoral cortical bone or on femoral and vertebral trabecular 3D microstructure. Finally, bone histomorphometry showed that DE had no effect on MS/BS or Oc.S/BS. In male mice, no bone positive effects of DE were found in any of the parameters investigated. In conclusion, intervention with DE may result in a weak positive site specific effect at tibial cortical bone in female mice, and importantly, no major deleterious effects of DE on bone tissue were seen in either female or male mice despite the relatively high dose of DE used.
Collapse
|
6
|
Huang YZ, Wang JJ, Huang YC, Wu CG, Zhang Y, Zhang CL, Bai L, Xie HQ, Li ZY, Deng L. Organic composite-mediated surface coating of human acellular bone matrix with strontium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 84:12-20. [PMID: 29519420 DOI: 10.1016/j.msec.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023]
Abstract
Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key laboratory of biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 60041, China
| | - Jing-Jing Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Cheng-Guang Wu
- Laboratory of Stem Cell and Tissue Engineering, State Key laboratory of biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 60041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key laboratory of biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 60041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 60041, China
| | - Lin Bai
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key laboratory of biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 60041, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, State Key laboratory of biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 60041, China.
| |
Collapse
|
7
|
Boutas I, Pergialiotis V, Salakos N, Korou LM, Mitousoudis A, Kalampokas E, Deligeoroglou E, Gregoriou O, Perrea DN, Creatsas G, Kourkoulis S. Assessment of bone metabolism and biomechanical properties of the femur, following treatment with anastrozole and letrozole in an experimental model of menopause. Oncol Lett 2017; 14:3494-3502. [PMID: 28943895 PMCID: PMC5592877 DOI: 10.3892/ol.2017.6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to investigate the impact of anastrozole and letrozole supplementation following surgically induced menopause on bone metabolism and biomechanical properties. A total of 45 Wistar rats underwent ovariectomy and were then randomly allocated to receive no treatment, anastrozole or letrozole. At 2 and 4 months following the initiation of the present study, the serum levels of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) were determined, and the animals were sacrificed at the end of the 4-month period to assess the biomechanical properties of the femoral bones. The applied force and the deflection of the central section were recorded during the test. Taking advantage of these quantities, the fracture force, the stiffness of the bone and the energy absorbed until fracture were determined. At 2 months following the initiation of the experimental protocol, the mean OPG levels were significantly increased in the control group compared with the anastrozole-treated group (P<0.01). Similarly, RANKL levels were significantly increased in the control rats compared with the anastrozole-treated animals (P<0.001) and animals that received letrozole (P<0.05). Notably, these trends were not observed at the end of the experiment (4 months). A biomechanical study of the femoral bones revealed significantly decreased stiffness among animals that received anastrozole (P<0.05) and letrozole (P<0.01) compared with their control counterparts. The results of the present study indicate that treatment with anastrozole and letrozole significantly increases the levels of OPG and RANKL in bone, an effect that appears to be directly associated with the biomechanical properties of bones.
Collapse
Affiliation(s)
- Ioannis Boutas
- Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece.,Laboratory of Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Nicolaos Salakos
- Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Laskarina-Maria Korou
- Laboratory of Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Athanasios Mitousoudis
- Department of Mechanics, Laboratory of Testing and Materials-Unit of Biomechanics, National Technical University of Athens, 15773 Athens, Greece
| | - Emmanouil Kalampokas
- Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | | | - Odysseas Gregoriou
- Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George Creatsas
- Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Stavros Kourkoulis
- Department of Mechanics, Laboratory of Testing and Materials-Unit of Biomechanics, National Technical University of Athens, 15773 Athens, Greece
| |
Collapse
|