1
|
Olali AZ, Wallace J, Gonzalez H, Carpenter KA, Patel N, Winchester LC, Podany AT, Venkatesh I, Narasipura SD, Al-Harthi L, Ross RD. The anti-HIV drug abacavir stimulates β-catenin activity in osteoblast lineage cells. JBMR Plus 2024; 8:ziae037. [PMID: 38590756 PMCID: PMC11001392 DOI: 10.1093/jbmrpl/ziae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Bone mineral density (BMD) loss in people living with HIV occurs with the initiation of combined antiretroviral therapy (cART), particularly with tenofovir disoproxil fumarate (TDF) containing cART. Switching from TDF to abacavir (ABC) or dolutegravir (DTG) leads to increased BMD. Whether BMD gains are due to cessation of TDF or anabolic effects of ABC or DTG is unclear. We investigated the effects of ABC and DTG on osteoblast lineage cells in vitro and in vivo. Primary human osteoblasts and male C57BL/6 mice were treated with individual antiretrovirals (ARVs) or a combination of ABC/DTG/lamivudine (3TC). Nearly all ARVs and cART inhibited osteogenic activity in vitro. Due to the importance of Wnt/β-catenin in bone formation, we further investigated ARV effects on the Wnt/β-catenin pathway. ABC, alone and as part of ABC/DTG/3TC, increased osteoblastic β-catenin activity as indicated by increased TOPFlash activity, hypo-phosphorylated (active) β-catenin staining, and β-catenin targeted gene expression. Mice treated with TDF had decreased lumbar spine BMD and trabecular connectivity density in the vertebrae, while those treated with ABC/DTG/3TC reduced cortical area and thickness in the femur. Mice treated with ABC alone had no bone structural changes, increased circulating levels of the bone formation marker, P1NP, and elevated expression of the Wnt/β-catenin target gene, Lef1, in osteocyte enriched samples. Further, bones from ARV-treated mice were isolated to evaluate ARV distribution. All ARVs were detected in the bone tissue, which was inclusive of bone marrow, but when bone marrow was removed, only TDF, ABC, and DTG were detected at ~0.1% of the circulating levels. Overall, our findings demonstrate that ABC activates Wnt/β-catenin signaling, but whether this leads to increased bone formation requires further study. Assessing the impact of ARVs on bone is critical to informing ARV selection and/or discovery of regimens that do not negatively impact the skeleton.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Hemil Gonzalez
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States
| | - Kelsey A Carpenter
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Niyati Patel
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lee C Winchester
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Anthony T Podany
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ishwarya Venkatesh
- Department of Internal Medicine, Drug Discovery Center, Rush University Medical Center, Chicago, IL 60612, United States
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Hashwin Singh TS, Jashwin Singh TS, Chin KY. Effects of Tenofovir Disoproxil Fumarate on Bone Quality beyond Bone Density-A Scoping Review of the Literature. Pharmaceuticals (Basel) 2024; 17:146. [PMID: 38399361 PMCID: PMC10891525 DOI: 10.3390/ph17020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Tenofovir disoproxil fumarate (TDF) is a widely used pharmacological agent for the treatment of human immunodeficiency virus infection. While prolonged exposure to TDF has been associated with a decrease in bone mineral density (BMD) and increased fracture risk, limited discussion exists on its effects on various aspects of bone quality. This scoping review aims to provide a comprehensive overview of the impact of TDF on bone quality beyond BMD. A literature search was conducted using the PubMed and Scopus databases to identify studies investigating the effects of TDF on bone quality. Original research articles written in English, irrespective of study type or publication year, were included in the review. Seven articles met the inclusion criteria. Findings indicate that prolonged exposure to TDF adversely affects bone microarchitecture and strength, impeding fracture healing and skeletal microdamage repair. The observed effects suggest a complex interplay involving bone cell signalling, cytokines and bone remodelling processes as potential mechanisms underlying TDF's impact on bone quality. As a conclusion, TDF impairs bone remodelling and microarchitecture by influencing dynamic bone cell behaviour and signalling pathways. Future studies should delve deeper into understanding the intricate negative effects of TDF on bone and explore strategies for reversing these effects.
Collapse
Affiliation(s)
| | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (T.S.H.S.); (T.S.J.S.)
| |
Collapse
|
3
|
Olali AZ, Carpenter KA, Myers M, Sharma A, Yin MT, Al-Harthi L, Ross RD. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr HIV/AIDS Rep 2022; 19:312-327. [PMID: 35726043 DOI: 10.1007/s11904-022-00613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW People living with HIV (PLWH) are at an increased risk for osteoporosis, a disease defined by the loss of bone mineral density (BMD) and deterioration of bone quality, both of which independently contribute to an increased risk of skeletal fractures. While there is an emerging body of literature focusing on the factors that contribute to BMD loss in PLWH, the contribution of these factors to bone quality changes are less understood. The current review summarizes and critically reviews the data describing the effects of HIV, HIV disease-related factors, and antiretroviral drugs (ARVs) on bone quality. RECENT FINDINGS The increased availability of high-resolution peripheral quantitative computed tomography has confirmed that both HIV infection and ARVs negatively affect bone architecture. There is considerably less data on their effects on bone remodeling or the composition of bone matrix. Whether changes in bone quality independently predict fracture risk, as seen in HIV-uninfected populations, is largely unknown. The available data suggests that bone quality deterioration occurs in PLWH. Future studies are needed to define which factors, viral or ARVs, contribute to loss of bone quality and which bone quality factors are most associated with increased fracture risk.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA.,Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey A Carpenter
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Maria Myers
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | - Michael T Yin
- Columbia University Medical Center, New York, NY, USA
| | - Lena Al-Harthi
- Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA. .,Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Thet D, Siritientong T. Antiretroviral Therapy-Associated Metabolic Complications: Review of the Recent Studies. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2020; 12:507-524. [PMID: 33061662 PMCID: PMC7537841 DOI: 10.2147/hiv.s275314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
The extensive utilization of antiretroviral therapy (ART) has successfully improved human immunodeficiency virus (HIV)-associated complications. The incidence of opportunistic infections is decreased by the viral load suppression and the CD4 count promotion. However, metabolic complications, commonly bone demineralization, lipodystrophy, and lactic acidosis, are arising following the adaptation of long-term ART. The events are not drug-specific, but the severity and incidence individually vary depending upon classes of drugs. Such concerning occurrences may lead to discontinuation of current therapy or switching to another regimen with fewer adverse effects. The purpose of this review is to demonstrate the common metabolic abnormalities associated with each class of widely used ART in people living with HIV (PLHIV). Electronic databases such as PubMed, ScienceDirect, Scopus, Google Scholar, SciFinder, and Web of Science were used for the literature search. A better understanding of ART-associated metabolic adverse effects is helpful in various clinical settings so that therapists may optimize treatments in this population.
Collapse
Affiliation(s)
- Daylia Thet
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tippawan Siritientong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review the available literature regarding a possible relationship between vitamin D and bone marrow adipose tissue (BMAT), and to identify future avenues of research that warrant attention. RECENT FINDINGS Results from in vivo animal and human studies all support the hypothesis that vitamin D can suppress BMAT expansion. This is achieved by antagonizing adipogenesis in bone marrow stromal cells, through inhibition of PPARγ2 activity and stimulation of pro-osteogenic Wnt signalling. However, our understanding of the functions of BMAT is still evolving, and studies on the role of vitamin D in modulating BMAT function are lacking. In addition, many diseases and chronic conditions are associated with low vitamin D status and low bone mineral density (BMD), but BMAT expansion has not been studied in these patient populations. Vitamin D suppresses BMAT expansion, but its role in modulating BMAT function is poorly understood.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Francie van Zijl Drive, PO Box 241, Parow, Cape Town, 8000, South Africa.
| |
Collapse
|
6
|
Conesa-Buendía FM, Llamas-Granda P, Larrañaga-Vera A, Wilder T, Largo R, Herrero-Beaumont G, Cronstein B, Mediero A. Tenofovir Causes Bone Loss via Decreased Bone Formation and Increased Bone Resorption, Which Can Be Counteracted by Dipyridamole in Mice. J Bone Miner Res 2019; 34:923-938. [PMID: 30645771 DOI: 10.1002/jbmr.3665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/04/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Osteopenia and fragility fractures have been associated with human immunodeficiency virus (HIV) infection. Tenofovir, a common antiviral in HIV treatment, also leads to increases in bone catabolism markers and decreased BMD in children and young adults. In murine models and human cell lines, tenofovir inhibits adenosine triphosphate release and decreases extracellular adenosine levels. Adenosine and adenosine A2A receptor inhibit osteoclast formation, and increase local adenosine concentration with dipyridamole, an agent that blocks adenosine cellular uptake and stimulates new bone formation as well as bone morphogenic protein 2. We hypothesized that tenofovir regulates bone resorption by diminishing endogenous adenosine levels and questioned whether dipyridamole may be a useful treatment to counteract the deleterous bone effects of tenofovir. Primary murine osteoclasts were induced by M-CSF/RANKL, and the number of TRAP-positive-cells was studied after challenge with tenofovir alone or in combination with dipyridamole. Differentiation markers were studied by RT-PCR and MAPK/NFkB expression by Western blot. Male C57Bl/6 mice were treated as follows: saline 0.9% (control), tenofovir 75 mg/kg/day, dipyridamole 25 mg/kg/day, combination tenofovir/dipyridamole (n = 10, 4 weeks). Calcein/Alizarin Red-labeling of newly formed bone was used, and long bones were prepared for micro-computed tomography (μCT)/histology. Tenofovir produced a dose-dependent increase in osteoclast differentiation (EC50 = 44.5nM) that was reversed by dipyridamole (IC50 = 0.3 μM). Tenofovir increased cathepsin K and NFATc1 mRNA levels and dipyridamole reversed the effect. Dipyridamole reversed the effect of tenofovir on pERK1/2, pp38, and NFkB nuclear translocation. Mice treated with tenofovir lost nearly 10% of their body weight (p < 0.001). μCT revealed decreased BMD and altered trabecular bone in tenofovir-treated mice, reversed by dipyridamole. TRAP-staining showed increased osteoclasts in tenofovir-treated mice (p < 0.005), an effect reversed by dipyridamole. Similar results were obtained for cathepsin K and CD68. RANKL-positive cells were increased in tenofovir-treated mice, whereas osteoprotegerin-positive cells were decreased; both effects were reversed by dipyridamole. These results suggest that treatment with agents that increase local adenosine concentrations, like dipyridamole, might prevent bone loss following tenofovir treatment. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | - Ane Larrañaga-Vera
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Bruce Cronstein
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain.,Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Alcolea Palafox M, Kattan D, Afseth N. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|