1
|
Sun M, Wang Q, Huang J, Sun Q, Yu Q, Liu X, Liu Z. Asiatic acid induces ferroptosis of RA-FLS via the Nrf2/HMOX1 pathway to relieve inflammation in rheumatoid arthritis. Int Immunopharmacol 2024; 137:112394. [PMID: 38852517 DOI: 10.1016/j.intimp.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Ferroptosis is a distinct iron-dependent non-apoptotic type of programmed cell death that is implicated in the pathophysiology of rheumatoid arthritis (RA). Although asiatic acid (AA) is documented to have significant anti-inflammatory effects in various diseases, it is not known whether it can regulate RA via ferroptosis. METHODS The effects of AA on rheumatoid arthritis fibroid-like synoviocytes (RA-FLS) were assessed in vitro, and a rat model of type II collagen-induced arthritis (CIA) was established to evaluate the effectiveness of AA treatment in vivo. RESULTS AA significantly reduced both viability and colony formation in cultured RA-FLS, while increasing the levels of reactive oxygen species (ROS), ferrous iron (Fe2+), malondialdehyde (MDA), and lactate dehydrogenase (LDH), as well as the expression of COX2. Furthermore, AA induced ferroptosis in RA-FLS by promoting Fe2+ accumulation through downregulation of the expression of Keap1 and FTH1 and upregulation of Nrf2 and HMOX1. In vivo, AA treatment was found to reduce toe swelling and the arthritis score in CIA rats, as well as relieve inflammation and ankle damage and significantly upregulate the expression of Nrf2 and HMOX1 in the synovial fluid. CONCLUSION Treatment with AA significantly reduced the viability of RA-FLS and triggered ferroptosis by promoting accumulation of Fe2+via the Nrf2-HMOX1 pathway, and was effective in relieving inflammation in CIA model rats. These findings suggest that the use of AA may be a promising strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Miao Sun
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Qian Wang
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Jianhua Huang
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China.
| | - Qixuan Sun
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Qian Yu
- Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China; Huludao Central Hospital Teaching Base of Jinzhou Medical University, Jinzhou 125001, China
| | - Xin Liu
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Huludao Central Hospital Teaching Base of Jinzhou Medical University, Jinzhou 125001, China.
| | - Zhining Liu
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
2
|
Zhang H, Li Y, Liu M, Guo M, Zhang R, Zhao K, Wu J, Zhao Z, Zhu H, Liu J. Asiatic acid alleviates vascular remodeling in BAPN-induced aortic dissection through inhibiting NF-κB p65/CX3CL1 signaling. FASEB J 2024; 38:e23645. [PMID: 38703043 DOI: 10.1096/fj.202302327r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on β-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Yubin Li
- Department of Vascular Surgery, Linyi Peoples' Hospital, Linyi, Shandong, China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Ruipeng Zhang
- Department of Interventional Vascular Surgery, Qingdao Huang Dao District Central Hospital, Binzhou Medical University, Shandong, China
| | - Kaiwen Zhao
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianlie Wu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Zhenyuan Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Hongqiao Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Junjun Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| |
Collapse
|
3
|
Feng L, Yang Z, Hou N, Wang M, Lu X, Li Y, Wang H, Wang Y, Bai S, Zhang X, Lin Y, Yan X, Lin S, Tortorella MD, Li G. Long Non-Coding RNA Malat1 Increases the Rescuing Effect of Quercetin on TNFα-Impaired Bone Marrow Stem Cell Osteogenesis and Ovariectomy-Induced Osteoporosis. Int J Mol Sci 2023; 24:5965. [PMID: 36983039 PMCID: PMC10059267 DOI: 10.3390/ijms24065965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds by a dual luciferase reporter system. Quercetin was found to upregulate Wnt/β-catenin while inhibiting NF-κB signaling activities, and thereby rescuing osteoporosis-induced tumor necrosis factor alpha (TNFα) impaired BMSCs osteogenesis. Furthermore, a putative functional lncRNA, Malat1, was shown to be a key mediator in quercetin regulated signaling activities and TNFα-impaired BMSCs osteogenesis, as mentioned above. In an ovariectomy (OVX)-induced osteoporosis mouse model, quercetin administration could significantly rescue OVX-induced bone loss and structure deterioration. Serum levels of Malat1 were also obviously rescued in the OVX model after quercetin treatment. In conclusion, our study demonstrated that quercetin could rescue TNFα-impaired BMSCs osteogenesis in vitro and osteoporosis-induced bone loss in vivo, in a Malat1-dependent manner, suggesting that quercetin may serve as a therapeutic candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Zhengmeng Yang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Nan Hou
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Haixing Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Shanshan Bai
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yuejun Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xu Yan
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
4
|
Zhang X, Wang X, Lee YW, Feng L, Wang B, Pan Q, Meng X, Cao H, Li L, Wang H, Bai S, Kong L, Chow DHK, Qin L, Cui L, Lin S, Li G. Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration. Bioengineering (Basel) 2022; 9:525. [PMID: 36290493 PMCID: PMC9598556 DOI: 10.3390/bioengineering9100525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 10/27/2023] Open
Abstract
We develop a poly (lactic-co-glycolic acid)/β-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xinluan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuk-wai Lee
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Qi Pan
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiangbo Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huijuan Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlong Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Bai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lingchi Kong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liao Cui
- School of Pharmacy and Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
5
|
Dong M, Zeng J, Yang C, Qiu Y, Wang X. Asiatic Acid Attenuates Osteoporotic Bone Loss in Ovariectomized Mice Through Inhibiting NF-kappaB/MAPK/ Protein Kinase B Signaling Pathway. Front Pharmacol 2022; 13:829741. [PMID: 35211021 PMCID: PMC8861314 DOI: 10.3389/fphar.2022.829741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is a condition associated with osteolytic bone disease that is primarily characterized by inordinate osteoclast activation. Protein kinase B (Akt) pathways activated by receptor activator of nuclear factor kappa-B ligand (RANKL) are essential for osteoclastogenesis. Asiatic acid (AA) is a natural pentacyclic triterpenoid compound extracted from a traditional Chinese herb that exhibits a wide range of biological activities. AA has been found to alleviate the hypertrophic and fibrotic phenotype of chondrocytes via the Akt signaling pathway. In this study, we investigated whether AA alleviated bone loss by inhibiting the Akt signaling pathway during osteoclastogenesis and its effect on osteoblasts. The effect of AA cytotoxicity on mouse bone marrow-derived macrophages/monocytes (BMMs) was evaluated in vitro using a Cell Counting Kit-8 assay. The effects of AA on osteoclast differentiation and function were detected using tartrate-resistant acid phosphatase (TRAP) staining and a pit formation assay. A Western blot and qRT-PCR were conducted to evaluate the expression of osteoclast-specific genes and protein signaling molecules. In addition, alkaline phosphatase and alizarin red staining were performed to assess osteoblast differentiation and mineralization. The bone protective effect of AA was investigated in vivo using ovariectomized mice. we found that AA could dose-dependently inhibit RANKL-induced osteoclastogenesis. Moreover, the pit formation assay revealed that osteoclast function was suppressed by treatment with AA. Moreover, the expression of osteoclast-specific genes was found to be substantially decreased during osteoclastogenesis. Analysis of the molecular mechanisms showed that AA could inhibit NF-kappaB/MAPK/Akt signaling pathway, as well as the downstream factors of NFATc1 in the osteoclast signaling pathway activated by RANKL. However, AA did not significantly promote osteoblast differentiation and mineralization. The in vivo experiments suggested that AA could alleviate ovariectomy-induced bone loss in ovariectomized mice. Our results demonstrate that AA can inhibit osteoclastogenesis and prevent ovariectomy-induced bone loss by inhibiting the NF-kappaB/MAPK/Akt signaling pathway. The discovery of the new molecular mechanism that AA inhibits osteoclastogenesis provides essential evidence to support the use of AA as a potential drug for the treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Mingming Dong
- Department of Spine Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jican Zeng
- Department of Spine Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Chenyu Yang
- Department of Spine Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xinjia Wang
- Department of Spine Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Orthopedic, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Yang Z, Feng L, Wang H, Li Y, Lo JHT, Zhang X, Lu X, Wang Y, Lin S, Tortorella MD, Li G. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021; 13:4455. [PMID: 34960006 PMCID: PMC8704418 DOI: 10.3390/nu13124455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023] Open
Abstract
As one of the leading causes of bone fracture in postmenopausal women and in older men, osteoporosis worldwide is attracting more attention in recent decades. Osteoporosis is a common disease mainly resulting from an imbalance of bone formation and bone resorption. Pharmaceutically active compounds that both activate osteogenesis, while repressing osteoclastogenesis hold the potential of being therapeutic medications for osteoporosis treatment. In the present study, sesamin, a bioactive ingredient derived from the seed of Sesamum Indicum, was screened out from a bioactive compound library and shown to exhibit dual-regulating functions on these two processes. Sesamin was demonstrated to promote osteogenesis by upregulating Wnt/β-catenin, while repressing osteoclastogenesis via downregulating NF-κB signaling . Furthermore, DANCR was found to be the key regulator in sesamin-mediated bone formation and resorption . In an ovariectomy (OVX)-induced osteoporotic mouse model, sesamin could rescue OVX-induced bone loss and impairment. The increased serum level of DANCR caused by OVX was also downregulated upon sesamin treatment. In conclusion, our results demonstrate that sesamin plays a dual-functional role in both osteogenesis activation and osteoclastogenesis de-activation in a DANCR-dependent manner, suggesting that it may be a possible medication candidate for osteoporotic patients with elevated DNACR expression levels.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Haixing Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Jessica Hiu Tung Lo
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| |
Collapse
|
7
|
In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid. Polymers (Basel) 2021; 13:polym13234071. [PMID: 34883575 PMCID: PMC8659171 DOI: 10.3390/polym13234071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM) nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology, AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive behavior. All nanogel formulations could significantly increase AA water solubility and the stability was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929 cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations. In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both in vitro and in vivo for hydrophobic AA molecules.
Collapse
|
8
|
Yang Z, Feng L, Huang J, Zhang X, Lin W, Wang B, Cui L, Lin S, Li G. Asiatic acid protects articular cartilage through promoting chondrogenesis and inhibiting inflammation and hypertrophy in osteoarthritis. Eur J Pharmacol 2021; 907:174265. [PMID: 34174266 DOI: 10.1016/j.ejphar.2021.174265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Natural small molecules have become attractive in osteoarthritis (OA) treatment. This study aims to investigate the effect of asiatic acid (AA) on OA development in vitro and in vivo. Chondrocytes were pretreated with AA at optimized concentrations and subsequently treated with interleukin-1 beta (IL-1β). Inflammatory mediator nitric oxide (NO) was measured by Griess method. The mRNA expression level of inflammatory markers nitric oxide synthase (iNOS) and cyclooxygenase 2 (Cox2), as well as chondrogenic or hypertrophic markers including SRY-box transcription factor 9 (Sox9), Aggrecan, Collagen 2a1 (Col II), and Matrix metalloproteinase-13 (Mmp13) were measured by using real-time PCR analysis. The nuclear factor-kappa B (NF-κB) signaling activity was determined by dual luciferase assay and Western blot analysis. Surgery-induced OA animal model was constructed, and AA was administrated to study its effect on OA pathogenesis. AA induced a dose-dependent inhibitory effect up to -67.4% on NO production. AA could repress iNOS and Cox2 protein expression levels (-77.2% and -73.4%, respectively) in IL-1β induced chondrocytes. AA increased the formation of cartilage extracellular matrix components including glycosaminoglycans (GAGs) and collagen type II. AA also mRNA expression of chondrogenesis marker including Aggrecan, Sox9, Col II and Fibronectin (402.87%, 151.04%, 314.15% and 187.76%, respectively) as well as hypertrophic marker Mmp13 (-67.8%). AA repressed the chondrocyte inflammation by directly inhibiting NF-κB signaling activity, which was revealed by the inhibition effect of AA on IκBα phosphorylation (-105.4%) and NF-κB/p65 translocation (-60.9%) induced by IL-1β. Furthermore, In vivo OA study indicated the protective effect of AA on OA progression by preventing articular cartilage from degeneration and destruction. AA treatment could significantly reduce OA score (16.125 vs 5.25) and repress mRNA expression level of Mmp13 and Col X (23.5, vs 2.375 and 18.125 vs 94.5). Taken together, our findings suggest that AA could effectively rescue IL-1β induced chondrocytes and protected cartilage in OA progression, which shed light on a potential novel therapeutic strategy of OA treatment.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Jianping Huang
- The Public Service Platform of South China Sea for R & D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, PR China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Liao Cui
- The Public Service Platform of South China Sea for R & D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; The Public Service Platform of South China Sea for R & D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|
9
|
Wróbel A, Serefko A, Szopa A, Poleszak E. Asiatic Acid, a Natural Compound that Exerts Beneficial Effects on the Cystometric and Biochemical Parameters in the Retinyl Acetate-Induced Model of Detrusor Overactivity. Front Pharmacol 2021; 11:574108. [PMID: 33584259 PMCID: PMC7878531 DOI: 10.3389/fphar.2020.574108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Scientists have been constantly looking for new synthetic and natural compounds that could have beneficial effects in bladder overactivity. Our attention was drawn by asiatic acid that influences a number of molecules and signaling pathways relevant for the proper functioning of the urinary tracts in humans. In the present project we wanted to check whether asiatic acid would have positive effects in the confirmed animal model of detrusor overactivity (DO) and whether it would affect the bladder blood flow, urothelium thickness, inflammatory and oxidative stress markers, neurotrophic and growth factors, and other parameters important for the activity of the urinary bladder. The outcomes of our study showed that a 14-day administration of asiatic acid (30 mg/kg/day) by oral gavage normalizes the cystometric parameters corresponding to DO and reduces the accompanying oxidative stress (measured by the levels of malondialdehyde-61,344 ± 24,908 pg/ml vs. 33,668 ± 5,071 pg/ml, 3-nitrotyrosine-64,615 ± 25,433 pg/ml vs. 6,563 ± 1,736 pg/ml, and NOS2-2,506 ± 411.7 vs. 3,824 ± 470.1 pg/ml). Moreover, it decreases the urinary secretion of neurotrophins (BDNF-304.4 ± 33.21 pg/ml vs. 119.3 ± 11.49 pg/ml and NGF-205.5 ± 18.50 vs. 109.7 ± 15.94 pg/ml) and prevents the changes in a range of biomarkers indicating the dysfunction of the urinary bladder, CGRP (421.1 ± 56.64 vs. 108.1 ± 11.73 pg/ml), E-Cadherin (773.5 ± 177.5 pg/ml vs. 1,560 ± 154.5 pg/ml), OCT3 (3,943 ± 814.6 vs. 1,018 ± 97.07 pg/ml), SNAP-23 (6,763 ± 808.9 pg/ml vs. 3,455 ± 554.5 pg/ml), SNAP-25 (2,038 ± 162.7 pg/ml vs. 833.3 ± 65.48), substance P (171.7 ± 16.86 pg/ml vs. 65.07 ± 8.250 pg/ml), SV2A (1,927 ± 175.3 pg/ml vs. 1,154 ± 254.9 pg/ml), tight junction protein 1 (360.1 ± 95.05 pg/ml vs. 563.4 ± 65.43 pg/ml), VAChT (16,470 ± 2,419 pg/ml vs. 7,072 ± 1,339 pg/ml), VEGFA (318.3 ± 37.89 pg/ml vs. 201.5 ± 22.91 pg/ml). The mentioned parameters are associated with smooth muscle contractions, urothelial barrier, transportation and release of transmitters, or bladder compensation. Thus, the presented findings allow to suggest a possible future role of asiatic acid in the prevention of conditions accompanied by DO, such as overactive bladder.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Lublin, Poland
| |
Collapse
|