1
|
Sheng MHC, Rundle CH, Lau KHW. Microvesicles Released by Osteoclastic Cells Exhibited Chondrogenic, Osteogenic, and Anti-Inflammatory Activities: An Evaluation of the Feasibility of Their Use for Treatment of Osteoarthritis in a Mouse Model. Cells 2025; 14:193. [PMID: 39936984 PMCID: PMC11817440 DOI: 10.3390/cells14030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs), particularly exosomes (EXOs) of various skeletal and stem cells, were shown to delay osteoarthritis (OA) progression, and apoptotic bodies (ABs), another EV subtype, of osteoclasts showed osteoanabolic actions and were involved in the osteoclastic-regulation of local bone formation. Moreover, this study demonstrates that microvesicles (MVs) released by osteoclasts displayed potent pro-chondrogenic, pro-osteogenic, and anti-inflammatory activities. These activities were unique to osteoclastic MVs and were not shared by osteoclastic ABs and EXOs or MVs of other cell types. Because chronic synovial inflammation, progressive articular cartilage erosion, abnormal subchondral bone remodeling, and inability to regenerate articular cartilage are key etiologies of OA, we postulate that the foregoing activities of osteoclastic MVs could simultaneously target multiple etiologies of OA and could thereby be an effective therapy for OA. Accordingly, this study sought to assess the feasibility of an osteoclastic MV-based strategy for OA with a mouse tibial plateau injury model of OA. Briefly, tibial plateau injuries were created on the right knees of adult C57BL/6J mice, MVs were intraarticularly injected into the injured joints biweekly, and the OA progression was monitored histologically at five weeks post-injury. The MV treatment reduced the OA-induced losses of articular cartilage area and thickness, decreased irregularity in the articular cartilage surface, reduced loss of gliding/intermediate zone of articular cartilage, reduced osteophyte formation, suppressed synovial inflammation, and decreased the OARSI OA score. In summary, treatment with osteoclastic MVs delayed or reversed OA progression. Thus, this study supports the feasibility of an osteoclastic MV-based therapy for OA.
Collapse
Affiliation(s)
- Matilda H.-C. Sheng
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles H. Rundle
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kin-Hing William Lau
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
2
|
Wang Y, Chen S, Xue M, Ma J, Yi X, Li X, Lu X, Zhu M, Peng J, Tang Y, Zhu Y. Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome. Anim Biosci 2024; 37:1317-1332. [PMID: 38665091 PMCID: PMC11222861 DOI: 10.5713/ab.23.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. METHODS Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. RESULTS In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. CONCLUSION Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Shuwen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jinhu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinrui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinyu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xuejin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Meizi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jin Peng
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Yunshu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| |
Collapse
|
3
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
4
|
Stiffel VM, Rundle CH, Sheng MHC, Das S, Lau KHW. A Novel EphA4 Signaling-Based Therapeutic Strategy for Osteoarthritis in Mice. J Bone Miner Res 2022; 37:660-674. [PMID: 34989027 PMCID: PMC9018473 DOI: 10.1002/jbmr.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Abstract
This study took advantage of the recent discovery that the EphA4 signaling has anti-catabolic effects on osteoclasts/macrophages/synoviocytes but pro-anabolic effects on articular chondrocytes and sought to develop an EphA4 signaling-based therapeutic strategy for osteoarthritis (OA) using a mouse model of OA/posttraumatic OA (PTOA). The injured joint of C57BL/6J mice received biweekly intraarticular injections of a soluble EphA4-binding ligand (EfnA4-fc) at 1 day after the tibial plateau injury or at 5 weeks post-injury. The animals were euthanized 5 weeks later. The injured right and contralateral uninjured left joints were analyzed for hallmarks of OA by histology. Relative severity was determined by a modified Mankin OA scoring system and serum COMP and CTX-II levels. Tibial plateau injury caused more severe OA in Epha4 null mice than in wild-type (WT) littermates, suggesting a protective role of EphA4 signaling in OA. A prototype strategy of an EphA4 signaling-based strategy involving biweekly injections of EfnA4-fc into injured joints was developed and was shown to be highly effective in preventing OA/PTOA when it was administered at 1 day post-injury and in treating OA/PTOA when it was applied after OA has been established. The efficacy of this prototype was dose- and time-dependent. The effects were not caused by the Fc moiety of EfnA4-fc. Other soluble EfnA ligands of EphA4, ie, EfnA1-fc and EfnA2-fc, were also effective. A prototype of a novel EphA4 signaling-based therapy was developed for OA/PTOA that not only reduces the progressive destruction of articular cartilage but may also promote regeneration of the damaged cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Virginia M Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Subhashri Das
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
5
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|